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Highlights:  

 The genetic algorithm (GA) inversion produced the best results when the borehole 

positions were placed in a state of symmetry towards the body object’s mass. 

 The addition of boreholes did not necessarily increase the success rate of the GA 

inversion. 

 A number of boreholes in the right position proportional to the body object provided 

a better result of the GA inversion. 

 

Abstract. We present the annotation to a genetic algorithm (GA) method for an 

inverse synthetic subsurface density model using surface and borehole time-lapse 

gravity data. The objective of the inversion is to find the boundaries of the object 

area and background, where one bit of the chromosome represents the densities. 

The model that was used in this paper was a simple homogeneous body anomaly 

and a simplified real water mass injection model in order to argue that the code is 

suitable for field modeling. We show the influences of the existence of borehole 

gravity data and location towards the inversion, where the result indicates that an 

additional good borehole location could increase the success rate up to 13.33% 

compared to without gravity borehole data for the simple model and up to 4.39% 

for the field model. The inversion produced the best results when the borehole 

positions were placed in a state of symmetry towards the body object’s mass. 

Keywords: genetic algorithm; gravity inversion; subsurface modeling; surface and 

borehole gravity; time-lapse gravity. 

1 Introduction 

Gravity inversion is one of the geophysical methods that can be used to model 

subsurface density. The time-lapse gravity modeling of subsurface condition 
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changes is very efficient. It has promising potential for use in monitoring 

injection or fluid extraction in a reservoir, as shown by Kadir, et al. [1] and 

Santoso, et al. [2], both for broad and deep target areas. The gravity technique 

can even be used in volcanic environments, as shown by Battaglia, et al. [3]. This 

type of area is difficult to measure with seismic instruments because the irregular 

structure diversity scatters the active seismic wave signals.  

Modeling of subsurface condition changes using gravity data is complicated since 

it has considerable ambiguity. The signal read by the gravimeter is the 

accumulation of all anomalies in the subsurface. Thus, it is challenging to 

distinguish the anomaly boundaries. The existence of borehole gravity 

technology can reduce the percentage of ambiguity, as reported by Jageler [4]. 

Surveyors have further developed borehole gravity technology for a long time 

since it was first reported by Smith [5]. In addition to the size of the instrument, 

its sensitivity to pressure also hinders the surveyor in placing the gravimeter at 

the desired stations. Recently, borehole gravimeters have been much improved, 

both in terms of capability and instrument size. The sensitivity of the latest 

borehole gravimeter instruments can resolve below five microgal, as reported by 

LaCoste [6], almost the same level as surface gravimeter instruments. Because of 

this, gravity borehole measurement is a prospect, especially in fluid injection 

monitoring, as shown by Brady, et al. [7]. 

The ability of data processing methods must keep up with the development of 

instrument technology. For this reason, it is necessary to develop a processing 

method that can increase the resolution of subsurface time-lapse anomalies 

horizontally and vertically through gravity measurements on the surface and in 

boreholes. There are many techniques in gravity inversion, but generally they fall 

into two categories. The first category is deterministic inversion. This kind of 

method constructs a model solution using a spatial position function. The 

application of deterministic inversion to both synthetic surfaces and borehole 

gravity data was presented by Jacob, et al. [8] to model carbon capture storage in 

reservoir monitoring, where the results showed that the existence of borehole 

gravity data could increase the success rate by up to 5%. The second category is 

stochastic inversion, which usually uses a random approach to obtain the solution. 

This method can be analyzed statistically due to its random nature. This behavior 

can be an advantage over the deterministic method since it has the flexibility to 

generate many different solutions to escape from local optima, while the 

deterministic approach is limited to the results from the initial model. By applying 

a model norm and using Tikhonov regularization, we can control the random 

characteristics so the solution approaches the desired results. 

GA is a stochastic algorithm that is quite popular for solving optimization 

problems and is widely used in diverse applications. In the field of seismic 
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studies, GA has excellent performance modeling the subsurface using waveform 

data, as shown by Yamanaka and Ishida [9], Pezeshk and Zarrabi [10], Sajeva, et 

al. [11] and Salamanca, et al. [12]. In the field of geomagnetic studies, GA has 

shown satisfying performance in modeling the magnetic structure, as reported by 

Yamamoto and Seama [13].  

Inspired by the theory of natural evolution, the GA method uses heuristic search. 

The objective model of the inversion is based on minimization and the density of 

the subsurface model can be discretized, which makes GA a suitable method to 

separate the background from the object in gravity inversion. GA variables (i.e. 

chromosomes and genes) can translate into the model solution in gravity 

modeling, usually related to shaped objects (i.e. prism, cylinder, or point of mass) 

with different densities. Even though the GA approach is known as a 

computationally expensive method, it is very convenient to invert an object 

boundary when the densities are quite discrete from the background, especially 

when we can apply a small bit to discretize the density difference.  

The GA inversion of gravity data has been presented by Krahenbuhl and Li [14] 

to image salt bodies. The method has applied by Wahyudi, et al. [15] to time-

lapse density anomalies that accommodate two types of density changes. Since it 

was able to get sufficiently good results with surface data in both cases, we 

expected that the existence of borehole data could contribute to enhancing the 

inversion results. In this paper, we demonstrate GA inversion applied to both 

surface and borehole gravity data to represent a real model. We implemented 

several boreholes to find out the influence of their location on the results of the 

inversion. Borehole gravity measurement is expensive. The simulation 

calculation to obtain the estimated parameters with the proposed method before 

the survey may reduce project costs. 

2 Methods 

In a gravity inversion, the objective model is to minimize the misfit function (φ), 

which consists of misfit data (φD(ρ)) and the model norm (φM(ρ)). It is formulated 

as follows: 

 𝜑 = 𝜑𝐷(𝜌) + 𝐵𝜑𝑀(𝜌)min, (1) 

where B is the variable to control the balance in the Tikhonov regularization 

curve. The best value of B is manually obtained by plotting the position of the 

misfit data versus the model norm for some calculations and then choosing the 

value that has the best balance. The misfit data are defined as the average 

difference of the inverted gravity (dcalc) and the observation data (dobs) for each 

iteration (Eq. (2)), 



156 Indra Gunawan, et al. 

  

 𝜑𝐷(𝜌) = √
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𝑜𝑏𝑠‖

2𝑁
𝑎=1 , (2) 

where N is the number of the station, and a is the station index. The gravity 

measurement in the field obtains the observation data and the inverted gravity is 

the forward modeling of the model as it is formulated by equations from Okabe 

[16] and Li and Chouteau [17]. Furthermore, the model norm is defined as a 

smoothing function for lateral distributions. The model norm is the average of the 

difference of all nearest neighbor densities (Eq. (3)) in horizontal positions 

(Figure 1). We neglect the calculation in the edging prisms (white area) because 

it does not have the same number of neighbors as the others (gray area). Thus, we 

begin the calculation between the prism index m = 2 and n = 2 to m = s − 1 and n 

= t − 1. Where s and t are the last index of the prism in the X and Y-axis direction 

in the model, respectively. 
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Figure 1 Illustration of model block positions. 

The focus of this research was on the one bit of the genetic algorithm inversion 

for the time-lapse gravity. There are only two possible values of each variable 

(i.e. either true or false), so the object densities are discretized into two values 

that represent the background and the object of the density anomalies. In this way, 

we can quickly determine the density anomaly object boundaries. The genetic 

algorithm is performed using a Boolean data type as the object container so that 

the code is lighter and can run faster to save computing resources and time. 
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The GA method is based on the processes of recombination, mutation, and 

selection to produce the best offspring for each iteration. In the process, we 

modified the function to get better results to make it convenient for our method. 

In our research, we used uniform crossover, which was first introduced by 

Syswerda [18], for the recombination function and then compared some modified 

randomly flipping cell mutation techniques to find the most suitable parameters 

for our calculation (Figure 2). The additional GA parameters were taken from 

Herrera, et al. [19]. 

 

Figure 2 Illustration of crossover (a) and mutation (b) in the recombination 

section. T, F, and R mean true, false, and random (i.e. true or false) Boolean values, 

respectively. The grey areas (b) indicate the chromosomes doing mutation. 

The uniform crossover, mutation, and ranking selection in our code follow these 

rules: 

1. Uniform crossover. Combining two parents produces a child. The children 

will have either the first or the second parent’s properties. The parents and 

the child will gather together to join the population. All parents recombine, 

but their partners are randomly selected. 

2. Mutation. A parent produces a child. For every n number of the 

chromosome, each gene mutates into the opposite value. The user defines n, 

but the location of the chromosomes that are mutated is randomly selected. 

Both parents and the child join the population. The user defines the number 

of parents that mutate. In our case, it was 20 percent of the parent population. 

The selection of parents that mutate is randomly chosen. 

3. Ranking selection. New offspring are selected from the population. The best 

individuals that have a better weight will be chosen to become new offspring. 

All other individuals are killed. The user defines the number of new 

offspring. 

To avoid homogeneous offspring that have recently appeared in the genetic 

algorithm for a large number of generations, we applied an additional mutation 

when we found similar individuals in the parent population.  
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3 Results and Discussion  

3.1 Simple Model (SM) 

We built the data from a synthetic model that illustrates fluid injection in a 1-km 

deep reservoir with an area of 2 km east-west and 2 km north-south. The aquifer’s 

thickness was 150 m, with neglected porosity. The injection took place in the 

center of the reservoir. After time t there was a density-contrast object shaped like 

a circle from a 2D top view. By calculating the differences in the gravity response 

at the beginning of the injection and after injection at time t, we got the time-lapse 

gravity response. We assumed there was no added noise due to deformation, 

terrain changes, surveying process, or other interference. There were two kinds 

of density in the reservoir: the background density and the object density. We 

also assumed that the injection fluid had uniform density, i.e. 500 kg/m3 in all 

areas. Since there was no density change in the background, we defined the 

background density as 0 kg/m3. The dimensions of the block prisms in the 

reservoir were 100 x 100 x 150 m; it consisted of 400 body prisms (Figure 3). 

Gravity forward modeling generated the time-lapse gravity response due to the 

anomalous object model. On the surface, the gravity response had 482 stations 

that were mostly placed at 100 m distance from each other over the anomalous 

object. Furthermore, six borehole locations were applied to observe the influence 

of the existence of boreholes and their positions on the inverted results. The 

stations of the boreholes were placed at every 100 m from the surface until 2 km 

depth. Thus there were 20 additional gravity data for each borehole. There were 

six scenarios in the inversion: invert the model from the surface data only (S1); 

invert the model from the surface and the BH01 data (S2); invert the model from 

the surface and the BH02 data (S3); invert the model from the surface and the 

BH03 data (S4); invert the model from the surface and the BH01, BH02, BH04 

data (S5); and invert the model from the surface and the BH01, BH02, BH04, 

BH05, BH06 (S6). 

We followed the method from Jacob, et al. [8] to measure the error rate of the 

inversion. Missed volume and false alarm were calculated by comparing the 

model volume with the inverted volume. Missed volume was defined as the area 

that should be inside the model but appears outside the inverted volume. Vice 

versa, false alarm was defined as the area that should be outside of the model but 

appeared inside the inverted volume. We calculated each scenario for each model 

three times and then calculated the average to ensure that the results fell within 

the convergence. 
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Figure 3 Illustration of synthetic time-lapse subsurface density model in kg/m3 

(a), the gravity response at the surface (b), and the boreholes (c) in microgal. 

The inverted results for the SM from the surface data (S1) had an average error 

rate of 20.83%, while the average missed volume error was 10% and the average 

false alarm error was 10.83%. We could decrease the average error rate by 7.5% 

by adding one borehole data (S2), placed in the center of the anomalous gravity 

(i.e. BH01). However, when its position was changed to the outer areas (i.e. BH02 

or BH03), it led to worse results (i.e. 23.83% and 26.25% average error rate). The 

results were even worse than for S1 (i.e. when the inverted results were produced 

only from the surface data). It shows that in the case of S3 and S4, the existence 

of borehole data becomes interference for the inversion.  

Furthermore, the additional borehole data were also problematic because they did 

not decrease the error rate. When we applied three borehole data to the 

calculation, in the case of S5, the inversion only generated an average error rate 

of 11.67%. Although this was better than S1, it looks like a waste of resources 

since it did not do better than using fewer boreholes (S2). This trend continued 

when we applied more borehole data to the calculation, where five boreholes (S6) 
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even increased the level of the inversion error rate (15%). Figure 4 shows a 

summary (error rate) of the results of all inverted models. 

 

Figure 4 Summary of the error rates of the inverted models for SM. AVG stands 

for average. 

3.2 Field Model (FM) 

The field data were taken from the Hare, et al. model [20]. This time-lapse model 

illustrates the waterflood surveillance at Prudhoe Bay, Alaska. The area of 

investigation was a 28 km east-west and 31 km north-south area, where the 

reservoir was at 2.5 km depth with 150 m of thickness, represented by 868 cells 

with a size of 1 km x 1 km x 150 m of each prism. The reservoir had 20% porosity. 

Since our model used only two density differences, we simplified the model into 

two values: the delta density due to the time-lapse was 60 kg/m3, uniform for all 

areas of the object anomaly, while the background time-lapse density was 0 

kg/m3.  

The observation stations on the surface had 928 points. Boreholes were located 

in three different places (i.e. BH01, BH02, and BH03). Each borehole had 30 

additional gravity observation stations that were set at every 100 m from the 

surface until 3 km depth. The surface and borehole gravity data were generated 

by doing forward modeling on density models following Reference [20]. We 

added ten microgal synthetic standard deviations of Gaussian noise to both the 

surface and the borehole gravity response (~15% of noise). Figure 5 illustrates 

the object body and gravity responses. We applied the inversion to four scenarios: 
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invert the model from the surface data only (S1); invert the model from the 

surface and BH01 data (S2); invert the model from the surface and BH02 data 

(S3); and invert the model from the surface and BH02 and BH03 data (S4).  

 

Figure 5 The synthetic time-lapse subsurface density model in kg/m3 (left), the 

gravity response at the surface (middle), and the boreholes (right) with ten 

microgal Gaussian noise. Coordinates in UTM. 

The inversion was executed three times for each scenario, after which the average 

was calculated. Then the error ratio for each calculation was determined. A 

summary of the results is presented in a graph (Figure 6) and illustrated in Figure 

7.  

It was found that S4 was the best ratio. It could invert the model up to an average 

error rate of 19.41%, while S1, S2, and S3 produced 23.79%, 24.11%, and 

23.01%, respectively. Our stochastic method of inversion showed that it was in 

close agreement with Jacob, et al. [8], who used a deterministic approach, i.e. the 

borehole only decreased the error rate by about 5%. Furthermore, the result of S2 

shows that the existence of borehole data did not reduce the error rate of the 

inversion, while S3 only cut a small amount from the error rate. 
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Figure 6 Summary of the error rate of the inverted model for FM. AVG stands 

for average. 

 

Figure 7 Map of the inverted densities of S1 (a), S2 (b), S3 (c), and S4 (d) on the 

FM. Coordinates in UTM. 
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3.3 Discussion 

By comparing the position of the boreholes (i.e. S2, S3 to S4 in the case of SM 

and S2 to S3 in the case of FM), we found that the position of the boreholes is 

essential in the GA inversion process, where the proper borehole location 

determines whether the data will be useful or not. The other results (i.e. S5 and 

S6 in SM and S4 in FM) also showed that the addition of boreholes does not 

necessarily decrease the error rate of the inversion result if it is not proportional 

to the number of object bodies. This behavior occurred in the GA inversion due 

to the distance between the object model and the observation stations, which was 

defined inversely proportional to the gravity values. This causes the calculation 

of the data misfit (Eq. (2)) at the minimum distance to be dominant in the 

inversion process. Stations in the boreholes adjacent to the object model give a 

larger gravity response, which leads to a more significant misfit effect when the 

inversion has not fallen into the optimal solution than when a station that is farther 

removed from the object model.  

This behavior leads to the conclusion that the position of the borehole observation 

station that gives the most optimal inversion results must be in a place that 

provides perfect symmetry of the mass distribution of the object model to be 

inverted. By doing an example calculation in the case of SM that uses a perfectly 

circular object (symmetry in the XY plane), we can see that the position of the 

borehole observation station that had the most symmetric condition was in S2, 

not in S3 or S4. In S5 and S6, even though there were many borehole observation 

stations, symmetry was not better than in S2, thus the inverted model produced 

was not better. In the case of the FM model, we can look at S2 and S3, which 

proved such behavior. However, because the FM model had two body density 

objects, the addition of a borehole that is proportional to the body object number 

will undoubtedly provide better results (S4), of course, with the provision of a 

position of the borehole that is symmetric towards the body objects, as discussed 

above. 

4 Conclusions 

An application of genetic algorithm inversion for gravity modeling was 

developed that works for 1-bit resolution. It was applied to a model that was 

depicted as a collection of rectangular prisms. The GA method was successful in 

performing stochastic inversion on surface and borehole gravity data to determine 

the object boundaries. The results indicate that additional good borehole locations 

could increase the success rate up to 13.33% compared to without gravity 

borehole data for the simple model and up to 4.39% for the field model. The 

inversion also showed that the existence and location of the borehole gravity data 

affected the error rate of the inverted results to a certain degree. The inversion 
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produced the best results when the borehole positions were symmetric towards 

the body object’s mass; this was the annotation to the GA inversion that was 

applied to the joint surface and borehole gravity data. 
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