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Abstract

Since 2020, Thailand has been impacted by the COVID-19 pandemic, which continues to persist into 2025.
In response, the country has implemented various disease control measures, including public health campaigns
and vaccination programs. While these strategies are still in place, they are now applied with less intensity,
allowing people to return to a more normal way of life. However, this relaxed approach can contribute to
continued disease transmission. In this study, we shift focus from conventional control measures—such as
vaccination, mask-wearing, and social distancing—to strategies aimed at coexisting with the disease while
minimizing its spread. Specifically, we investigate the impact of treating symptomatic and severe patients to
reduce their infectiousness and thereby lower the risk of transmission to others. To achieve this, we develop a
mathematical model of COVID-19 transmission dynamics and apply it using Thailand’s 2025 data. We analyze
the stability of both the disease-free and endemic equilibrium points and explore an optimal control problem
related to medical treatment strategies. Our findings suggest that reducing the infectiousness of symptomatic
and severe cases through effective treatment can help slow down the spread of COVID-19, supporting safer
coexistence in a society returning to normalcy.

Keywords: COVID-19, optimal control, equilibrium analysis, Thailand COVID-19
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1. INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), emerged as a global pandemic in early 2020. Its rapid transmission, high morbidity and
mortality rates, and profound socioeconomic impacts necessitated urgent and coordinated responses from
governments, healthcare systems, and researchers worldwide [25].

Thailand was among the first countries outside China to report a COVID-19 case, with its first confirmed
infection detected on January 13, 2020, at Suvarnabhumi Airport. The first COVID-19-related death was
recorded on March 1, 2020. In response to the initial outbreak, the Thai government implemented rapid and
stringent containment measures. During the first wave, which peaked in late March 2020 with approximately
188 daily cases linked to nightlife venues and boxing stadiums, nationwide lockdowns, curfews, travel
restrictions, and mask mandates were enforced, effectively suppressing transmission [2].

Following the containment of the initial wave, Thailand experienced a resurgence in December 2020 origi-
nating from a seafood market in Samut Sakhon, where clusters among migrant workers reignited community
transmission. This outbreak peaked in January 2021, with daily cases exceeding 900 before stabilizing in
February. Subsequently, a more severe wave emerged in April 2021, driven by the Alpha variant and associated
with entertainment venues in Bangkok. Daily infections surpassed 1,000, overwhelming healthcare facilities
and necessitating the deployment of field hospitals to accommodate patient overflow [2]

Vaccination efforts commenced in early 2021. Initially, the government secured 26 million doses of the
AstraZeneca vaccine and 2 million doses of Sinovac, later expanding procurement to include additional vaccine
platforms. Domestic vaccine candidates, including ChulaCov19 and NDV-HXP-S, entered clinical trials by
mid-2021. However, the emergence of the highly transmissible Delta variant triggered a major outbreak,
pushing cumulative case counts beyond one million and placing unprecedented strain on the healthcare
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system. This situation prompted large-scale booster vaccination campaigns, particularly among individuals
who had received inactivated vaccines [2].

During 2022 and 2023, the Omicron variant became the predominant strain in Thailand. Although sig-
nificantly more contagious, it was generally associated with milder clinical outcomes. Consequently, Thai-
land transitioned from aggressive suppression strategies toward adaptive disease management. Public health
restrictions were gradually relaxed, and COVID-19 began to be managed as an endemic disease. Sustained
vaccination efforts and continued public adherence to basic preventive measures enabled the healthcare system
to accommodate periodic surges without severe disruption [2].

By early 2025, COVID-19 was officially classified as an endemic disease in Thailand. Nevertheless, notable
surges continued to occur, particularly during the rainy season and school terms. In May 2025, a significant
outbreak was reported, with over 31,000 new weekly cases recorded between May 11-17, followed by more
than 67,000 cases and eight deaths the subsequent week. At that time, the Omicron subvariant JN.1 accounted
for approximately 64% of sequenced cases, while a newly emerging subvariant, NB.1.8.1, contributed to a
sharp increase in infections. By May 30, cumulative cases for the year had reached 257,280, with 52 deaths.
As of June 11, total reported cases had risen to 439,527, with 130 fatalities and weekly infections exceeding
100,000, particularly in Bangkok and Chonburi. Despite the surge, public health authorities indicated that the
epidemic peak had passed [25].

Among the critical tools employed in the fight against COVID-19, mathematical modeling has played a
pivotal role in understanding and controlling the disease’s spread. Mathematical models offer a structured
approach to simulating the transmission dynamics of infectious diseases. They enable researchers to estimate
key epidemiological parameters, analyze disease progression, and assess the potential impacts of public
health interventions such as lockdowns, quarantines, social distancing, and vaccination programs. Since the
start of the pandemic, a variety of modeling frameworks—ranging from classical compartmental models
like SIR (Susceptible-Infectious—Recovered) to sophisticated, data-driven, and stochastic models—have been
developed and applied globally to inform policy and guide resource allocation.

As the pandemic has progressed into its endemic phase, modeling approaches have continued to evolve,
incorporating more complex dynamics and exploring the interplay of multiple factors influencing disease
transmission and control. For instance, Al-Arydah [3] extended the SVIR model by incorporating behavioral
dynamics, distinguishing between individuals who act cautiously and those who become complacent. Their
study emphasized the critical role of behavioral responses and included optimal control strategies to curb
transmission. Further expanding the scope, recent models have investigated co-infection dynamics. A 2024
study analyzed the simultaneous spread of COVID-19 and leptospirosis, revealing increased morbidity among
co-infected individuals and highlighting the need for integrated disease management strategies. Similarly,
Appiah et al. [4] developed a co-infection model for tuberculosis and COVID-19, which incorporated optimal
vaccination strategies alongside a cost-effectiveness analysis.

In the context of Thailand, Jose et al. [12] proposed a fractional-order SEIR model using Caputo derivatives,
capturing memory effects and illustrating the influence of non-pharmaceutical interventions on outbreak
trajectories. Their work offered nuanced insights into the epidemic’s evolution within the Thai population.
Comparative modeling studies have also emerged to support model selection and improve predictive accuracy.
Martinez-Ferndndez et al. [19] evaluated multiple compartmental models, examining their structural assump-
tions and predictive capabilities. Likewise, Manabe et al. [18] introduced a data-driven, autoregressive model
to forecast cyclical COVID-19 waves in Japan, demonstrating the practical application of time-series models
in real-time policy planning.

A broader synthesis of modeling efforts was presented by Demongeot and Magal [16], who reviewed over
230 studies encompassing compartmental, age-structured, phenomenological, and forecasting frameworks.
Their comprehensive survey reflects the diversity and progression of modeling strategies employed throughout
the pandemic. These advancements underline the vital role of mathematical modeling in responding to
evolving epidemiological conditions. As the world adapts to living with COVID-19, new modeling approaches
are needed to address ongoing challenges—particularly strategies that balance normalcy with effective disease
mitigation. This study contributes to that effort by focusing on medical treatment strategies aimed at reducing
the infectiousness of symptomatic and severe cases in Thailand’s current epidemic context.

Mathematical models have played a critical role throughout the COVID-19 pandemic, offering valuable
tools for forecasting disease trajectories, evaluating intervention strategies, and informing public health
policies. Numerous studies [21], [10], [14], [27], [15], [17], [24], [6], [9] have demonstrated the utility of
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such models in assessing the impact of delayed interventions, healthcare system limitations, and behavioral
responses. However, the reliability of these models depends heavily on the accuracy of their assumptions, the
quality and timeliness of available data, and the capacity to incorporate real-world complexities, including
asymptomatic transmission, time-dependent transmission rates, and the potential for reinfection.

Previous models have primarily focused on preventive measures such as vaccination, social distancing,
lockdowns, and other protective strategies aimed at reducing the risk of infection among susceptible indi-
viduals. Some related studies have also incorporated control strategies targeting infected individuals. For
instance, Alemzewde Ayalew et al. [5] proposed a model that included treatment controls for quarantined
individuals. In their framework, the quarantine class represented infected people who had isolated themselves,
and treatment for this group was effectively the same as for general infected cases. However, the model did
not account for severe COVID-19 cases.

More recently, Bernard Asamoah Afful et al. [1] developed a deterministic optimal control compartmental
model for COVID-19 that integrated a wide range of interventions. These included preventive controls such
as social/physical distancing, mask wearing, handwashing, and hygiene education for susceptible individu-
als, along with vaccination strategies for susceptibles and treatment improvement controls for quarantined,
asymptomatic, and infected cases. Despite its breadth, the study excluded severe cases from its framework.
In addition, the definition of “preventive measures” lacked clarity, as it encompassed multiple interventions
without distinguishing their individual characteristics. Similarly, the model applied a uniform treatment
control across all infected classes, even though treatment approaches in reality would differ depending on
disease severity. Another related study by Congyang Liu et al. [13] examined COVID-19 dynamics using
a delayed SEIR model. They investigated control strategies involving social distancing and treatment of
infected individuals, while vaccination was not considered. Their findings highlighted that pharmacological
interventions were most effective for hospitalized patients. However, the model did not differentiate between
severity levels of infection.

Collectively, these studies demonstrate substantial progress in integrating preventive and treatment-oriented
control measures. However, none explicitly address treatment strategies stratified by disease severity, partic-
ularly for patients with Severe Acute Respiratory Infection (SARI). SARI is characterized by acute onset of
fever exceeding 38 °C, cough within the preceding 10 days, and the need for hospitalization. Importantly,
SARI may result from diverse etiologies, including viral pathogens such as influenza, respiratory syncytial
virus (RSV), adenovirus, MERS, and SARS-CoV-2, as well as non-viral infections [25].

In 2025, Thailand’s public health policy transitioned to a symptom-based approach emphasizing individual
responsibility. Mandatory quarantines were replaced with guidance advising symptomatic individuals to self-
isolate until they were fever-free for at least 24 hours without antipyretic medication, followed by five
days of mask use. Individuals with known exposure were encouraged to undergo testing within 3-5 days.
Preventive practices-including hand hygiene, mask use in crowded settings, and routine self-testing-were
actively promoted, while booster vaccinations were strongly recommended for high-risk populations [2].

In response to evolving public health strategies, this study employs mathematical modeling to assess the
effectiveness of Thailand’s current approach to managing the ongoing COVID-19 epidemic. Our analysis
highlights the impact of treating symptomatic cases and patients with Severe Acute Respiratory Infection
(SARI) on reducing infectiousness and transmission, in contrast to approaches that rely predominantly on
conventional measures such as vaccination and social distancing.

This paper presents a mathematical model that integrates medical treatment as a central control strategy and
examines its impact on disease transmission. We analyze the stability of disease-free and endemic equilibrium
points and explore an optimal control framework for evaluating treatment-based interventions. The goal is to
provide insights into the dynamics of COVID-19 under current endemic conditions and to support data-driven
public health decision-making for sustained management of the disease.

2. MODEL FORMULATION

For the formulation of our model, let N denote the total human population. The population is divided into
four distinct compartments: susceptible individuals (.5), asymptomatic infectious individuals (1), symptomatic
infectious individuals (/3), and individuals with Severe Acute Respiratory Infection (SARI) (A). We introduce
two control parameters, ¢; and ¢o, representing the treatment rates for symptomatic and Severe Acute
Respiratory Infection, respectively.
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Based on these classifications and control measures, the proposed model is defined as shown in Figure 1.
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Figure 1: The schematic representation of the proposed model.
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The vector form of the above equations is given by:

X
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The parameters and symbols used in the model are summarized in Table 1.

Table 1: Parameters and symbols.

Parameter Symbols
Susceptible population S
Asymptomatic COVID-19 infectious state I
Symptomatic COVID-19 infectious state I
Severe acute respiratory infectious state A
Total population N
Natural birth and natural death rate w
Transmission coefficient of the infectious initially b1
Transmission coefficient of the infectious the second stage B2
Transmission coefficient of the severe cases B3
Progression rate from [ to I infection o1
The state of I becomes A o)
Medication rate for asymptomatic patients b1
Medication rate for Severe Acute Respirator Infection b2

3. MODEL ANALYSIS

We begin our analysis by examining the disease-free equilibrium (DFE) and calculating the basic repro-
duction number. This is done by setting I; = I = A = 0 in the model equations and solving for S. Under
these conditions, Equation (1) reduces to N = S since p # 0. Thus, the DFE is denoted by:
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0 = (N,0,0,0).

Next, we compute the basic reproduction number, Ry, for the model using the next-generation matrix
method proposed by van den Driessche and Watmough, and the reproduction number for the model is

 BIN((n+ o2+ d1) (1 + ¢2) +0202) | BaNor(p+ ¢2)  PsNoyoa
- Q T o
BiN((p+ o2 + ¢1) (1 + ¢2) + 02¢2) + B2No1 (i + ¢2) + B3 Noroa
(u+o1)(p+ o2+ é1) (1 + ¢2) — 02¢2(p + 01) — 011 (1 + P2)
ﬂlN((N+02+¢1)(ﬂ+¢2)+02¢2)+52N01(M+¢2) +52]\/'0102

D D D ’
= R[l JrR]2 + R4,

Ry = T~

where D = (u+ 01)(p + 02 + ¢1) (10 + ¢2) — 02d2(p+ 01) — o101 (1 + ¢2), see Appendix A for details.

The basic reproduction number can be decomposed into three additive components, Ry = Ry, + R, + Ra.
Here, Ry, reflects transmission from asymptomatic infections, Ry, captures transmission from symptomatic
cases, and R 4 represents transmission from SARI cases. Each term is scaled by the probability of progression
through disease stages, treatment rates, and natural exit, while the denominator accounts for the average
duration of infectiousness across compartments. This decomposition highlights the relative importance of
mild, moderate, and severe infections in sustaining transmission, and illustrates how treatment and progression
parameters shape epidemic potential.

Based on the work in [11], we immediately obtain the result below:

Theorem 3.1. The disease-fee equilibrium of the model is locally asymptotically stable if Ry < 1, and
unstable if Ry > 1.

To investigate the global asymptotic stability of the disease-free equilibrium (DFE), a common approach
is to construct a suitable Lyapunov function. However, in this study, we adopt a simpler method based on a
result introduced by Castillo-Chavez et al [7].

Lemma 3.2. Consider a model system written in the form

dX
7; = F(X1,X>), 6)
dX
d—j = G(X1,Xs), G(X1,0)=0, ©)

where X1 € R™ denotes (its components) the number of uninfected individuals and X € R™ denotes (its
components) the number of infected individuals including latent, infectious, etc; Xo = (X7) denotes the
disease-free equilibrium of the system.

Also assume the conditions (H1) and (H2) below: R

(H1) For &t = F(X},0) is globally asymptotically stable; (H2) G(X1,X5) = AX> — G(X1,Xo),
G(X1,X3) > 0 for (X1,Xs) € Q, where the Jacobian A = g—}i(Xl*,O) is an M-matrix (the off diagonal
elements of A are nonnegative) and §2 is the region where the model makes biological sense.

Then the DFE Xy = (X7,0) is globally asymptotically stable provided that Ry < 1.

Theorem 3.3. The disease-free equilibrium of the model is globally asymptotic stable if Ry < 1.

Proof: See Appendix B.
|
The stability of the disease-free equilibrium (DFE) governs the short-term epidemic behavior of the disease,
while the long-term dynamics are characterized by the stability of the endemic equilibrium. In this section,
we analyze the endemic properties of our model.
When the disease is presence in the population, I7 and I35 # 0, there may be several critical points, which
are the endemic equilibrium points (EEP) of the model. These points will be denoted as €fy = (S*, I}, I3, A*)
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and are determined from the model as follows
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We first show the following theorem.

Theorem 3.4. The positive endemic equilibrium €* of the system (8) — (11) exists and unique if Ry > 1,
and there is no positive endemic equilibrium if Ry < 1.

Proof: See Appendix C. ]

3.1. Local Stability

We now proceed to analyze the stability properties of the endemic equilibrium. First, we establish the
following result concerning its local stability.

Theorem 3.5. The positive endemic equilibrium €* is locally asymptotically stable.

Proof: See Appendix D. ]

4. SIMULATION WITH OPTIMAL CONTROL STUDY

In this section, we will use the following theorem to apply optimal control theory to seek cost effective
treatment programs for our model.

4.1. Pontryagin’s Maximum/Minimum Principle
These conclusions can be extended to a version of Pontryagin’s Maximum/Minimum Principle [20].

Theorem 4.1. If u*(t) and x*(t) are optimal for Equations (1)-(4), then there exists a piece-wise differentiable
adjoint variable \(t) such that

H(t, z* (), u(t), A(t)) < H(t, 2" (t), u"(t), A()),
for all control u at each time t, where the Hamiltonian H is
H = f(t,2(t),u(t)) + At)g(t, z(t), u(t)),
and

Vi - 2L x*(t)a,xu*(t), A1)

A(t) = 0.

Theorem 4.2. Suppose that f(t,x,u) and g(t,x,u) are both continuously differentiable functions in their
three arguments and concave in u. Suppose u* is an optimal control for problem (1)-(4), with associated
state x*, and \ a piece-wise differentiable function with \ > 0 for all t. Suppose for all to <t < t;

0= H,(t,z*(t),u"(t), A(t)).
Then for all controls u and each ty <t < t1, we have
H(t,z*(t),u(t),A(t)) < H(t, 2" (t),u"(t),A()).

Now we turn to more general model with time-dependent controls ¢1(t) and ¢ (t). We consider the system
on a time interval [0,T]. The function ¢ (t) and ¢o(¢) are assumed to be at least Lebesgue measurable on
[0,T]. The control set is defined as

Q= {d)l(t)’ ¢2(t)|0 < ¢1(t)7 ¢2(t) < ¢7rzaw}7

where ¢4, denotes the upper bounds for the effort of medical treatments. The bound reflects practical
limitation on the maximum rate of control in given time period.
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4.2. Optimal Control Study

The inclusion of time-dependent control variables complicates the analytical study of the system, as the
disease dynamics now evolve in response to the progression of these controls. To address this, we perform an
optimal control analysis. Our objective is to minimize both the total number of infections and the associated
control costs over the time interval [0, T, that is,

T

(qsmi)%sz/ [11 (t) + Ig(t) + A(t) + 1101 (t)]g(t) + Clgqlﬁ(t) + 621¢2(t)A(t) + 622¢§(t)]dt. (18)
1,2 0

Here, the parameters c11 , c12 , co1 and coo with appropriate units, define the appropriate costs associated

with these controls. The optimal control functions, derived from the objective function and the Hamiltonian

(see Appendix E), are given as follows:

_ )‘12 (I2) - Clllz(t) - )\[112
2c12 ’

$1(1)
and
oty = ML) —enA®) ~ A (4)

2022

4.3. Numerical Results

Given the presence of initial conditions for the state equations, final-time conditions for the adjoint
equations, and the nonlinear nature of the model, the optimal control system must be solved numerically. To
this end, we employ the Forward-Backward Sweep Method to perform the numerical simulations.

Table 2: Description of parameters.

Parameter Symbol Value References
Total population N 10,000 Assumed
Natural birth and natural death rate I 1/(70 x 356) [26]

Transmission rate of Asymptomatic patients B1 0.05/N Assumed
Transmission rate of Symptomatic patients B2 0.3/N Assumed
Transmission rate of SARI patients Bs 0.6/N Assumed
Progression rate from I; to s o1 0.25 Assumed
The rate of becoming SARI patients from I to A T2 0.15 Assumed

In our simulation, we consider the spread of COVID-19 within a closed population, where individuals
are initially unaware of the ongoing transmission. Given the current normalization of COVID-19 in daily
life, many individuals lack adequate protective behaviors, making it easier for the disease to spread. We
begin by assuming that asymptomatic individuals exhibit very mild or no symptoms and therefore are less
likely to transmit the virus—for instance, they may not cough or sneeze, which reduces transmission in the
absence of personal protection measures. This assumption is supported by several studies suggesting that
while asymptomatic individuals can transmit COVID-19, their infectiousness is generally lower than that of
symptomatic cases [22]. Assuming that, over time, most individuals may become infected, our objective is to
maximize the proportion of asymptomatic cases while minimizing the treatment costs for symptomatic and
SARI patients. To start, we consider a scenario in which treatment costs are relatively low, assigning values
c11 = 1,c12 = 1,c01 = 1 and c95 = 1. The corresponding simulation results are presented in the following
figures.

Figure 2 (a) illustrates the number of susceptible individuals over a 300-day simulation period. The figure
shows a slow decline in the susceptible population when control measures are implemented. This indicates
that medical treatment targeting symptomatic and SARI cases plays a significant role in slowing down the
infection rate. Figure 2 (b) displays the number of asymptomatic individuals. Under the implementation of
treatment controls for symptomatic and SARI cases, the number of asymptomatic infections remains relatively
high. This aligns with our assumption that, in a closed population where individuals are unaware of the disease
and do not take personal protective measures, symptomatic individuals are the most infectious. Therefore,
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Figure 2: (a) Susceptible population, (b) Asymptomatic individuals, (c) Symptomatic patients, and (d) SARI patients.

reducing the number of symptomatic and SARI cases effectively slows disease transmission. Figures 2 (c)
and 2 (d) show the number of symptomatic and SARI patients, respectively. These figures confirm that, with
appropriate medication strategies—depicted in Figures 3 (a) and 3 (b)—the number of symptomatic and SARI
cases remains low. Specifically, Figure 3 (a) suggests that approximately 70% of symptomatic patients should
receive treatment consistently throughout the outbreak period. In contrast, Figure 3 (b) shows that around
70% of SARI cases should be treated intensively during the first 10 days, with treatment levels gradually
declining to near zero after 100 days of infection.

In this scenario, we increase the treatment costs for symptomatic patients by setting c¢1; = 10, c;o = 10,
while keeping co; = 1 and co2 = 1. Figures 4 (a) and 4 (b) illustrate the numbers of susceptible individuals
and asymptomatic patients, respectively. Compared to the previous case, the results show subtle differences.
Notably, after approximately 150 days, the number of asymptomatic individuals begins to decline, which
can be attributed to the increased cost of treating symptomatic and SARI patients. As medical interventions
become more limited due to higher costs, the number of symptomatic patients begins to rise around day 150,
and the number of SARI cases increases significantly after approximately 270 days. This trend suggests that
patients are at greater risk of progressing to more serious conditions, potentially resulting in higher mortality.

The control strategies for this scenario are illustrated in Figures 5 (a) and 5 (b). As shown in Figure 5
(a), medication coverage for symptomatic patients reaches up to 70% only until about 150 days after the
outbreak onset, after which it declines due to the increased cost of implementation.

Next, we examine Case 3, where the medication costs for both symptomatic and SARI patients are increased
to c¢11 = 10,c12 = 10,c21 = 10 and c99 = 10. As shown in Figures 6 (a) and 6 (b), the numbers of susceptible
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Figure 3: (a) Medication control for Symptomatic patients, and (b) Medication control for SARI patients.
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Figure 5: (a) Medication control for Symptomatic patients, and (b) Medication control for SARI patients.

and asymptomatic individuals remain similar to those observed in Case 2. This similarity is likely due to the
relatively small number of SARI patients, so increasing treatment costs for this group does not significantly
affect the overall outcome. Consequently, other state variables also exhibit comparable patterns, as illustrated
in Figures 6 (c), 7 (a), and 7 (b).

We now turn our attention to investigating COVID-19 infections in Thailand. Using data collected from
multiple sources [25], [8], [23], we compiled Thailand’s COVID-19 case numbers from February to the
first week of July 2025, as shown in Figure 8. The data suggest that Thailand has passed the peak of this
season’s outbreak. However, since the new school year began in June, the trend could change without effective
control measures. In May, new infections peaked at approximately 170,000 cases, possibly influenced by the
Songkran Festival in April, which likely contributed to increased transmission. In June, infections declined
to about 130,000 new cases. Yet, within just the first few weeks of July, new infections rose again to nearly
100,000, indicating a potential resurgence by the end of the month.

To simulate COVID-19 dynamics in Thailand, we calibrated our model using this data. We set the total
population N = 60,000,000, with initial conditions S(0) = N — 20,000, I;(0) = 20,000, and I5(0) =
0, A(0) = 0, keeping other parameters unchanged. Since the available data pertains only to new infections,
our model focuses on simulating new infection cases, corresponding to asymptomatic individuals.

Figure 9 compares the original model simulation (solid line) with the observed COVID-19 trend in Thailand
from February to early July 2025, showing good agreement. The dashed line represents a control scenario
where medication is applied to symptomatic and severe patients, significantly reducing case numbers relative
to observed data. This suggests that, in reality, many people were not sufficiently aware or proactive in
protecting themselves, delaying treatment, and maintaining close contact with others, thereby sustaining
disease transmission.

Figure 10 offers valuable insight into how control measures impact the trajectory of the susceptible
population during a COVID-19 outbreak. Under optimal control conditions, represented by the dashed line, the
susceptible population declines steadily but at a slower rate. This slower decline indicates a more controlled
spread of the infection, which is beneficial for several reasons.

First, a gradual decrease in the susceptible population helps prevent overwhelming the healthcare system.
When infections rise too quickly, hospitals and medical staff can become overloaded, leading to reduced
quality of care, increased mortality, and greater strain on resources. By flattening the curve, optimal control
measures such as targeted medical treatment, isolation of symptomatic and SARI patients, and public health
interventions help maintain the healthcare system’s capacity to manage cases effectively. Second, the slower
infection rate buys time for public health authorities to implement additional preventive strategies. This
includes ramping up vaccination campaigns, enhancing testing and contact tracing, and increasing public
awareness about protective behaviors like mask-wearing and social distancing. Such time is critical, especially
in the context of emerging variants or seasonal fluctuations that can alter disease dynamics.
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Conversely, the solid line in the figure shows the scenario without any control interventions. The rapid
decline in susceptible individuals reflects widespread and uncontrolled transmission of the virus. This rapid
spread accelerates community infection, quickly reducing the pool of people susceptible to infection but at
the cost of high morbidity and mortality. Moreover, such an explosive outbreak can severely disrupt societal
functions, including workforce availability, education, and economic stability. The contrast between these two
scenarios underscores the crucial role of timely and effective disease control strategies. While some level of
infection may be inevitable, managing the pace and scale of transmission is essential to reduce adverse health
outcomes and societal disruption. Furthermore, this approach supports the transition of COVID-19 from a
pandemic emergency toward a more manageable endemic state.

In conclusion, maintaining and optimizing control measures remains a key public health priority. Continuous
monitoring of infection trends and adaptive implementation of interventions can help safeguard vulnerable
populations, protect healthcare infrastructure, and minimize the broader impacts of COVID-19.
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5. CONCLUSION

We have developed a mathematical model of COVID-19 incorporating optimal control strategies and
analyzed the stability of both the disease-free and endemic equilibrium points. Additionally, we examined
the optimal control problem focusing on medical treatment for symptomatic and SARI patients. Assuming
a closed population where individuals are unaware of the disease and therefore do not engage in protective
behaviors, the virus is free to spread unimpeded. Under these conditions, our model predicts a substantial
number of infections in a large population, as exemplified by the case of Thailand.

However, the application of control measures such as medical treatment can significantly reduce the
number of infections. In our simulations, we assume that asymptomatic individuals are less infectious than
symptomatic and SARI cases; thus, a higher proportion of asymptomatic infections corresponds to a slower
overall disease spread. It is important to note that our model does not include personal protective measures
like mask-wearing or self-isolation, nor does it incorporate vaccination. Including these interventions would
likely have a much greater impact on controlling transmission. Nevertheless, our primary objective is to
explore the dynamics of living with the disease while implementing treatment strategies aimed at limiting
outbreak severity.

Our model has certain limitations that can be refined in future work. One important consideration is the role
of the SARI (Severe Acute Respiratory Infection) compartment. SARI refers to cases where patients develop
acute respiratory illness with symptoms such as fever, cough, and difficulty breathing, which often require
hospitalization and intensive care. In the context of COVID-19, SARI may arise not only from individuals
who initially show mild to moderate symptoms but also from those who progress to severe disease.

A more realistic disease pathway would reflect that, after a susceptible individual contracts COVID-19,
they may first become asymptomatic. Over time, some will develop symptoms, and a portion of these will
worsen into severe illness. During this progression, if treatment is ineffective, both symptomatic and severe
patients may transition into the SARI category. To address this limitation, our next study will expand the
model to explicitly incorporate SARI dynamics, thereby improving its accuracy and applicability.
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APPENDIX
Appendix A: Basic Reproduction Number

For this section, we compute the basic reproduction number, Ry, for the model using the next-generation
matrix method proposed by van den Driessche and Watmough. In this approach, the corresponding next-

generation matrices F and ) are given by

B1IS + B215S + B3 AS
F= 0 ,
0
pli +o1ly — 1l
V= [ —o1y + ply + o0ls + o1l — g A | .
—o2ls + pA + 2 A

Hence by the work of vanden, we have
8Fy OF OFn
o1, o1, 0A
- oI, ol> 0A ?
8;31 8;31 8;31

| oL S A
[ 51S p2S B3S
= 0 0 0 ,
0 0 0

V= o1, o1, DA )
IVs31 OV31 OVs3
| oL dls A
[ p+ o1 ol 0
= —01 ptort+o1 —¢o
0 -0 H+ @2

At the DFE point, we have

BN 2N B3N
0 0 0

The basic reproduction number is then determined as the spectral radius of FV ~!. Consider

H+ o1 —¢1 0
Vieo) = —01 ptoet+dr —de
0 —03 1+ @2
then,
detV(eo) = (u+0o1)(p+ o2+ ¢1)(p+ d2) — o2d2(p + 01) — o191 (1 + H2).
Let

Q = (u+o)(p+os+é1)(p+ d2) — o2¢2(p+01) — 0101 (1 + ¢2).

Next, we have

Ch Cip Ci3 1"
adj(V(ep)) = | Ca1 Caz Ca3 ,
Cs31 Cza Css

(A1)

(A.2)
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The basic reproductive number is then determined as the spectral radius of FV ~!, which yields

T -\ U* V*

det\ - FV~1) = 0 0 0 |, (A.3)
0 0 0

= (T" = N (=2 (=), (A4)

by letting det(\] — FV~1) = 0, we have A\ = T*,0 are real numbers. Hence,
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where D = (u+ 01)(p + 02 + ¢1) (1t + ¢2) — o2¢2(pt + 01) — 0101 (1 + P2).
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Appendix B: Proof of Theorem 3.3

Theorem 3.3 The disease-free equilibrium of the model is globally asymptotic stable if Ry < 1.

Proof: We only need to show that the condition (H1) and (H2) hold when Ry < 1.
In our ODE system, X; = S, Xy = (I1, 15, A), and X7 = N. We note that the system is linear and its
solution can be easily found as:

dX
— = F(X1,X5) = [ uN = Bi11S = 1S = B3 AS — S . (B.1)
Note that when X5 = 0, we have

dX
— = F(X1,0)= [ uN = pS |, (B.2)
and it is linear and its solution can be easily found as for S, we have from above that For S:

ds
@ _ N — s
ar ~ S

Next, we solve this equation be using the integrating factor technique, that is we multiply the above equation
by e#*. Thus now the equation becomes

d
6”t£+6”tﬂs = eMuN, (B.3)

that gives

hence
St) = N+C(e ). (B.4)

Clearly, S(t) — N as t — co. Thus X = N is globally asymptotically stable.
Next consider

B111S + BolaS + B3 AS — pdy — 011y + ¢ 1>
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d—Q =G(X1,Xs) = l oy — ply — ooy — ¢11s + P2 A ] ;
¢ o2l — pA — o A
e B1S —pu—o1 B2S + ¢1 B3S
7 = G(XT,O) = 01 —H— 02 — (bl (t) QSQ )
¢ 0 op! —p— P2

We can then obtain
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Thus,
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Now we can write the matrix in the form
L G(X1,Xs) = [BUI(N —8)+ B2La(N — S) + B3A(N — 5),0,0]" . (B.5)

Since 0 < S < N, it is obvious that G(X, X5) > 0. n
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Appendix C: Proof of Theorem 3.4

Theorem 3.4 The positive endemic equilibrium exists and is unique if and only if Ry > 1.

Proof: Note that

N = S*4+I'+1I; + A (C.1)

Substitute of S* and A* in Equation (C.1), we have

N ool
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Substitute of I7 in I3, we have
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For I3 # 0, the root of this quadratic equation must satisfy I3 = Gci2. Next, consider

Gy
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when I35 > 0. Hence, our endemic equilibrium point is

(Sh, 11, I3, A7).
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Appendix D: Proof of Theorem 3.5

Theorem 3.5 The positive endemic equilibrium £* is locally asymptotically stable.
Proof: The Jacobian of the system (1) - (4) is given by

=By — Boly — B3A — 1 —B18 —B325 —B38
J = Bily + Bals + B3 A B1S — o1 — B25 + ¢1 B35S
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J(Ee) = 0 o1 —as ¢2 ’
0 0 g2 —as

where
P =pIi + Boly + BsA” a1 = p+ 01,02 =p+ 02+ ¢1 a3 =p+ ¢2 .
The characteristic polynomial of J(&*) is

0=deth\] —J(")] = A+P+p)((A=BS*+a1)(A+a2)(A+ az) + B35 0102)
—((A = B15" + a1)o2¢2 + (825" + ¢1)(A + as)o1)
—P((=A15" (A + az)(A + a3) — B35 0102)
—(=B1S*02¢2 — 25 1 (A + as3))),

= M4 a X 4 a3+ asA + PA3 + 43 — B1S*N3 + a1a9)0% — 5157 ap\?

+arasA? — B1S*asA? + aza3\? — B2S* 1A — 0101 A% + 022 \% + Pai\?
+PaxA? + Paz\? — PB1S* N2 + pai N2 + pagA? + pasA? — 31 S*\?
+arazaz — 1S azaz A + B35 0102\ + 1.5 0202
—09¢aa1 A — B8 o1a3\ — o1prazA + Pajas A + Pajas\ + Pasas
—PB1S*as\ — PB1S*asA — Poygpi A — Poaga A — PBaS* o1 A
+PpB1S*az\ + PB1S as A — PB3S* o1 A
—uB1S as A — puP1STasA + pajas X + paiazA + pasaz A — poapa X
—uBaS o1 N — porp1 X — PB1S"azaz + Pajazaz + PB3S* 0109
+Pj315" 0202 — PB2S*01a3 — Poypraz — Poagaay
+Pj315"azas + PP3S* 0109 — PByS*01a3 — pB15"azas
+pajazaz + pB3S o100 + pfr1S* oaps — poapoar — pB2S*o1as3
—po1Pras

From matrix J(e*) can be put into a quadratic equation of the form
0 = boAT+ DA3 + A% + by A\ + by, (D.1)
where

bozl,b1:a1+a2+a3+P+,u—5lS*,
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Table D.1: Eigenvalue values.

T Eigenvalue
100 [-0.2191,-0.0798,-0.0116,-0.0200]
1000 [-0.2224,-0.0824,-0.0128,-0.0200]

10000 [-0.2224,-0.0824,-0.0128,-0.0200]
20000  [-0.2224,-0.0824,-0.0128,-0.0200]

bo araz — 15" az + ajaz — 157 az + azaz — 25701 — 0101 + 0202
+Pay + Pas + Pasz — PB1S™ + pay + pas + pas — pBS*
bs = aiagaz — P15"azas + B35S 0109 + B15T 0209 — 02p2a1 — S2S or1a3
—o1¢1a3 + Pajas + Payas + Pasas — PB1S*as — PB1S"as — Poyér
—Pogygpy — PB2S 01 + PB1S™ as + PB1S" as — PBS* 01 — ufB1S*as
—pB15%as + paias + pajaz + pasaz — poagy — pPaS oL — po1¢r
by = —Pp1S"azaz + Pajazaz + PB3S 0100 + PB15 0202 — PB2S 0103
—Poip1a3 — Posgoar + PB1S"azas + PP3S 0100 — PPB2S"01a3
—puP1S*azaz + parazaz + pB3S o102 + pf1S 0202 — poagear
—pf2S*o1a3 — po1¢gras.
To ensure that all root of Equation (D.1) have negative real parts, the Routh - Hurwitz stability criterion will
be used. We require that b; > 0 where i = 1,2,3,4,, biby — b3 > 0 and bz(byby — b3) — b?bs > 0 . Now, we
note that by = (a3 — $15%) + a1 + as + P + 1 and since

I3(B2S* 4 1) + B3 A*S*

I = (D.2)
! ay — B15*
thus a; — 51S* > 0, we then have b; > 0. Next, we have
by = az(ar — B1S") +az(ar — f1S™) + Play — f1S™) + p(ar + 15™)

+agas + oo + PB1s* 4+ Pas + Pas + pag + paz — 25701 — o161

Now for b3, we write

by = asas(a; — 15") + Pas(a; — /15*) + Paz(ay — $15%) + pas(a; — $1.57)
+paz(ay — P1S™) + B3S 0109 + 1S 0202 — 02¢2a1 — 250103 + Pasas
—Poy¢1 — Poygs — PB2S™ 01 + PB1S*az + PB1S as — PB2S™ 01 + pasas
—poapa — pf2S o1 — o ¢y

Now for by, we write

by = Pagaz(ay — $1S™) + pazas(ar — $15*) + PPB3S* o102 + PB1S 0202
—PByS*01a3 — Poygraz — Poygaay + PB1S"azas + PB3S* 0102
—PByS*01a3 + pufB3S 0100 + pf1S ooy — poadoar — pBaS*oras
—po1Pras.

Showing that b, b3, and by are positive is not straightforward. Therefore, we employ numerical simulations
to compute the eigenvalues of the Jacobian matrix. The results, presented in Table D.I, indicate that all
eigenvalues at different time points have negative real parts. Consequently, the endemic equilibrium e* is
locally asymptotically stable. We complete the proof.



270 Chen, Y. and Modnak, C.

Appendix E: Optimal Control Function

The inclusion of time-dependent control variables complicates the analytical study of the system, as the
disease dynamics now evolve in response to the progression of these controls. To address this, we perform an
optimal control analysis. Our objective is to minimize both the total number of infections and the associated
control costs over the time interval [0, T, that is,

T
min /0 [11(t) + o (t) + A(t) + cridr (D) I2(t) + c1267 (1) + ca192(8) A(E) + 2205 (8)]dt

(¢1,2)€Q

Here, the parameters c11, 12, co1 and coo With appropriate units, define the appropriate costs associated with
these controls.

Let us first define the adjoint functions Ag, A1, Az, and A4 associated with the state equations for S, I1, I
and A, respectively. We then form the Hamiltonian, H, by corresponding state equations, and adding each
of these products to the integrand of the objective functional. As a result, we obtain

H = $L(t)+ L(t) + A(t) + ci1o1 () Ia(t) + c1297 () + ca102(t) A(t) + c2265(t)
+As(uN — 81 1S — B IS — B3AS — uS)
A0 (B111S + BoloS + B3 AS — ply — o111 + ¢112)
FAL (011 — pls — o2ls — 112 + $2 A)
+Aa(oals — pA — paA).

To achieve the optimal control, the adjoint functions must satisfy

X OH

dTS =75 =~ (s(=Bih = Bolo = B3 A — p) + A, (B Ty + Bolo + B3A)), (E.D)
dAr, 0H

dtI = o = — (L+ Xs(=B1S) + A1, (1S — p— 01) + Apy01), (E2)
A 0H

df = = — (L+cngn(t) + As(=B28) + A1, (B2S + d1) + A, (—p — 02 — ¢1) + Aaoz), (E3)
A 0H

7: = 78714 = — (1 —+ 621¢2(t) + )\5(7635) + )\11635 + )\Ig¢2 + AA(ilJL - (152))7 (E4)

with transversality conditions (or final time conditions):
As(T) =0, AL (T) =0, AL, (T)=0 and Aa(T) = 0.
The characterization of the optimal control ¢ (¢) and ¢4 (¢) are based on the conditions
0H 0OH
— =0 and — =0
0¢1 02

respectively, subject to the constraint 0 < ¢; < d1max and 0 < ¢g < Pamax. Specifically, we have

o1 (t) = max(O, min (¢ (t), ¢1max)),¢§ (t) = max (O, min (¢ (t), d)gmax)),

Where A, (I2) — c1la(t) — An Lo
1) = 2c12

and A(A) = ca1 A(t) — Ar, (A)
da(t) = 2 )
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