Index

AUTHOR

Α

Mikrajuddin Abdullah, 240 Mohammad Ali Abedian, 516 Isam Mejbel Abed, 870 Chintya Rizki Agustina, 671 Jung Oh Ahn, 578 Adel A. Al-Azzawi, 778 Rd. Habib R. M. T. Al-Aziz, 841 Rugaia Amer, 870 Kusnandar Anggadiredja, 87 Shamilar Anuar, 224 Shinichi Aoki, 548 Dayu Apoji, 53 Danu Ariono, 202 Putu Teta P. Aryanti, 202 Yutaka Asako, 479 Muhammad Noor Asnan, 392 Haryati Awang, 224

В

Abdul Karim Barbhuiya, 434 Yazid Bindar, 685, 832 Yogi Wibisono Budhi, 685 Bagus Budiwantoro, 797

С

Muhammad Cahyono, 364 Nor Azwadi bin Che Sidik, 479 Don Gaspar Noesaku da Costa, 607

D

Darharta Dahrin, 127 Fredina Destyorini, 409 Hary Devianto, 255, 841 Changtao Ding, 650 Bach Hoang Dinh, 1 Wenzhong Duan, 451

Ε

Mahmud Kori Effendi, 224 Riska Ekawita, 53

F

Iftikhor Faadhilah, 291 Irvan Faisal, 461 Farhang Farrokhi, 516 Fukang Fu, 534

G

Deqing Gan, 737 Song Gao, 179, 720 Wenqing Ge, 720 Olga Joy Gerasta, 589 Rajesri Govindaraju, 110 Hendra Grandis, 127 Tutus Gusdinar, 87

Н

Fernando Sanjaya Sulaiman Halim, 797 Nor Hayati Abdul Hamid, 224 Jianqiao Han, 451 Nur H. Hanafi, 818 Ridho Hantoro, 73 Indra Sati Hamonangan Harahap, 315 Ardiyan Harimawan, 841 Mimi H. Hassim, 272 Mimi H. Hassim, 818 Robert Heinemann, 21 Indria Herman, 797 Jefferson A. Hora, 589 Muhammad Firdaus Husin, 272 Try H. A. Hutapea, 578

ī

Muhammad Fauzul Imron, 99 Nanik Indayaningsih, 409 Takanobu Inoue, 548 Yuyun Irmawati, 409 Ferry Iskandar, 240

J

Anwar Johari, 272

K

Deni Shidqi Khaerudini, 409 Jane Oktavia Kamadinata, 479 Mohd. Johari Kamaruddin, 272 Maulana Insan Kamil, 635 Shigeru Kato, 548 Khairurrijal Khairurrijal, 53, 240 Porntep Khokhajaikiat, 699 Made Tri Ari Penia Kresnowati, 832 Sugeng Krisnanto, 566 Arno Adi Kuntoro, 364

ī

Kien Chi Le, 1 Myong-Hwa Lee, 240 Hsiu Eik Lee, 315 Hyung Woo Lee, 578 Zhanfu Li. 346 Bo Li, 720 Kunyuan Li, 157 Wei Li, 493 YanMei Li, 493 Zhanfu Li, 157 Mohd Shahir Liew, 315 Wenyu Lin, 157 Min Lu, 650 Anne Lorraine Luna, 589 Han Luo, 451 Jian Luo, 493 Yuanjun Lv, 650

Μ

Andi Isra Mahyuddin, 412, 534 Ahmed Sahib Mahdi, 624 Teuku Mahlil, 548 Siti Malkhamah, 607 Darwin C. Mangca, 589 Taufan Marhaendrajana, 635 Yoshitaka Matsumoto, 548 Susiana Melanie, 255 Atiek Moesriati, 99

Ν

Hasbullah Nawir, 53 Denny K.S. Ng, 272 Norzita Ngadi, 272 Thang Trung Nguyen, 1 Rusandi Noor, 392 Zainura Z. Noor, 818

Ρ

Olgha P. Pandini, 461 Pasymi, 685 Pudji Permadi, 635 Puspa Ayu Indah Prameswari, 671 Alvin Pratama, 461 Angga F. Pratama, 461 Herman Pratikno, 99 Rizky Islami Putera, 99

Q

Lee Kee Quen, 479

R

Harianto Rahardjo, 566 Hamidah Rahman, 87 Fathya Rahmina, 832 Parvathy Rajendran, 382 Muhammad Hanif Ramlee, 40 Reza Rasouli, 516 Ernawaty Rasul, 548 Muhammad Ghifari Ridwan, 635 Parthajit Roy, 434

S

Miftahus Sa'adah, 671 Makoto Saga, 548 Siti Yaumi Salamah, 110 Maheza Irna Mohamad Salim, 40 Viswanathan Sambamurthy, 856 Imam Santoso, 671 Eva Novita Sari, 671 Ricky Dwi Septianto, 240 Erna Septyaningrum, 73 Tjandra Setiadi, 841 Dian Shofinita, 841 Norshah Afizi Shuaib, 21 Daniel I. Simangunsong, 578 Calvin Kong Leng Sing, 479 Johnner P. Sitompul, 87 Johnner P. Sitompul, 578 Howard Smith, 382 Sharizal Ahmad Sobri, 21 Edy Anto Soentoro, 364 Zuqiang Su, 534 Prihadi Sumintadireja, 127 Binbin Sun, 179, 720 Bing Sun, 420 Wahyu Sunyoto, 291 Latif Budi Suparma, 607 Armi Susandi, 461

Τ

Mamad Tamamadin, 461 Tan Lit Ken, 479 Harmin Sulistiyaning Titah, 99 Iraj Toloue, 315 Xin Tong, 157 Xin Tong, 346 Joseph Tripura, 434 Tursino, 87

V

Balagopal Venugopal, 856

W

Asnida Abdul Wahab, 40 Fuli Wang, 534 Honglei Wang, 451 Pengwei Wang, 179 Yaokun Wang, 157 Yongjun Wang, 720 Zhangu Wang, 179 Anita K. Wardani, 202 Xinyu Wei, 737 Xia Wen, 420 I Gede Wenten, 202 David Whitehead, 21 Narong Wichapa, 699 Destika Agustina Widiawan, 461 Eman Widijanto, 291 Lilik Eko Widodo, 291 Henry Widodo, 409 Aristyo R. Wijaya, 461 James B. Winterburn, 255 Iwan Inrawan Wiratmadja, 110 Xiaoqiu Wu, 346

Х

Huihuang Xia, 346 Jianshe Xu, 141

Υ

Bo Yang, 330 Xi Yang, 737 Lai Kok Yee, 479 Wenwei Ying, 330 Kuriko Yokota, 548 Jie Yu, 179 Jasmy Yunus, 40

Z

Sheng Zeng, 420 Xuebo Zhang, 330 Yi Zhang, 534 Yunpeng Zhang, 737 Jie Zhou, 420 Xi Zhu, 589

SUBJECT

Α

ADC, 589, 590, 591, 592, 593, 596, 598, 602, 605, 606, 607 aerodynamic forces, 650, 651, 652, 653, 654, 659, 663, 667, 668 agricultural waste, 856 AHP, 671, 674, 676, 680, 684

air parameters ceiling laminar flow system, 870 air pollution, 818, 819, 824, 826, 827, 829 airflow distribution, 870, 871 aluminum 2024, 624, 625, 633 anchor bolt, 420, 427 anchoring defect, 420 anchoring quality, 420 anomaly enhancement, 127 ant algorithm, 534, 536, 537, 544 Atsumi Bay, 548, 549, 550, 551, 552, 553, 555, 556, 559, 562, 563, 564, 565 available water constraints, 1 axial inlet diameter, 685, 687, 690, 692, 694, 696 axial strain, 53, 54, 55, 66, 68, 69, 70

В

bachok, 491 back analysis, 516 ball mill, 157, 158, 160, 161, 163, 166, 167, 168, 170, 172, 174, 175, 176, 177 banana screen, 346, 347, 349, 350, 351, 353, 354, 355, 356, 357, 362 basin delineation, 127, 139 bench testing, 382 biomass particles, 685 bioplastic, 255 biopolymer, 255, 256 bird-like flapping wing, 650, 651, 654, 658, 664, 667, 668 blasting vibration, 737, 738 block cave, 291, 295, 301, 305, 306, 307, 311 bottle-neck reach, 451, 458 braking, 797, 799, 804 braking capability, 607, 608, 609, 613, 614, 618, 619, 621 braking force distribution strategy, 179, 180, 187, 188, 190, 191, 192, 194, 195, 199

braking stability, 179, 180, 187, 189, 191, 193, 194, 196, 198, 199 bridge construction, 451, 452, 453, 458, 459 bridge fatigue, 392, 395, 398 BSA, 202, 204, 207, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220

C

canarium oil, 87, 88, 89, 91, 92, 93, 95, 96 CaO, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255 Carrier, 832, 834, 835, 836 cascaded blade, 73, 82 cassava, 832, 833, 834, 835, 836, 837 cell performance, 409, 410, 412, 414, 417 CFD, 73, 78, 83, 85, 870, 871, 874, CFRD, 516, 517, 519, 526, 533 characteristic function, 330, 331, 333, 334, 335, 338, 342, 343, 344 charged membrane, 202, 203, 204, 205, 206, 217 chemical processes, 272, 273 chlorophyll a, 548, 552 Citarum River Basin, 364, 380 class A, 330 clay swelling, 635, 643, 645, 647 climate change, 364, 365, 368, 377, 378, 379 cloud velocity, 479, 482, 483, 485, 487, 488, 489, 490 CMIP5, 364, 368, 369, 370, 371, 372, 373, 377, 379 coal and gas outburst, 758, 759, 760, 761, 762, 764, 765, 766, 767, 768, 769, 774, 775 coconut coir, 409, 410

COD removal, 841, 843, 852, 853, collision avoidance, 534 color excursion, 493, 494, 495, 496, 497, 498, 503, 504, 505, 506, 508, 509, 510, 511, 514, 515 concrete, 856, 857, 858, 859, 860, 862, 863, 864, 865, 866, 867 concrete-face rock-fill dam, 516 contact angle, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648 contamination, 99, 100 contrast stretching, 40, 41, 42, 43, 46, 49, 50 cracked soils, 566, 567, 568, 569, 575 curving, 797, 799

D

damaged specimens, 224 data mining, 110, 111, 112, 113, 114, 119 decentralized algorithm, 534 decision tree, 110, 112, 113, 114, 119, 121, 122, 125 decomposition process, 685, 686, delamination, 21, 22, 25, 26, 27, 28, 29, 30, 39, 41 DEM, 157, 158, 175, 176, 177, 178, 179 DEM simulation, 346, 347 dengue, 110, 111, 112, 113, 114, 115, 119, 121, 125 density, 624, 625, 628, 632, 633 direct MIMO process, 434, 435, 436 downshifting, 607, 609, 610, 611, 614, 615, 616, 617, 620 drilling, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39 drive control strategy, 720, 721, 730, 732, 734, 735

dual-motor-drive electric vehicle, 179, 182 ductility, 224, 225, 227, 228, 231, 234, 235, 237, 239

Ε

Earthquake, 315, 323, 327, 328 electric motor, 382, 383, 384, 385, 387 electric propulsion, 382, 390 electrical conductivity, 409, 411, 413, 415, 417 electrode distance, 841, 842, 843, 844, 846, 847, 854 emission function, 1 energy recovery, 179, 180, 182, 189, 191, 192, 193, 194, 196, 198, enhanced oil recovery, 635, 636, 647 enzymatic reaction, 87, 88, 89, 92, 94, 96 equivalent viscous damping, 224, 228, 231, 232, 234, 235, 236, 237 eutrophication, 548, 553 excessive loads, 392 experimental work, 870, 871, 873 extreme weather, 461, 462, 464, 466, 468, 469, 470, 471, 473, 474, 475

F

facility location-allocation problem, 699 FAM, 315, 316, 317, 318, 319, 320, 323 fatty acids, 87, 88, 90, 91, 92, 93, 94, 95, 96 fault, 127, 132, 133, 136, 137 fercaf, 832, 833, 834, 835, 836, 837 fermentation, 832, 833, 834 filtering, 40, 41, 42, 43, 44, 47, 48, 49, 50 finite differences, 778, 779, 781 finite elements, 778, 779 fitting analysis, 737 flapping frequency, 650, 651, 653, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668 flood control, 451, 452, 453, 456, 458, 459 flow structure, 685, 690, 696 forecasting model, 479 FPGA, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 605, 607 fracture scheme, 392 front-and-rear-motor-drive electric vehicle, 720 fuel cell, 409, 410 fuel cost function, 1, 3, 16 functional food, 87, 96 Fuzzy AHP, 699, 701, 702, 703, 704, 705, 706, 709, 710, 713, 715, 716, 717, 718, 719 fuzzy differential equation, 291 fuzzy logic, 291, 292, 311 Fuzzy TOPSIS, 699, 701, 703, 704, 705, 709, 710, 713, 715, 716, 717

G

gas diffusion layer, 409 geodynamic, 758 gradient, 127, 139

Н

Haloferax mediterranei, 255, 256, 270, 271 hazard and risk assessment, 272, 275, 276, 289 haze, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830 health impact, 818 heat-affected zone (HAZ), 21, 22, 36, 37, 39, 40 height-width ratio, 157, 166, 169 histogram-based ADC, 589 hollow core, 778, 781, 782, 785, 786, 787, 788, 790, 792, 793, 794, 796, 797 hospital, 110, 111, 114, 115, 118, 120, 123, 125 hydrokinetic, 73, 74, 76, 81, 85 hydro-meteorological hazard early warning system (H-MHEWS), 461, 463, 464, 465, 469, 470, 475, 476

П

image enhancement, 40, 41, 42, 45, 46, 47, 50 impact speed, 607, 609, 610, 611, 613, 614, 615, 616, 619, 620 infectious waste disposal, 699, 700, 701, 704, 709, 710, 711 instrumentation, 516, 520, 524, 529 irregular shell, 141, 143

L

Lab, 493, 499, 502, 506 land cover change, 364, 367, 368, 373, 374 landslide, 461, 464, 466, 467, 471, 472, 473 laser machining, 21, 22, 27, 28, 40 lateral strain, 53, 55, 58, 66, 68, 69, 70, 71 length of stay, 110, 111, 113, 114, 115, 118, 119, 120, 121, 122, 123, 124, 125 life decline, 392, 408 linearity testing, 589, 590, 591 LiPo battery, 382, 388, 389 local deformation transducer, 53, 54 low salinity waterflooding, 635, 636, 637, 645, 646, 647 LQR, 315, 316, 319

Μ

MAFMA, 671, 673, 674, 676, 679, 681, 684

marine environment, 99 mechanical properties, 578, 579, 580, 581, 584, 585 medical thermal image, 40, 41, 50 methodology of analysis, 566 Metro Kapsul, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 811, 813, 815, 816, 817, 818 microbial fuel cell, 841, 854 microhardness, 624, 628, 629, 632, 633 microorganism, 832, 836 minimum stopping sight distance, 607, 616 modified mutation, 1, 3, 6, 8, 16 modified selection, 1, 3, 7, 8, 16 mud rush, 291, 292, 293, 298, 305, 307, 308 multi-criteria decision making, 699, 700, 702 multi-parameters, 650, 651, 668

N

nanocrystalline cellulose, 578, 579, 581, 582, 583, 584 NARX, 434, 436, 439, 440, 441, 444, 445, 446, 447, 448, 450 Nernst-Planck model, 202, 204 nitrogen, 548, 549, 552, 553, 556 noise modeling, 330 nonconvex objective, 1 non-Gaussian noise, 330, 331 Nonlinear Autoregressive with Exogenous Inputs, 434 nonlinear behavior, 53, 71 number of lifter, 157 numerical model, 566, 568, 573, 574, 575 numerical simulation, 451, 452

0

oil palm empty fruit bunch, 578, 580

on-the-fly method, 589 operating room, 870, 871, 872, 873, 874, 876, 878, 879, 880, 881, 882, 883 optimization, 346 overall power loss of dual-motor system, 179

Р

parameter estimation, 330, 332, 334, 335, 342, 343 particulate matter, 818, 820, 821, 823, 825, 826 passive-pitch, 73, 74, 75, 76, 80, 82, 83, 84, 85 pasteurized milk, 671 path planning, 534, 535, 538, 541, 542, 543, 544 peak particle velocity, 737, 738, 742, 746, 747, 749, 751, 753, 754, 755, 756 peat fire, 818 permeability, 578, 580, 581, 585, 586 PHA, 255, 256, 257, 258, 261, 264, 265, 268, 269 PHBV, 255, 256, 259, 263, 264, 265, 267, 268, 271 phosphorus limitation, 255, 256, 257 phosphorus, 548, 549, 552, 553, 556 photovoltaic systems, 479 physicochemical properties, 87, 95 piping and instrumentation diagram (P&ID), 272, 273, 274, 275, 276, 279, 280, 284, 285, 286, 288 planar truss, 141, 143, 144, 147 PLA-NCC nanocomposite, 578, 580, 585, 586 polyhydroxyalkanoate, 255 polystyrene, 240, 241 porous, 240, 241, 248 potential field, 127 power density, 841, 842, 846, 847, 853, 854

pozzolanic material, 856, 864, 865, prediction, 110, 111, 113, 114, 115, 118, 119, 120, 125, 758, 759, 760, 765, 767, 769, 772, 773, 774, 775 predictive tool, 291, 292, 304, 311 pressure drop, 685, 687, 690, 695, 696 process safety, 272, 273, 275, 278, 279, 280 production process, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, propeller, 382, 383, 384, 385, 386, 387, 389, 390 protein separation, 202, 203, 204, 208, 210 public health, 818 pull-out test, 420, 426, 427

Q

quantile-quantile (Q-Q) plot, 330, 331, 332

R

radial basis function neural networks (RBFNNs), 434, 435, 437 rainfall, 548, 549, 550, 551, 553, 554, 555, 556, 559, 560, 561, 562, 563, 564 rectangular lifter, 157, 165, 166, 170, 176, 177 reflection coefficient, 737, 738, 741, 743, 744, 746, 747, 751, 756 rehabilitation, 224 reinforcement material, 624, 628 resistance bacteria, 99 risk analysis, 671, 672, 673 risk mitigation, 671, 672, 676 river discharge, 364, 365, 369, 372, 373, 374, 375, 376, 377, 378, 379 rough set, 758, 760, 762, 763, 765, 766, 767, 769, 771, 774, 775

S

Sacramento Catchment Model, 364, 372, 373 safety factor, 607, 609, 611, 618, 621 screening efficiency per unit time, 346, 347, 352, 353, 354, 355, 357, 359, 360, 361, 362 seawater, 99, 100, 101, 103, 104, 107 seepage, 566, 567, 568, 569, 573, 574, 575, 576 settlement, 516, 518, 521, 522, 523, 525, 526, 527, 533 Siah-Bisheh Dam, 516, 518, 519 silicon carbide, 624, 625, 627, 628, 629, 631, 632, 633 simulation, 870, 871, 874 simultaneous forecasting, 434, 436, single-layer lattice shell, 141, 142, 143, 145, 146, 148, 152, 155, 156 skin detection, 493, 494, 495, 498, 500, 502, 506, 511, 512, 513, 514, 515 skin model, 493, 494, 495, 506, 508, 514, 515 sky image, 479, 481, 482, 483, 488 slabs, 778, 780, 781, 782, 788, 790, 791, 792, 793, 794 small strain measurement, 53, 55, 60 SO2, 240, 241, 243, 250, 251, 252, 253, 255 soil, 99, 100, 101, 102, 103, 104, 106, 107 solar energy, 479, 480, 482 solar-powered unmanned aerial vehicle, 382 space truss, 141, 144, 147, 152, 155, 156 speeding behavior, 607, 608, 611, 619,620

spray-pyrolysis, 240, 241, 242, 243, 246, 252 starter, 832, 833, 836, 837, 838, 839 steady state, 797, 799, 802 steel arch bridge, 392, 395, 398 step topography, 737, 738, 747, 756 stiffening, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156 stiffness, 224, 227, 228, 229, 230, 231, 234, 237 storage, 832, 833, 834, 835, 838, 839 stress characteristics, 420 structured triglyceride, 87, 88, 89, 90, 91, 92, 93, 95 Supplementary cementitious material, 856 surface roughness, 635, 636, 637, 645, 646 systematic framework, 272, 275

T

Taguchi orthogonal method, 650, 651, 654, 657, 668 tapioca wastewater, 841, 842, 843, 854 thermography technique, 40 thick carbon fiber reinforced polymer composites (CFRP), 21, 22, 23, 24, 26, 30, 36, 37, 39, 40 Timoshenko, 315, 317, 320, 323 torque coordination control, 720, 721, 727, 728, 731, 735 torque distribution, 720, 721, 722, 724, 725, 726, 727, 731, 732, 733, 735 traction, 797, 799, 804 turbine performance, 73, 74, 83 turbulent intensity, 685, 687, 690, 694, 695, 696, 697 turbulent model, 685, 689, 696

U

ultrafiltration, 202, 203, 212, 216, 217, 219 Umeda River, 548, 549, 550, 551, 553, 554, 555, 564 unascertained measure, 758, 759, 760, 761, 762, 763, 769, 771, 773, 774 unconfined compression test, 53, 65 unequal luminance, 493, 494, 503, 511, 514, 515 unsaturated soils, 566

V

vacuum drying, 832, 833, 834, 836, 837, 839 vertical axis turbine, 73, 82 vibration control, 315 vibration parameter, 346, 347, 359 vortex, 685, 691, 692, 693, 694, 696

W

warning, 461, 462, 463, 466, 467, 468, 473, 474, 476 water content, 566, 568, 574, 575 wear test, 624, 630 weather prediction, 461, 462, 463, 465, 466, 467, 470, 472, 475, 476 Wei River, 451 wet muck, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 307, 308, 310, 311, 312 Winkler foundation, 778, 779, 797

List of Reviewers

- 1. Mikrajuddin Abdullah (Department of Physics, Bandung Institute of Technology, Indonesia)
- 2. Emre Akarslan (Department of Electrical Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey)
- 3. Cinthia Alegre (Instituto de Carboquímica (CSIC), Spain)
- 4. Sergey V. Alekseenko (Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Russian Federation)
- 5. Mohammed A. Al-Osta (Department of Civil Engineering, King Fahd University of Petroleum & Minerals, Saudi Arabia)
- 6. Haşim Altan (Department of Architectural Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates)
- Sivakumar Anandan (Department of Civil Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia)
- 8. Herto Dwi Ariesyady (Environmental Technology and Management Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, Indonesia)
- 9. Arenst Andreas Arie (Department of Chemical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University, Indonesia)
- 10. Azmi Aris (Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia)
- 11. Rizki Armanto (Laboratory of Building Physics and Acoustics, Engineering Physics Research Group, Institut Teknologi Bandung, Indonesia)
- 12. Deepankar Kumar Ashish (Civil Engineering Department, Maharaja Agrasen Institute of Technology, Maharaja Agrasen University, Baddi, India)
- 13. Abdu F. Assomadi (Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember, Indonesia)
- 14. Mehdi Bahiraei (Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran)
- 15. Ioan Viorel Banu (Electrical Engineering Faculty, Gheorghe Asachi Technical University of Iasi, Romania)
- Gabriel K.P. Barrios (Department of Metallurgical and Materials Engineering, Universidade Federal do Rio de Janeiro, COPPE-UFRJ, Rio de Janeiro, RJ, Brazil)
- 17. Daniel Pinheiro Bernardon (Federal University of Santa Maria, 1000 Roraima Boulevardy, Santa Maria, Brazil)
- 18. Lalit Borana (Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, Indore, India)

- Jaouad Boukachour (Department of Computer Science, University of Le Havre, France)
- 20. Irsan Soemantri Brodjonegoro (Offshore Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 21. Bambang Budiono (Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- Giuseppa Buscaino (National Research Council Institute for Coastal Marine Environment, Capo Granitola (IAMC-CNR), Italy)
- 23. N. S. Caetano (LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto (FEUP), Portugal)
- 24. Aires Camões (CTAC, Department of Civil Engineering, School of Engineering, University of Minho, Portugal)
- Rosalia Camporeale (Dept. of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Viale Orabona, 4, Bari, 70125, Italy)
- Giuseppe Cantisani (Department of Civil, Constructional and Environmental Engineering, University of Rome La Sapienza, Via Eudossiana 18, Rome 00184, Italy)
- Mozammel A. Chowdhury (School of Computing and Mathematics, Charles Sturt University, Australia)
- 28. Leszek Chybowski (Faculty of Marine Engineering, Maritime University of Szczecin, Szczecin, 70-500, Poland)
- 29. Alessio Cislaghi (Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Italy)
- 30. Bart Craeye (University of Antwerp, Faculty of Applied Engineering, EMIB Research Group, Antwerp, Belgium)
- 31. Siti Asmah Daud (Faculty of Engineering, Universiti Teknologi, Seri Iskandar, Perak, 32610, Malaysia)
- 32. Hary Devianto (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia)
- 33. Teresa Donateo (Dept. of Engineering for Innovation, University of Salento, Lecce, Italy)
- 34. Estiyanti Ekawati (Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 35. Frederik Elskamp (Mechanical Process Engineering and Solids Processing, Technische Universität Berlin, Germany)
- Carlos Enrique Schvezov (Instituto de Materiales de Misiones (IMAM), Universidad Nacional de Misiones-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina)
- 37. Hossein Faraji (Robotics Program, College of Engineering, Oregon State University, United States)

- 38. Marisol Faraldos (Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Marie Curie 2, Madrid, 28049, Spain)
- 39. Paulina Faria (CERIS and Dep. Civil Engineering, FCT, NOVA University of Lisbon, Caparica, 2829-516, Portugal)
- 40. Hamed Fazlollahtabar (Department of Industrial Engineering, Sharif University of Technology, Iran)
- 41. Steve A. Fotios (School of Architecture, University of Sheffield, Sheffield, United Kingdom)
- 42. Camilo Franco (Grupo de Investigación en Fenómenos de Superficie Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Colombia)
- 43. Tien Fang Fwa (School of Highway, Chang'an University, China)
- 44. M. Gaiceanu (Department of Control Systems and Electrical Engineering, University Dunarea de Jos Galati, Galați, Romania)
- 45. Buntara S. Gan (Department of Architecture, College of Engineering, Nihon University, 1-Nakagawara, Koriyama, Fukushima, Japan)
- 46. Mohammad Ghashghaee (Department of Process Design, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, Iran)
- 47. Giosuè Giacoppo (CNR, Institute for Advanced Energy Technologies "Nicola Giordano", Italy)
- 48. Rajesri Govindaraju (Department of Industrial Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung,Indonesia)
- 49. Misri Gozan (Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Indonesia)
- 50. Hendra Grandis (Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Indonesia)
- 51. Zhongguo Guan (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University,)
- 52. Leonardo Gunawan (Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 53. Iwan K. Hadihardaja (Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 54. Syamsul Hadi (Department of Mechanical Engineering, Universitas Sebelas Maret, Indonesia)
- 55. Shouyi Han (School of Electrical and Information Engineering, Jiangsu University, China)
- 56. Yunendar Aryo Handoko (Mechanical Design Research Group Faculty of Mechanical and Aerospace Engineering Institut Teknologi Bandung, Indonesia)
- 57. Nuraini Rahma Hanifa (Research Center for Disaster Mitigation, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Indonesia)

- 58. Dhemi Harlan (Research Division of Water Resources Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 59. Yanuar Haryanto (Department of Civil Engineering, Faculty of Engineering, Jenderal Soedirman University, Indonesia)
- 60. Bayu Hendradjaya (School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia)
- Hongweon Lee (Department of Biotechnology Process Engineering, University of Science and Technology (UST), South Korea)
- 62. Ya-Ting Hsieh (Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Taiwan)
- 63. Thanh Canh Huynh (Department of Ocean Engineering, Pukyong National University, Busan, South Korea)
- 64. Tommy Ilyas (Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia)
- 65. Yuli Setyo Indartono (IUTB Center of New and Renewable Energy Development, Institut Teknologi Bandung, Indonesia)
- A.Fauzi Ismail (Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia,)
- 67. Jaronie Mohd Jani (Institute of Product Design and Manufacturing, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia)
- 68. Yang Jiang (School of Materials Science and Engineering, Hefei University of Technology, China)
- 69. Sandeep S. Joshi (Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, India)
- 70. Annisa Jusuf (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 71. Supriya Karmakar (Electrical and Computer Engineering Technology, Farmingdale State College SUNY, Farmingdale, NY, United States)
- 72. Sutrasno Kartohardjono (Intensification Process Laboratory, Department of Chemical Engineering, Universitas Indonesia, Indonesia)
- 73. Nerantzis Kazakis (Aristotle University of Thessaloniki, School of Geology, Lab. of Engineering Geology and Hydrogeology, Thessaloniki, 54124, Greece)
- 74. M. Adam Khan (Mechanical Engineering Centre for Surface Engineering, Kalasalingam University, Krishnankoil, India)
- 75. Manoj Khandelwal (Faculty of Science and Technology, Federation University Australia, PO Box 663, Ballarat, VIC 3353, Australia)
- 76. Byoungho Kim (Division of Electrical Engineering, Hanyang University, South Korea)
- 77. Ali Koçak (Department of Civil Engineering, Yildiz Technical University, Turkey)

- 78. Miroslav Kocifaj (Slovak Academy of Sciences, Institute of Construction and Architecture, Bratislava, Slovakia)
- Dana Koňáková (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
- 80. Sugeng Krisnanto (Geotechnical Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia))
- 81. Shashi Kumar (Department of Mechanical Engineering, Coimbatore Institute of Technology, India)
- 82. Futoshi Kurisu (Research Center for Water Environment Technology, School of Engineering, University of Tokyo, Japan)
- 83. Adit Kurniawan (School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia)
- 84. M. Syahril B. Kusuma (Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 85. Li-Ting Lee (Dept of Materials Science and Engineering, Feng Chia University,
- 86. Dianika Lestari (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 87. Fabio letto (Department of Biology, Ecology and Earth Science, Università della Calabria, Italy)
- 88. Zeyu Li (School of Electric Power, South China University of Technology, China)
- 89. Govindaraj Magudeeswaran (Department of Mechanical Engineering, PSNA College of Engineering and Technology, India)
- 90. Hassan Mahani (Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, Netherlands)
- 91. Andi Isra Mahyuddin (Mechanical Design Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 92. Dave Mangindaan (Food Technology Department, Faculty of Engineering, Bina Nusantara University, Indonesia)
- 93. Jolanta Marszałek (Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, Poland)
- 94. Osama A. Marzouk (College of Engineering, University of Buraimi, Oman)
- 95. Sayyed Majid Mazinani (Faculty of Engineering, Imam Reza International University, Iran)
- 96. Yaqeen S. Mezaal (Medical Instrumentation Engineering Department, Al-Esraa University College, Iraq)
- 97. Rasoul Mirabbasi (bDepartment of Water Engineering, Faculty of Agriculture, Shahrekord University, Iran)
- 98. Mehdi Moeinaddini (Centre for Innovative Planning and Development (CIPD), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Malaysia)

- 99. Behnam Mohammadi-Ivatloo (Faculty of Electrical and Computer Engineering, University of Tabriz, Iran)
- 100. Manidipto Mukherjee (Mechanical Engineering Department, SRM Institute of Science and Technology, SRM University, India)
- Dino Musmarra (Dipartimento di Ingegneria, Università degli Studi della Campania "L. Vanvitelli", Via Roma 9, Aversa, CE 81031, Italy)
- 102. Linlong Mu (Department of Geotechnical Engineering, Tongji University, China)
- 103. Nasser Najibi (NOAA-Cooperative Remote Sensing Science and Technology Center (NOAA-CREST), United States)
- 104. Moeen Nazari (School of Civil Engineering and Environmental Science, The University of Oklahoma, United States)
- 105. Chengyee Ng (Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Malaysia)
- 106. Sanjay S. Nimbalkar (School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)
- 107. Raheleh Nowzari (Department of Mechanical Engineering, Istanbul Aydin University, Turkey)
- 108. Ignatius Pulung Nurprasetio (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 109. Aleksei Obrosov (Physical Metallurgy and Materials Technology, Brandenburg Technical University, Germany)
- 110. Hayati Olgun (Solar Energy Institute, Ege University, Turkey)
- 111. Sibel Özilgen (Department of Gastronomy and Culinary Arts, T.C. Yeditepe Universitesi, Turkey)
- 112. Viorel Paleu (Mechanical Engineering Faculty, Technical University Gheorghe Asachi of Iaşi, Romania)
- 113. Dragan Pamucar (Department of Logistics, University of Defence, Military Academy, Serbia)
- 114. Sudip Pandey (Department of Physics, Southern Illinois University, United States)
- 115. Santiago Pindado (Instituto Universitario de Microgravedad "Ignacio Da Riva" (IDR/UPM), ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Spain)
- 116. Arun C.S.V. Prasad (Department of Civil Engineering, Indian Institute of Technology (BHU), India)
- 117. Aditya Putranto (School of Chemistry and Chemical Engineering, Queen's University Belfast, United Kingdom)
- 118. Lorenzo Putzu (Department of Electrical and Electronic Engineering, University of Cagliari, Italy)
- 119. Xiangyun Qing (East China University of Science and Technology, China)
- 120. Shehata E. Abdel Raheem (Department of Civil Engineering, College of Engineering, Taibah University, Saudi Arabia)

- 121. Hassan Rashidi (Allameh Tabataba'i University, Department of Mathematics and Computer Science, Iran)
- 122. Diego Ravazzolo (Hydraulic and Environmental Engineering Department, Pontificia Universidad Católica de Chile, Chile)
- 123. Mohammad Razif (Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Indonesia)
- 124. Lara Rebaioli (Consiglio Nazionale delle Ricerche, Institute of Industrial Technologies and Automation, Italy)
- 125. José Miguel Rodrigues (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001, Portugal)
- 126. Piyatida Ruangrassamee (Dept. of Water Resources Engineering, Faculty of Engineering, Chulalongkorn Univ., Thailand)
- 127. Abd Allah Sabry (Institute of Seismology and Volcanology, Faculty of Science, Hokkaido University, Japan)
- 128. Salmiati (Centre for Environmental Sustainability and Water Security, Universiti Teknologi Malaysia, Malaysia)
- 129. Singgih Saptadi (Department of Industrial Engineering, Diponegoro University, Indonesia)
- 130. Wichuda Satiennam (School of General Education, Institute of Social Technology, Suranaree University of Technology, Thailand)
- 131. C. Puthiya Sekar (Department of Civil Engineering, National Engineering College, India)
- 132. Umer Hameed Shah (School of Mechanical Engineering, Pusan National University, South Korea)
- 133. Mohammed Saiful Alam Siddiquee (Civil Engineering Department, King Abdulaziz University, Saudi Arabia)
- 134. Indra Sidi (Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 135. Santiago Silvestre (MNT Group, Electronic Engineering Department, Universitat Politécnica de Catalunya (UPC) BarcelonaTech, Spain)
- Ravi Singh (Department of Industrial & Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, India)
- 137. Johnner Sitompul (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 138. Riaan Stopforth (Mechatronics and Robotics Research Group Bio-Engineering Unit, Stopforth Mechatronics, Robotics and Research Lab, University of KwaZulu-Natal, South Africa)
- 139. Alison Subiantoro (Department of Mechanical Engineering, University of Auckland, New Zealand)

- 140. Sukrasno (School of Pharmacy, Institut Teknologi Bandung, Indonesia)
- 141. Sung Woo Moon (Department of Civil and Environmental Engineering, Nazarbayev University, Astana, Kazakhstan)
- 142. Yuyong Sun (College of Engineering and Architecture, Tongling University, China)
- 143. Rochim Suratman (Material Engineering Department, Institut Teknologi Bandung, Indonesia)
- 144. Isti Surjandari (Department of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia)
- 145. Hadi Sutanto (Department of Manufacturing Engineering, Atma Jaya Catholic University, Indonesia)
- 146. Arie Dipareza Syafei (Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Indonesia)
- 147. Abbasali TaghaviGhalesari (Faculty of Civil Engineering, Babol University of Technology, Iran)
- 148. Hiroshi Takagi (School of Environment and Society, Tokyo Institute of Technology, Japan)
- 149. Yuya Takahashi (Department of Civil Engineering, The University of Tokyo, Japan)
- 150. Fumio Tatsuoka (Department of Civil Engineering, Tokyo University of Science, Japan)
- 151. M. Tawalbeh (Sustainable and Renewable Energy Engineering Department, University of Sharjah, United Arab Emirates)
- 152. Yulinah Trihadiningrum (Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Indonesia)
- 153. Eirini Eleni Tsiropoulou (Department of Electrical and Computer Engineering, University of New Mexico, United States)
- 154. I. K.A.P. Utama (Department of Physics Engineering, Institute of Technology Sepuluh Nopember, Indonesia)
- 155. Huilong Wang (Department of Chemistry, Dalian University of Technology, China)
- 156. Bin Wang (State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, China)
- 157. Ridho Kresna Wattimena (Laboratory of Geomechanics & Mining Equipment, Department of Mining Engineering, Institut Teknologi Bandung, Indonesia)
- 158. Satrio Wicaksono (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 159. Djedi S. Widarto (Upstream Technology Centre, PT Pertamina (Persero), Indonesia)
- 160. Pramujo Widiatmoko (Department of Chemical Engineering, Institut Teknologi Bandung, Indonesia)
- 161. Sri Widiyantoro (Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Indonesia)

- 162. Subbarao Yelisetti (Department of Physics and Geosciences, Texas A&M University-Kingsville, United States)
- 163. Shi Yin (Department of Mechanical Engineering, The University of Hong Kong, Hong Kong)
- 164. Ángel Yustres (Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Spain)
- 165. Yan-Song Zhang (Department of Chemical Engineering, National Cheng Kung University, Taiwan)
- 166. Peng Zhang (School of Water Conservancy and Environment, Zhengzhou University, China)
- 167. Tao Zhang (Starkey Hearing Technology, United States)
- 168. Caihui Zhu (State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Areas, Xi'an University of Technology, China)

Journal of Engineering and Technological Sciences Guidelines for Author

1. Standard of reporting

Authors should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. A paper should contain sufficient detail and references to permit others to replicate the work. Fraudulent or knowingly inaccurate statements constitute unethical behavior are unacceptable. Professional publication articles should also be accurate and objective, and editorial 'opinion' works should be clearly identified.

2. Exclusivity of work

The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others this should be appropriately cited or quoted. Plagiarism takes many forms, from 'passing off' another's paper as the author's own paper to copying or paraphrasing substantial parts of another's paper (without attribution), to claiming results from research conducted by others. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behaviour and is unacceptable. In general, an author should not submit for consideration in another journal a previously published paper. We consider for publication from conference paper if it is only an extended version of conference paper with at least 30% of new material.

3. Hazards and Human or Animal Subjects

If the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. If the work involves the use of animal or human subjects, the author should ensure that the manuscript contains a statement that all procedures were performed in compliance with relevant laws and institutional guidelines and that the appropriate institutional committee(s) has approved them. Authors should include a statement in the manuscript that the informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

4. Authorship of the Paper and Copyright

Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported work. All those who have made significant contributions should be listed as co-authors. Whilst those who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. The corresponding author should ensure that all appropriate and inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. No manuscript can be published unless accompanied by a signed publication agreement, which serves as a transfer of copyright from author to publisher. A copy of that agreement is required after the paper is accepted

5. Acknowledgement

Proper acknowledgment of the work of others must always be given. Authors should cite publications that have been influential in determining the nature of the reported work. Information obtained privately, as in conversation, correspondence or discussion with third parties, must not be used or reported without explicit, written permission from the source. Information obtained in the course of confidential services, such as refereeing manuscripts or grant applications, must not be used without the explicit written permission of the author of the work involved in these services.

6. Disclosure Requirements

Author when submitting a manuscript, must disclose any meaningful affiliation or involvement, either direct or indirect, with any organization or entity with a direct financial interest in the subject matter or materials discussed (for example, employment, consultancies, stock ownership, grants, patents received or pending, royalties, honoraria, expert testimony). These kinds of financial involvement are fairly common, unavoidable, and generally do not constitute a basis for rejecting a manuscript. Specifics of the disclosure will remain confidential. If deemed appropriate by the Scientific Editor, a general statement regarding disclosure will be included in the Acknowledgment section of the manuscript.

7. Errors in Published Works

When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. If the editor or the publisher learns from a third party that a published work contains a significant error, it is the obligation of the author to promptly retract or correct the paper or provide evidence to the editor of the correctness of the original paper.

8. Disclaimer

Opinions expressed in articles published in the Journal of Engineering and Technological Sciences are those of the author(s) and do not necessarily represent opinions of the Bandung Institute of Technology (ITB). The Journal of Engineering and Technological Sciences does not guarantee the appropriateness for any purpose of any method, product, process, or device described or identified in an article. Trade names, when used, are only for identification and do not constitute endorsement by Journal of Engineering and Technological Sciences.

9. Manuscript preparation

Use the English language and the SI system (Système International d'Unités, often referred as "International Units") for measurements and units. Manuscript in MS Word or PDF format (generated from MS Word) is to be submitted online through http://journals.itb.ac.id/index.php/jets. The length of manuscript is expected not to exceed 20 printed pages (single space) including abstract, figures, tables and references. An abstract between 100 and 200 words describes the significance of manuscript should be included. The authors should supply 5-10 keyword or phrases that characterizes their manuscript. Use 11 pt Times New Roman fonts for body of the text with 1.0 line spacing between lines. The references should be numbered consecutively in the order of their appearance and should be complete, including authors' initials, the title of the paper, the date, page numbers, and the name of the sponsoring society. Please compiles references as shown in the examples below. Figures are printed in black & white, while color figures are only available online. Adjust the size of figures and tables as they will be appeared. All figure captions should be legible, minimum 8 point type. For all equations, use either Microsoft Equation Editor or MathType add-on. Equations are numbered consecutively in parenthesis, e.g. (1), and set at the right margin.

Reference examples:

- [1] Sutasurya, L.A. & Riyanto, B., Title of Paper, Name of Journal, 8(1), pp. 20-25, Dec. 2005. (Journal)
- [2] Sutasurya, L.A., Handojo, A. & Riyanto, B., Title of book, ed. 2, Publisher, 2007. (Book)
- [3] Williams, J., Name of Paper, Name of Book, Name of the editor(s), eds., Publisher, pp. 67-69, 2006. (Book with paper title and editor)
- [4] Suharto (ed), Title of Paper, Name of Proc., pp. 5-10, 2008. (Conference Proceedings)
- [5] Name of the author(s), Title of paper (if available), Organization, URL Link, (1 April 2011). (URL Link)
- [6] Nicole, R., Title of Paper, Name of Journal, submitted for publication. (Pending publication)
- [7] John, K., Title of Paper, unpublished. (Unpublished manuscript)
- [8] Rashid, L., *Title of Dissertation*, PhD dissertation, Name of Dept., Name of Univ., City, 2010. (Thesis or Dissertation)
- [9] Jenny, P., Name of Institution, City, personal communication, 2010. (Personal communication)
- [10] Name of the author(s), *Title of Technical Report*, Technical Report TR-0334 (34-56), Name of Institution, City, Dec. 2009. (Technical report with report number)