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Abstract

Although Hepatitis A Virus (HAV) causes non-chronic infection, it poses serious health threats, particularly
among children and older individuals due to poor sanitation and weak immunity. To better capture the
memory-dependent progression of HAV, a novel SIR-type epidemic model is developed using Caputo fractional
derivatives. The model incorporates awareness campaigns and a precautionary vaccination strategy represented
by a Holling type-II functional response. We analytically established positivity, boundedness, and both local
and global stability of equilibrium points using Jacobian matrices and Lyapunov functions are presented. Real-
world data from the United States are used to estimate possible parameters through mean absolute error (MAE)
minimization. Additionally, numerical simulations were perforemd to support the qualitative results revealing
that fractional-order dynamics offer more accurate and realistic forecasts compared to classical integer-order
models. Moreover, sensitivity analysis further identified the infection rate and recruitment rate as dominant
drivers of HAV spread. Overall, the findings confirm that combining awareness and vaccination substantially
reduces the infection levels and that fractional modelling provides critical advantages in disease forecasting
and control planning.
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1. INTRODUCTION

Hepatitis A Virus (HAV) is one type of hepatitis viruses, it generally causes self-limiting infection and does
not result in chronic infection. However, several serious complications can occur, especially in older persons
or in combination with risk factors and a small portion of infected individuals may die. It spreads through
the fecal-oral route, typically by consuming contaminated food or water or through close personal contact
with an infected person. HAV spread more rapidly in the areas with poor sanitation and hygienic measures.
Around 90% of children are infected before the age of ten. The risk of infection is also high among those
persons who inject drugs (PWID) and those of men who have sex with men (MSM) [35], [36], [47], [57].

The HAV has a worldwide distribution and causes about 1.5 million clinical cases each year. In 2016, WHO
reported about 7134 deaths globally [56], [57] . About 3864 cases were reported in European countries in
2021 [16] and almost 44926 cases were reported in United States from 2016-2023 by US center for disease
control and prevention [7].

Mathematical modelling serves as a valuable tool and plays a crucial role in understanding and predicting
the spread of infectious diseases. Most infectious diseases are modelled as systems of ordinary differential
equations (ODEs). These models assume instantaneous transitions and lack memory effects. However, in-
volvement of fractional-order derivatives in epidemiology addressed this limitation by incorporating memory
and hereditary properties through non-integer derivatives, offering a more accurate representation of complex
biological processes. The fractional derivatives extend the concept of ordinary differentiation to non-integer
order and have been increasingly used in various fields due to providing flexible and accurate models for
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complex phenomena. The integer-order derivatives are limited to local characteristics, whereas fractional-
order derivatives have broad scope and are influenced by the history and memory of the phenomenon [41],

[43].

Various types of fractional derivatives are employed for investigating such real-world phenomena, like
Caputo, Caputo-Fabrizio, Atangana-Baleanu and other types of fractional derivatives [2], [21], [26]. Each type
of the fractional derivatives has its specifications and applications. In this work Caputo fractional derivatives
are employed due to the nature of the initial and boundary conditions. As the initial and boundary conditions
for differential equations with the Caputo derivatives are analogous to the case of integer-order differential
equations, so they can be interpreted in the same way [43].

The Caputo fractional derivatives have been extensively used in epidemiology, there exist a rich and growing
body of literature highlighting its significance, such as [2], [28], [29], [38], [52]. Many other authors also have
shown strong interest in the integer-order of the models to be reduced to fractional-orders, such as the work by
Paul et al. [40], where the authors reduced classic SIR model into fractional-order SIR model in consideration
of Caputo derivatives. Especially, researchers attempted to formulate epidemiological behaviour of HAV for
forecasting its future behaviour, guiding public health policies, and optimizing strategies for disease prevention
and control.

Recently, Mwaijande and Mpogolo [24] developed a mathematical model for dynamics of HAV in con-
sideration with vaccination and sanitation as prevention measures. They used Routh’s stability criteria for
local stability of disease free equilibrium point and obtained a Lyapunov function for the global stability of
endemic equilibrium. Additionally, they studied sensitivity of the model and revealed that the model exhibits
a forward bifurcation. Another recent literature on modelling dynamics of HAV is authored by Ben Aribi et
al. [6], where their core interest is global stability analysis of their developed model, using Lyapunov method
and numerical analysis based on the available data of Tunisia. They also visualized numerical results of the
model in consideration with and without vaccines.

In a mathematical model developed by Wameko et al. [55], co-infection of HAV and Typhoid fever is
investigated. The authors firstly studied sub models and then full model, as well as usual qualitative analysis
and numerical analysis of the model were carried out. They also considered optimal control in their study,
they revealed that prevention strategy has significant impact in reducing transmission of the co-infection and
eventually they concluded that it can be successfully reduced by applying control measures.

In addition to earlier studies, several recent works highlight the growing importance of fractional calculus in
epidemic modeling and numerical simulations. For example, novel fractional-order epidemic frameworks and
stability analyses have been presented in [33], [34], while computational approaches for fractional epidemic
systems were discussed in [32]. Similarly, [31] demonstrated the predictive potential of fractional epidemic
models applied to real data. Further methodological advances, such as new fractional differential operators
and numerical schemes, have been proposed in [15], [42]. Together, these contributions reinforce the relevance
of adopting fractional-order approaches in epidemiology and motivate our work on Hepatitis A transmission
dynamics.

Although a few researchers have investigated mathematical models for HAV transmission, most existing
works are based on integer-order derivatives. Since the disease dynamics are influenced by history and
memory, it is important to employ fractional-order derivatives that can capture these effects more accurately.
The novelty of this work lies in three aspects, (i) the formulation of fractional-order HAV model in the sense
of Caputo derivatives that incorporates memory and hereditary properties, (ii) the incorporation of awareness
and a Holling type-II vaccination function to reflect realistic control strategy [50] and (iii) the estimation of
possible model parameters using HAV data from U.S. To the best of our knowledge, such a comprehensive
fractional-order framework for HAV dynamics has not been studied previously.

Furthermore, stability analysis has been performed, values of possible parameters have been estimated
with the help of mean absolute error (MAE) estimation, while sensitivity analysis and simulations were also
conducted for validating and supporting the qualitative findings. Finally, it has been concluded that reliable
and precise results can be obtained using Caputo fractional-order derivatives. Also, awareness against HAV
has a significant impact on disease dynamics, it does not ensure recovery of the individuals but slows down
spread of the disease. However intervention of precaution vaccines indicated inevitable impact to reducing
new infections. Applying both awareness and vaccination reduce new infections remarkably.
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1.1. Preliminaries
In this section, basic definitions, theorems and properties are presented that will be useful in this paper.

Definition 1.1. The Caputo fractional derivative of order o of a continuous function f{(t) is defined as

C nHa — 1 ! _Sn—a—l (n) $)ds
DEF0) = oy [ =9 ) ),

where T'(x) is Gamma function, o € (n — 1,n) and n € N.

Particularly when « € (0, 1), we have

1 ! —a gt
)/O(ts) f(s)ds.

DI = Fr

Theorem 1.1. Let f(t) be n times continuously differentiable and © D f(t) be piecewise continuous on
[0,00), where a > 0, € (n — 1,n) and n € N then Laplace transform of the Caputo derivative is defined

as
n—1

LD f(t)} = s“F(s) = Y _s** 1 f®(0),
k=0
where L{f(t)} = F(s).
Theorem 1.2. For any B € C™*"™ and c,d > 0, let

Scfd

s¢— B’

Lt E, 4(Bt9)} =

1
c

Sfor Ze(s) > ||s|

Proposition 1.1. Let o, 5 > 0 and z € C then the Mittag-Liffler function satisfies
1

@.

Similar results can also be observed in [3], [11], [12], [25], [38].

, where Ze(s) is real part of s and E. q(*) is Mittag-Liffler function.

Ecyd(z) = ZEC7C+d(Z) —+

2. MODEL FORMULATION

Since, it is pretty significant to understand dynamics of any phenomenon and consider assumptions for
formulating it mathematically, hence in this section dynamics of HAV are brought into consideration and few
assumptions are made for deriving a realistic model.

Assumptions:

1) Deaths can only happen among infected individuals due to fulminant hepatitis.

2) Awareness is only considered among the susceptible individuals.

3) Vaccination is only considered among aware susceptible individuals and it is not recommended during

infection or after infection.

4) Passing over treatment against HAV, as availability of no any specific and effective treatment against

it is assured.

5) As hepatitis A (HA) is self-limited illness, therefore recovery of infected individual only occurs through

self-reactivity of immune receptors neither through vaccination nor through treatment.

6) Each parameter in Table | is assumed for a specific dynamic and all have non-negative values.

For better understanding the dynamics of any disease among population, it is usually required to separate
the populations into classes with same characteristics and then formulate the interactions between them as
mathematical equations. Here, the attentive disease among population is HA. At the initial stage the whole
population is considered susceptible, then a portion of susceptible population has forewarned about the disease,
equipped them with the knowledge about HA and all the factors that affecting the disease. Later on, both the
aware and unaware susceptible individuals acquire HA infection and they only recover through self limiting
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Table 1: Involved parameter of the model with description.

Par t Description
b Recruitment rate
d Natural death rate
dq Disease caused death rate
P Infection rate of susceptible individuals
w Precaution vaccination rate of susceptible individuals
a Awareness rate of susceptible individuals
¥ Self-limiting recovery rate of infected individuals

immunity as the vaccination is not effective during infection, as well as there is no any specific and effective
treatment available for HA infection [46], [57]. Therefore three classes of population are considered, that are
compartments of susceptible individuals S, HA infected individuals I and recovered individuals R, where the
dynamics of the disease and interactions between individuals are formulated mathematically as the system
below.

d
d—f =b—p(1—a)SI — paSI —af(S)—dS,
dI
%:p(lfa)SI+paSIffyIf(d+d1)I, (1)
dR
&t _ 1—d
o = of(5) +91 - dR,
with initial condition as S(0) = Sy, I(0) = Iy and R(0) = Ry, also
wS
J(5) = 1+rS’

Here f(S) is Holling type-II vaccination function and r is saturation constant of vaccines availability and
supply, also w denotes vaccination rate. Since vaccination serves as a control mechanism, incorporating it as
Holling type-II functional response can be regarded as density-dependent non-linear control. Several other
control strategies for disease mitigation are discussed in [5], [27], [30], [48]. In this study, density-dependent
non-linear control is taken into account to assess the impact of vaccination on susceptible individuals under
resource constraints. The density-dependent non-linear control strategy captures both saturation and limitation
effects, reflecting how vaccination efficacy varies with population density. In this strategy, the effectiveness
of vaccination depends on the density of susceptible individuals. At low supply and availability recovery is
slow due to resources constraints. Conversely, when vaccination resources are plentiful, recovery accelerates,
which demonstrates how intervention efficiency is influenced by population density. [13], [39], [45].

The awareness analysis is performed through the parameter a which is awareness parameter and as well as
ensuring that the condition p(1 — a) > pa holds initially. Model (1) is generalized to a system of fractional
differential equations (FDEs) as follows:

DS =b—p(1 —a)SI — paSI — af(S) — dS,
DT = p(1 — a)SI + paST — I — (d + dy)I, 2)
“DYR = af(S) +~I — dR,
where © D¢ denotes Caputo derivative of order o w.r.t. time.
In Model (2) the parameters have been retained in their classical form to preserve their original biological
and epidemiological interpretations. Applying Caputo order on the involved parameters can increase model

complexity and reduce identifiability. For theoretical analysis maintaining classical parameters simplifies the
mathematical structure and enhances clarity [28], [51].
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3. QUALITATIVE ANALYSIS
3.1. Positivity and Boundedness
In this section, positivity and boundedness are investigated and proven as the theorems below.

Theorem 3.1. If S(0) > 0,1(0) > 0 and R(0) > 0 then the solutions S(t), I(t) and R(t) of the system are
non-negative for all t > 0.

Proof: Investigating positivity of each state variable individually. Positivity of S(¢) is followed from the
first equation of the model, which simplifies to

“DeS =b— pSI — af(S) — dS.
For the purpose of positivity, only negative terms of the equation are considered
“DeS > —pSI —af(S) —dS. (3)

Assuming that, intervention of vaccination is not applied to susceptible individuals i.e. w = 0, as well as it
is assumed that for time ¢ > 0, there is fixed positive number of infected individuals m, then Inequality (3)
reduces to

CD? S Z 7pS ’

where p = pm + d and is constant. Now using Laplace transform and recalling Theorem 1.1, we get
Z{EDiS()} = —p Z{S(1)},
n—1
=5 (s) = Y _ s> F1SW(0) > —p(s),
k=0
where Z{S(t)} = #(s). Since 0 < a < 1 then the previous inequality is obtained as
59 (s) — s*71S(0) > —p.7(s),
S(0 a—1
S (S0} = #(5) = SO

Taking inverse Laplace transform, we have

LU (s)) = S(t) > 5(0)31{ 527 }
> P

Using Laplace transform of Mittag Liffler function, we get
S(t) > S(0)Eq 1 (—pt?).

Since the Mittag Liffler function E, 1(—pt®) > 0 for 0 < o < 1, so S(¢) > 0 for all ¢ > 0. Similarly
positivity of second and third equations of the model can be easily proven that I(t) > 0, R(¢t) >0 ¥Vt > 0.
This completes the proof [3], [38]. [ |

Theorem 3.2. The feasible region of Model (2), defined as
b
a-{s1mer NO <NO <], @

is positively invariant, where N(t) = S(t) + 1(t) + R(t) is total population size.
Proof: Obtaining fractional derivative of total population by adding all equations of Model (2), we have
CDEN(t) <b—dN(t).

Solving the Caputo fractional differential equation of order 0 < o < 1, using Laplace transforms as follows

- d‘/V(s)v

n—1
=5 (s) = Y s (0) < g
k=0
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where Z{N(t)} = A4(s). Since 0 < a < 1, then we have
YN (s) —s*TIN(0) < = — dAN(s),

= (5T 4 5d). AN (5) < b+ N(0)s*,
b N(0)s™

b
S

N (s) < . 5
= (s) < sotl 4+ sd - st 4+ sd )
By taking inverse Laplace transform the previous inequality is obtained as
1 5%
Nt)<bgL ' ——— NP ———— % 6
() < {s"‘+1+sd}+ 0) {SO“H—Fsd} ©

Using the Laplace transform of Mittag Liffler function given as Theorem 1.2, then Inequality (6), is obtained
as

N(t) < bt“Ey q41(—dt*) + N(0)Eqy 1 (—dt®). @)
Applying Proposition 1.1 on Inequality (7) then we have

1 1

N <bt*| — — —
(t) < (dta dte

= (1 B () 4 N(O) B (1), ®)

The Inequality (8) can be equivalently expressed as

N(t) < g + (N(O) - Z) Fon (—dt).

The Mittag Liffler function satisfies the condition 0 < E,, 1(—dt*) < 1, so by multiplying it with the negative

quantity (N(0) — %), we obtain

 (v0-2) < (v0-Y) a0

Since, % is positive, this gives

Ea,l(—dto‘)> + N(0)Eq 1 (—dt?),

N(0) < g + (N(o) — d) Eq1(—dt®) < g,

which equivalently, be expressed as )
N(0) < N(t) < 5. ©)

This implies that the feasible region € is an invariant set of the system and all solutions of the system lie
within the feasible region [3], [37], [38]. [ |
Since the model exhibits positivity and boundedness, it is biologically meaningful.

3.2. Equilibria and Basic Reproduction Number

The model exhibits two disease free equilibrium (DFE) points. First, when the disease does not exist at
all in the considered population and precaution vaccines are not applied to susceptible individuals, then £
is a DFE point. Second is DFE E5, when the disease dies out but precaution vaccines are applied to the
susceptible population. The system also has an endemic equilibrium point E*, they are given by

El = (ga Oa 0)7 (10)
_ b(wr+1) awb
E2_<(dr+a)w+d’ 0, d((dr—i—a)w—i—d))’ an

E* = (S*,I*, RY), (12)
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where
S* — d+d1 +77
p

(d+dy +7) (w(rd ta)+ d) — pb(wr +1)

I = ,
p(d+di +7)(wr +1)

bpy(wr + 1)+ aw(d+di +v)(d+dr) — (d’y(d +dy + ) (wr + 1))

R* = .

dp(wr + 1)(d+dy +7)

Basic reproduction number is usually denoted by % and is determined for F; and Fs respectively, given
as follows
L%)() = mam{%l,ﬂg}, (]3)

where
7 — pb P — pb(wr + 1)
Y dd+ dy ) 2T ((drtawt+d)(y+d+dp)

are basic reproduction numbers for E; and E5 respectively.

3.3. Local Stability Analysis

Local stability of equilibria have been investigated and proved using a matrix corresponding to the system,
given by

- (p(l —a)l +pal + ;345 + d) —(p(l —a)S+ paS) 0
J = p(1 —a)I + pal p(1—a)S+paS—(d+dy+~) 0 |- (14)
aw —d
wr—+1 Y

Theorem 3.3. The DFE point E is locally asymptotically stable if %1 < 1, otherwise it is unstable.

Proof: As mentioned, the DFE point E; satisfies whenever vaccines are not applied to susceptible
population i.e. w = 0, then in this case the Jacobian matrix of the system at F; is obtained as

—d —be 0
0 vy —d

Third column of the matrix (15) is zero except diagonal entry, hence the non-zero diagonal entry in the
column is an eigenvalue of the matrix i.e. A\; = —d.
In complex plane, the eigenvalue A\; can be written as A\; = —d + ¢ - 0, then

larg(\1)| = tan™* (_Od> =T.

This satisfies that |arg(A1)| = 7 > <F for d > 0. Other eigenvalues can be obtained from the reduced matrix
given below

—d bp }

JEn = [ 0 bp—d(dl-il-d1+’y) (16)
d

Since the matrix (16) is upper triangular, eigenvalues of the matrix are diagonal entries, given as

Ay = —d,
_bp—d(d+di+7)

Ag = .
3 d

The eigenvalue A\ = A1, which clearly satisfies that |arg(A\2)| = 7 > < for d > 0.
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Elaborating the eigenvalue \g, it can be written as

_ Ghdd+di ) —d(d+di +7)
= d )
d(d+dy +)(% — 1)

A3 = y . (17)

A3

From (17), it is deduced that, the eigenvalue A3 < 0 if %, < 1. Therefore |arg(As)| = 7 > <* holds.
Since the condition |arg(A;)| > < is valid for A;, i = 1,2, 3. Hence, based on the the Routh Hurwitz
stability criterion [1], [10], [14], the DFE point E; is locally asymptotically stable and unstable otherwise.

|
Theorem 3.4. The DFE point Es is locally asymptotically stable if %2 < 1 and unstable otherwise.
Proof: Here, Jacobian matrix of the system computed at Fs is given as
aw bp(wr+1)
- (w'r‘Jrl + d) - (dr+a)w+d 0
JE2 = <b7’p—rd2—(r(d1+’y)+a> d—a(d1+’y)>w—dz—(d1+'y)d+bp . (18)
a(l (dr+a)w+d 0
wr+1 Y —d
Easily eigenvalues of matrix (18) can be obtained as A\y = —d , Ay = — (w‘f,‘j_l + d) and
(brp —rd*— (r(di +7) + a)d — a(dy + ’y))w —d? — (di +7)d+bp
A3 = .
3 (dr+a)w+d
Rearranging A3 as
(brp —rd® —rd(di +7) + ad — a(dy + ’y))w —d(d+dy+v)+bp
)\ =
3 (dr + a)w +d ’
_ brpw —w(dr+a)(d+dy +7) —d(d+dy +v) + bp
B (dr + a)w+d ’
bp(wr + 1) — (d + dy + ) ((dr +a)w+ d)
= . 19
(dr+a)w+d 19
Now replacing %» in Equation (19), then
Ko (d+ dy + ) ((dr +a)w + d) —(d+dy + ’y)((dr +a)w + d)
)\ =
3 (dr +a)w +d ’
(d+dy +7) ((dr Fa)w+ d) (%2 — 1)
= . 20
(dr+a)w+d 20)

Here, %> < 1, guarantees that A3 < 0.

Since, all the eigenvalues \; < 0, i = 1,2,3, the condition |arg(\;)| = m > <F holds. Therefore, the
DFE point Ej is locally asymptotically stable but is unstable otherwise. ]
It is known that, whenever DFE point is unstable, there exists at least one endemic equilibrium.

Theorem 3.5. The endemic equilibrium E* is locally asymptotically stable if %2 > 1 but is unstable
otherwise.
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Proof: Jacobian matrix of the system at £* is obtained as

- —(d+di+7) 0
Jpe = (brpfrdQ—d(r(d1+'y)+a)7a(d1+'y))wfd(d+d1+’7)+bp 1)
@i 0 0
wiil v _d

Clearly an eigenvalue of matrix (21) is A\; = —d < 0, which satisfies that |arg(\)| = 7 > %* for d > 0.
Investigating stability of the system by observing either roots or coefficients of the characteristic equation of
the reduced matrix, given as

e == —(d+di+7)
‘]E = (b'r'p—rdZ—d(7'(d1+'y)+a> —(L(d1+'y))w—d(d+d1 +v)+bp (22)
@) oD B
Characteristic equation of the matrix Jg in (22) is written as
M4+ AN+B =0, (23)
where
A0
d+dy +7
(brp —rd* —d(r(dy +v) +a) —a(d, + fy))w —d(d+dy +7)+bp

B =

wr+1

The stability conditions for the quadratic polynomial in (23) are either Routh Hurwitz conditions or
the conditions provided in [1]. According to Routh Hurwitz stability criterion, whenever the characteristic
equation in (23) has positive coefficients, then it has negative roots, so the corresponding system is locally
asymptotically stable [10], [14]. Here the coefficient of A2 is positive and also the coefficient A > 0 for
b, p,d,dy,v > 0. However, for observing sign of coefficient B, rewriting it as

_brpw+bp —w(dr+a)(d+di+7) —dd+di +7)
N wr 41
bp(wr +1) — (d+ d4 +’y)((dr—|—a)w—|—d)

wr+1

B

)

Substituting %5 from (13), then

Ko (d + dy +’y)<(dr+a)w+d) —(d+di +7)((dr+a)w+d)
wr+1
(d+ dy +7)<(dr+a)w+d>(%g— 1)

= o1 . (24)

B =

b

Here, %> > 1 implies that the coefficient B > 0 for at least d > 0, or d; > 0 or v > 0. Since, the
coefficients A > 0 and B > 0 with %> > 1, thus the polynomial has negative roots. It is summarized that,
matrix (21) has negative eigenvalues, hence it clearly satisfies the condition |arg(A;)| > &F, for A;, i =
1,2, 3. Eventually, it is concluded that the endemic equilibrium E* is locally asymptotically stable if %> > 1
but unstable otherwise. ]
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3.4. Global stability analysis

Global stability analysis is a vital tool for determining the behaviour of complex systems and ensuring
their resilience to deviations. In the context of epidemic models, global stability is performed by Lyapunov
method and LaSalle’s invariance principle, where the LaSalle’s invariance principle extends the Lyapunov
method and often requires identifying invariant sets, which may not be straightforward for complex systems.
Recently, [4] proposed a simplified method of stability of non-linear systems. In contrast to these, the
Lyapunov direct method is particularly well-suited for establishing global stability and the LaSalle’s invariance
principle is particularly effective when applied to systems with limited complexities, as they ensure asymptotic
convergence toward one of the equilibria of the system. When a suitable Lyapunov function is constructed,
it provides a clear and rigorous framework for demonstrating global stability, making it the most appropriate
and effective choice for the objectives of this study. No any suitable method is available for constructing a
Lyapunov function, however, some general forms of Lyapunov function are available [23], [53], [54].

Theorem 3.6. The DFE point F1 is globally asymptotically stable if there exists a continuously differentiable
Sfunction 'V, such that V' is positive definite and its time Caputo derivative is negative definite at the
equilibrium, further it is radially unbounded.

Proof: Let, the Lyapunov function V' : 2 — R defined as

2
V(S,I,R) = <S - Z) +I? + R% (25)

For showing that V' is positive definite, one can easily verify V(E;) = 0 by substituting E; € § in the
function V' given in (25). Since, the function V' involves square terms, hence V' is always non-negative but it
is strictly positive i.e. V() > 0 for x € Q\Ey, where z = (S, I, R) # 0. This validates positive definiteness
of V.

Investigating negative definiteness of CD?‘V(S, I, R) by taking derivative of V, using the Definition 1.1,
as

)

d

1 t Ca
:I‘(l — ) /0 (t—s)

2
CDeV(S,I,R) =“ DY l (5 - b) +I*+R?

ds,

b 1 ¢ _,ds 1 ¢ o dI

1 ¢ dR
2R— t—s)"*—ds. 26
* F(l—a)/o( ) s (26)
Applying Definition 1.1 on Equation (26), then
b
°D{V(S,I,R) =2 (5 - d) “DeS + 21 “DPT + 2R “DYR. (27

Simplifying Model (2) and substituting the model equations into (27), we get

“DV(S,I,R) =g+ h+ 3, (28)
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where
b
g=2 (s d> (b—dS—pSI—af(S)),
h = 2I(pSI— (7+d+d1)1),
j =2R(af(8)+~1 ~dR).

Analysing each term g,j and k individually, at = = (5,1, R). For analysing g, let K = S — 2, then
—dK = b — dS, which implies that

g= QK(—dK—pSI—af(S*)).

Here, g < 0 for every x € Q\E;. The term j < 0 for x € Q\Ey, if pS < d + dy + . Also, the term k < 0
for x € Q\ F1, whenever —dR dominates the term i.e. dR > af(S) + ~I.

Combining the results of g, j and k, then it is summarized that D¢V (z) < 0 for x € Q\E; under the
conditions S < ¥4+ and R > W. Since, the considered function has positive terms with squares,
then clearly V' (z) increases as the point = goes farther from Fj. Finally, for  with maximum length in the
region (2, the function V' will reach to the upper bound of the region. Hence, it clearly hold V' (z) — oo as
|z]| = oo for z € Q, i.e., therefore V' is radially unbounded in the feasible region.

Concluding that E; is globally asymptotically stable due to the existence of V', which is positive definite
for every x € Q\ E; and radially unbounded for every x € €, also its time derivative in the sense of Caputo

is negative definite for € Q\ Ey, under the conditions S < ‘Hd% and R > W [44]. [ |

Theorem 3.7. The DFE point F> is globally asymptotically stable if there exists a continuously differentiable
function V, such that V is positive definite and its time Caputo derivative © DXV is negative definite at the
equilibrium, further it is radially unbounded.

Proof: Let, the Lyapunov function V : @ — R be defined as

B . bwr+1) ’ B awb ’
V(5L R) = <S ((dr + a)w + d)) +I (R d((dr + a)w + d)) ' 29)

Time Caputo derivative of function V' in Equation (29) is obtained as

2 2
o _ Cpa _ blwr+1) 2 i awb
“DV(S,I,R) = °D; (S ~ ((dr + a)w + d)) I (R d((dr + a)w + d)> ’

2
_ofs- Mertl Nepegiorcperio(n- awb CDOR.
((dr + a)w + d) ) d((dr + a)w + d)

Substituting © DS, DT and © D R from Model (2), then

CDEV(S, I, R) = 2 <s __ bwr+ ) )) (v pST—af(s) - as),

((dr+ a)w+d
+2I2(p5 - (~y+d+d1))

awb

2
+2 <R— d(<dr+a)w+d)> (as(S) + I - dR).

Now, it can be clearly seen, that V' is positive definite as V(E3) = 0 and V(x) > 0 for every = € Q\{E>}.
Furthermore, “ DV is negative definite as “D®V (Ey) = 0 and DV (z) < 0 for every z € Q\{E>},
while b < d(S + R). Since V(x) — oo as ||t|| — oo for for all z € €2, hence V is radially unbounded.
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Here, the positive definiteness of V' and negative definiteness of its time Caputo derivative ensure asymptotic
stability, however radially unboundedness show global behaviour of the function. Hence based on these it is
concluded that the DFE point E5 is globally asymptotically stable. ]

Theorem 3.8. The endemic equilibrium point E* is globally asymptotically stable if a continuously differ-
entiable function V' can be determined such that V is positive definite at E* and is radially unbounded,
additionally time Caputo derivative © D'V is negative definite at the equilibrium.

Proof: Considering the Lyapunov function V :— Q — R, defined as
V(S,I,R) = (S —S*)?+ ([ —I")?+ (R— R*)* (30)

The function V is clearly continuously differentiable and is positive definite as as V(E*) =0 and V(z) > 0
for every x = (S, 1, R) € Q\E* due to the square terms.
Applying Definition 1.1, the Caputo derivative of V' w.r.t. time is obtained as
“DeV(S,I,R) = 2(S — S)’DS 4 2(I — I DT +2(R — R*)°D¢R
=2(S— S")[b—pSI —af(S)—dS|
+2(1 = IM)[pSI — (v+d+d1)]]
+2(R — R*)[af(S) +~I — dR). 31)

Investigating each term of © D@V (S, I, R) individually. Let the first term be denoted by T} as

T =2(5—=8")b—pSI—af(S)—dS]. (32)
Substituting the equilibrium relation b = pS*I* 4+ af(S*) + dS* in (32), we get

= 2(5 = §)[p(S"T" = SD) +a(f(S*) = F(S)) +d(S" = S)]. (33)

Case 1: If S* < S, then the factor 2(S — S*) > 0, but the terms in the other factor will be
p(S™I" — ST) <0, (34)
al f(S* S)) <0, (35)
d(s* — ) < 0. (36)
Multiplying the positive quantity 2(S —S*) > 0 with the negative quantities in (34-36), we obtain
20(S —S*)(S*I* — SI) <0, 37
2a(S—S*)< (S*) - (5)) <0, (38)
2d(S —S*)(S* = 98) <. 39)

Combine (37-39), we get
2(S — S*)[p(S*I* — SI) + a(f(s*) - f(S)) +d(S* - 8)] <0,
=T <0. (40)
Case 2: If S* > S, then 2(S — S*) < 0 but we get the terms as

p(S*I* — SI) > 0, (41)
a( F(8*) — f(S)) >0, 42)
d(S* — S) > 0. (43)

Similarly, multiplying 2(S — S*) < 0 with the positive quantities in (41-43) and combine them ,
we will get (40), hence T} is also negative in this case.
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Case 3: If S* =S, then 2(S — S*) = 0, which implies that 77 = 0.
Now, investigating the second term. Let it be denoted as

Ty =2(I — I)[pST — (v +d +dy)I]. (44)

Case 1: TIf I* < I, then the factor 2(I — I*) > 0, implies that 75 < 0 is valid, when the condition
§ < 14 holds.

Case 2: 1f I* > I, then 2( — I*) < 0, which implies that 75 < 0, when § > 2*4td,

Case 3: If I* = I, then 2(I — I'*) = 0, hence T» = 0.

Similarly, deliberating the third term. Let it be denoted by T35 as

Ty = 2(R — R")[af(S) +~I — dR). (45)

Case 1: If R* < R, then 2(R — R*) > 0, so T5 < 0 while af(S) +vI < dR.

Case 2: If R* > R, then 2(R — R*) < 0, so T5 < 0 while af(S) + I > dR.

Case 3: If R* = R, then 2(R — R*) =0, so T5 = 0.

From above cases, it is summarized that “ D¢V (z) < 0 for every = = (5,1, R) € Q\E*, holding the
conditions mentioned and it vanishes at the equilibrium point E*, i.e. “ DV (E*) = 0, so the singleton
{E*} is the only invariance set in the feasible region (2, hence by LaSalle’s invariance principle [23] the
endemic equilibrium E* is asymptotically stable. The function V' is radially unbounded throughout (2, thus

it is concluded that E* is globally asymptotically stable.
|

4. SIMULATION

4.1. Real-World Data

It is challenging to acquire comprehensive data of HAV. Despite this obstacle, it has been managed to obtain
pertaining statistics of the infection and disease deaths from Center for Disease Control and Prevention-United
States [8] available for period 2013-2022, shown in Table 2. Vaccination coverage statistics available for years
2004-2015, has been acquired from the recent work by Stroffolini and his co-author [49], shown in Table 3.

Table 2: Available statistics of infected individuals and Table 3: Vaccination coverage statistics of HAV [49].
disease deaths HAV pertaining to HAV [&].

Years Coverage of vaccine (%) Vaccinated individuals

2004 7.7 7700
Year  Infected individuals  Disease deaths 2005 16.86 16850
2013 1781 80 2006 16.86 16850
2014 1239 76 2007 20.034 20034
2015 1390 67 2008 20.034 20304
2016 2007 70 2009 17.05 17050
2017 3366 91 2010 18.267 18267
2018 12474 171 2011 17.05 17050
2019 18846 225 2012 17.05 17050
2020 9952 179 2013 17.05 1750
2021 5728 135 2014 26.4 26400
2022 2265 118 2015 26.4 26400

For enhancement of the data, Autoregressive Integrated Moving Average (ARIMA) and Exponential Smooth-
ing (Holt’s Model) have been used. ARIMA is a widely recognized statistical tool for time series analysis,
traditionally used for forecasting future values based on historical data. However, its application to predict
past values, often referred to as now-casting or hind-casting. ARIMA can estimate future and past values
using recent data, ensuring continuity and completeness in the dataset, which is critical for trend analysis,
[19], [20], [22]. Das and Muralidharan [9] have used a hybrid version of Holt’s model to achieve accurate
forecasts. As this technique is unrestricted by assumptions that usually bind ARIMA models, it has been
used as a more robust alternative for hind-casting in specific cases, where assumptions pertaining to ARIMA
models were observed to be violated.

In our study, we have used this technique to overcome hindrances faced due to lack of data pertaining
to infected individuals, disease death and vaccinated individuals. The available data of infected individuals
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and deaths due to HAV have been improved by hind-casting the time points from 2004 to 2012, shown in
Figure | and Figure 2. As well as, the data pertaining to vaccination has been enhanced by forecasting the
time points for years 2016-2022, shown in the Figure 3.
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Figure 1: Reported cases of HAV with hind-casted Figure 2: Reported cases of deaths due to HAV with
data points. hind-casted data points.
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Figure 3: Vaccination coverage against HAV with
forecasted data points.

4.2. Estimation

As mentioned earlier, that getting hand on comprehensive data for the purpose of fitting it into the model
is a challenging task, therefore, the involved parameters b, d and a are assumed, while using the real world
data given in Section 4.1, the parameter d; is calculated (see Appendix A in [18]), the other parameters p,y
and w are estimated by minimizing Mean Absolute Error (see Appendix B in [18]). Estimated values of the
parameters for Model (1) are shown in Table 4.
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Table 4: Numerical values of the parameters.

Parameter Value Source
b 0.03408 Assumed
d 0.00616 Assumed
dy 0.001579438 Calculated
P 0.007918408 Estimated
w 0.857638 Estimated
a 0.428854899 Assumed
¥y 0.783613446 Estimated

4.3. Visualization

Since, it is very challenging to analytically solve a system of fractional-order differential equations due to
the non-integer nature of the derivative, hence for validating the results, numerical simulations were conducted,
where the findings are visualized as time series plots for all the state variables and different values of the
fractional-order in this subsection. The results are visualized for the values of parameters given in Table 4,
using the fdel2 function [17] in MATLAB, which is based on the fractional Adams—Bashforth-Moulton
predictor-corrector method for solving initial value problems involving Caputo fractional derivatives.

In Figure 4a and Figure 4b transmission of the population between compartments is shown in consid-
eration with/without awareness and vaccination. From these figures, it can be observed that awareness and
vaccination have significant impact over population. In presence of awareness, less number of susceptible
individuals acquire the infection but the number of these individuals is comparatively high in absence of
awareness. Additionally, in the first year the recovery of individuals through vaccination is faster in presence
of vaccination but it is slower in absence of vaccination.

1500 T T ' ' ' 1500
1000 - 1 1000 -
g g
2 —s 2 —s
= R = R
E 3
g —R g —R
~ ~
500 ¢ 1 500 ¢
0 . . 0 . ;
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Time(Years) Time(Years)
(a) Transmission of individuals between compartments with (b) Transmission of individuals between compartments without
awareness and vaccination. awareness and vaccination.

Figure 4: Transmission of individuals between compartments

In Figure 5, variations of « can be observed. It shows that, higher natural immunity leads to high recovery
and vice versa. This highlights the need of maintaining healthy life style and good hygiene. In Figure 6,
effect of vaccination can be noticed, which shows that intensive HAV vaccination efforts targeting susceptible
individuals leads to a significantly higher recovery rate during the early stages of infection. Since, no effective
treatment exists against HAV, hence vaccination is a very crucial prevention strategy against HAV infection.

In Figure 7, transmission of individuals between compartments in consideration with Caputo order « is
illustrated, it can be perceived that changes in the Caputo fractional-order cannot be neglected, where effect
of varying fractional-order of the Caputo derivatives on susceptible, infected and recovered individuals can
be seen in Figures 7a to 7c respectively.
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Figure 8: Infected individuals with different values of «, in presence of awareness.

Figures 8 and 9 show aware and unaware infected individuals in presence and absence of awareness
respectively. The effect of Caputo order « can also be seen in the figures. From the figures it can be observed
that, HAV infection is high among unaware individuals but is low among aware individuals. However, if
awareness is not applied, then HAV infection will be at its peak, as it is illustrated Figure 9.
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In Figures 7 to 9, the corresponding changes in the disease dynamics are also illustrated for the case when
a = 1, representing the classical integer-order model, allowing for direct comparison with the fractional-order
cases. The comparison of the integer-order (o = 1) with fractional-orders (v < 1) reveals distinct dynamical
features. In particular, the fractional-order model exhibits slower decay of the infected class and prolonged
persistence of infection, indicating that memory effects delay disease eradication. By contrast, the integer-
order model shows comparatively faster decay, which underscores the advantage of fractional derivatives in
capturing hereditary and long-memory effects in HAV transmission.

The numerical simulations presented in this section provide important biological insights into HAV trans-
mission. Figures 4- 6 demonstrate that increasing awareness and vaccination reduces the number of suscep-
tible individuals entering the infected class, thereby lowering infection prevalence. In particular, vaccination
shortens the infectious period and reduces outbreak peaks, consistent with public health evidence that HAV
vaccines are highly effective in preventing community-level spread. Figures 7-9 further illustrate how varying
the fractional-order o influences long-term epidemic outcomes. Smaller values of « correspond to stronger
memory effects, which can sustain infection levels for a longer period even when transmission is reduced.
This observation highlights the importance of incorporating population-level memory in HAV modeling, since
it may explain why outbreaks sometimes persist despite interventions. Overall, the simulations confirm that
the combined effects of awareness, vaccination, and fractional dynamics provide a more realistic framework
for HAV control strategies.

So far, general insights on HAV dynamics are obtained from the visualized results of the model. Now
performing sensitivity analysis to understand importance of parameters.

4.4. Sensitivity analysis

Sensitivity analysis helps to understand, how crucially a parameter is boosting transmission. Importance of
sensitivity analysis is that it tells researchers, which parameter should be paid most numerical attention. By
this it can be said, that a most sensitive parameter must be carefully estimated as it causes drastic changes
on the dynamics. Here each involved parameter of %, has been analysed for determining most sensitive
parameter which increases newly infected individuals. This has been carried out with the help of normalized
forward sensitivity of %, defined as

4 i

Ko _

% = B R (46)
where p; is i*" parameter of %,. The sensitivity indices are obtained using the normalized forward sensitivity
formula, shown in the Table 5 and illustrated in Figures 10 and 11. The parameters b and p have positive
indices and they are sensitive parameters of %7, whereas d,d; and -~ have no impact causing secondary
infections. Similarly, b, p and r have positive indices and among them b and p are the most sensitive parameter
of %5, whereas the other parameters d,d;,y,a and w are not sensitive parameters and have no impact to
cause secondary infections. Any small variation of the sensitive parameters change numerical values of %,
and % drastically.

Table 5: Sensitivity indices of each parameter in Zo = max{%1,%-}.

Parameter Index(#1) Index(%5)

b +1 +1

d -1.0078 -0.0243
dy -0.0020 -0.0020
P +1 +1

o -0.9902 -0.9902
a -0.9835
r +0.00042
w -0.9831

For determining nature of the sensitive parameters, whether they increase or decrease new infections,
the influence of the parameters over %#; and %> have been visualized. Influence of p and b over %, can be
observed from Figure 12, where they can be described as promoters or risk factors as increasing or decreasing
them can increase or decrease secondary infections drastically.
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Additionally, influence of p and b over %> can be observed from Figure 13, where both the parameters
are promoters, increasing/decreasing them will increase/decrease new infections. Figures 14 and 15 show the
influence of r with respect to p and b over %», it can be observed that effect of r is insignificant. In brief,
it can be said that all the parameters with negative indices are always worthy in eliminating HAV, but the
sensitive parameters b and p are risk factors, small deviation in b and p cause high number of new infections,
remarkably in absence of vaccination.

CONCLUSION

This work presents a fractional-order SIR model for HAV dynamics, employing Caputo derivatives to effec-
tively incorporate memory characteristics of the disease. The model uniquely integrates awareness campaigns
and a non-linear vaccination strategy through a Holling type-II function. Through rigorous mathematical
analysis, we established the model’s well-posedness, local and global stability results. Further, possible
parameters are estimated using real-world data from United States. The model is numerically solved using
the predictor—corrector Adams—Bashforth—-Moulton scheme, which is well-suited for fractional systems due
to its accuracy and stability in handling memory-dependent dynamics and the simulation results highlighted
the significant impact of fractional-order dynamics.

The findings show that fractional models offer superior flexibility and predictive capability compared to
classical models. Both awareness and vaccination are shown to reduce infection levels with their combined
application being most effective. Sensitivity analysis identified the infection rate (p) and recruitment rate (b) as
the most influential parameters, suggesting that controlling these could significantly curb HAV transmission.
Overall, this study underscores the utility of fractional calculus in epidemiology and provides a robust
modelling framework for HAV. The model can guide public health interventions, particularly in areas with
limited resources and high susceptibility due to inadequate sanitation or vaccine coverage.
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