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Highlights:  

 6.5-53 µm MPs were dominant (56±14 p/L) in all the tap water samples tested. 

 Fibers dominated (58%), followed by fragments (37%) and films (5%). 

 Major polymers detected for ≥ 300 µm particles: PE, PVC, PET, PA, PTFE, PP, and 

PAM. 

 Ingestion of smaller-sized MPs by humans, especially fibers, causes potential health 

risk as there may be cellular uptake. 

Abstract. In a period when MP contamination of drinking water is a great concern, 

this study focused on the size- and morphology-based count, and polymeric 

identification of plastic particles in tap water sourced from Thailand. A total of 45 

human consumable samples (each 1 L) were collected at Thammasat University. 

The average MP counts sorted by Nile Red tagging were 56.0±14.0 p/L (6.5-53 

µm) and 21.0±7.0 p/L (53-300 µm), while those found by optical microscopic 

observations were 13.0±5.0 p/L (300-500 µm) and 6.0±3.0 p/L (≥ 500 µm). A 

significantly high MP amount was observed in the 6.5-53 µm fraction. Fibers 

dominated in all samples, accounting for 58% of the particle count. Most ≥ 300 

µm particles tested by ATR-FT-IR spectroscopy were confirmed to be polymeric, 

identified as PE, PVC, PET, PA, PTFE, PP, and PAM. These particles may have 

escaped from the treatment plant or were added along the water distribution 

network. Since MPs in drinking water constitute a potential health risk by 

exposing humans to direct plastics intake, MP contamination in water supply 

systems should be controlled.  

Keywords: ATR-FT-IR spectroscopy; micro-plastics (MPs); Nile Red; optical 

microscope; tap water. 

1 Introduction 

MP contamination of aquatic systems is a serious environmental issue that leads 

to chemical and ecological hazards (Li, et al. [1], GESAMP [2]). Water bodies 

are largely MP-contaminated due to mismanaged plastic debris disposal and 

through wastewater discharge (Ziajahromi, et al. [3]). MPs are also found in 

drinking water sources, which is an emerging concern in this field. Investigating 
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MPs in tap water is required to understand their pathways in the water supply 

system. Moreover, consumption of MP-contaminated drinking water exposes 

humans to direct and long-term plastic intake (Li, et al. [1]). Investigations on 

this matter have been conducted in Europe and the United States, but not in the 

Asian and African regions.  

Providing potable water is a worldwide challenge. Knowing the size- and 

morphology-based contamination levels of MPs in human-consumable water is 

important due to their size-and shape-dependent toxicity. Kosuth, et al. [4] 

reported anthropogenic particles in 81% of 159 globally sourced tap water 

samples with an average of 5.45 p/L in the 0.1-5 mm fraction. The current study 

analyzed ≥ 6.5 µm plastics in tap water from Thailand and quantified the MPs, 

focusing on smaller-sized particles.  

The analysis was based on fluorescent tagging with Nile Red (6.5-300 µm) and 

optical microscopic observations, followed by ATR-FT-IR spectroscopy 

(≥ 300 µm). The study had two objectives: 1) counting the ≥ 6.5 µm MPs based 

on size and morphology; 2) identification of the polymer types among the sorted 

≥ 300 µm particles. The findings are helpful in informing the public and 

authorities of the status of MP contamination in municipal drinking water in 

Thailand and should prompt relevant parties to take action for minimizing the 

contamination level. 

2 Methodology 

2.1 Sample Collection 

Tap water, distributed along PVC pipelines, was collected from 5 locations at 

Thammasat University on 5 sampling days in April 2019. At each location, 3 

samples (1 L each) were collected at 6-hour intervals in triplicate. Accordingly, 

9 L of tap water was collected per location, so the total sample volume was 45 L. 

A tap was kept open and water was allowed to flow for 1 minute. A bottle 

(DURANTM clear glass laboratory bottle) was rinsed thrice with tap water and 

then filled with tap water, after which the opening was wrapped with aluminum 

foil and capped tightly.  

Aluminum foil was used to avoid the plastic contamination that could occur by 

the contact between the polypropylene screw cap and the sample. The samples 

were stored in a refrigerator at 4 °C until processing to avoid thermal impact. 

Samples from each sampling event were processed within 24 hours after storage. 

Table 1 summarizes the details of the sampling events performed at each location. 
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Table 1 Sampling events at Thammasat University (Rangsit campus), Thailand. 

Location Purpose 
Sampling events per day 

1 (07:00) 2 (13:00) 3 (19:00) 

Green canteen (L1) Drinking/cooking 1 L × 3 1 L × 3 1 L × 3 

TU hospital (L2) Drinking/cooking 1 L × 3 1 L × 3 1 L × 3 

SIIT canteen (L3) Drinking/cooking 1 L × 3 1 L × 3 1 L × 3 

TSE canteen (L4) Drinking/cooking 1 L × 3 1 L × 3 1 L × 3 

SC canteen (L5) Drinking/cooking 1 L × 3 1 L × 3 1 L × 3 

2.2 Filtration, Size Fractionation, and Nile Red Staining 

The samples were filtered through 500 µm, 300 µm, 53 µm sieves, and 0.45 µm 

cellulose nitrate membrane filters (Sartorius Stedim Biotech GmbH, Germany, 

45 mm). Accordingly, they were fractionated into 4 size categories: ≥ 500 µm, 

300-500 µm, 53-300 µm, and 6.5-53 µm. Residue on the 500 µm and 300 µm 

sieves was rinsed off with deionized water, reconstituted into beakers, vacuum 

filtered through a 0.45 µm gridded membrane filter, and dried at room 

temperature. The remaining samples for the 53 µm sieve and 0.45 µm membrane 

filters were similarly rinsed off with deionized water and reconstituted into 100-

150 mL samples for subsequent staining with Nile Red dye.  

The method of Nile Red tagging was conducted as per Maes, et al. [5]. Nile Red 

(Nile Blue a Oxazone, Sigma Aldrich, GmbH, Germany) fluorescent dye was 

dissolved in methanol (PGII, Ajax Finechem, Thermo Fisher Scientific, NZ) to 

prepare a 1 mg/mL of stock solution. The stock solution was injected into each 

sample to get a working concentration of 10 μg/mL. After incubating the samples 

at 30 °C for 30 minutes, they were vacuum filtered through the same filters used 

for optical microscopy, and dried at room temperature prior to analysis. 

2.3 Enumeration  

Visual sorting using an optical microscope (Olympus CX41, Philippines) was 

employed for the 300-500 µm and ≥ 500 µm fractions. Particles were observed 

under a 4× to 40× objective and 10× eyepiece, counted, and sorted according to 

morphology (fibers, fragments, and films). Nile Red stained filters of 6.5-53 µm 

and 53-300 µm were each divided into 4 equal segments of 12 × 12 mm2 to 

represent 4 quadrants of the filter, and scanned segment-wise by a fluorescence 

microscope (GE Healthcare, Delta Vision Elite, USA) under a 4× to 20× objective 

and 10× eyepiece. A DAPI (4’, 6-diamidino-2-phenylindole) filter was used to 

detect the Nile Red tagged particles that clearly fluoresced in blue against a dark 

field (excitation: 390/18 nm, emission: 435/48nm).  

Nile Red shows a preferential adsorption for polymeric particles relative to 

common organic and inorganic environmental contaminants (Maes, et al. [5]). 
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This method of Nile Red staining has been validated by FT-IR analysis to verify 

the polymeric content of the fluorescing particles (Erni-Cassola, et al. [6]). As 

per this latest evidence, Nile Red can be used for rapid detection of smaller-sized 

MPs in tap water. Based on the pixel size that could be imaged under the lowest 

magnification (4× objective), the lower size boundary of the particles was set to 

6.5 µm. Each scanned segment was analyzed by the ImageJ software (version 

1.52n) to count the number of particles and sort the particles into fibers, 

fragments, and films. The segment-based particle count was totaled for the whole 

filtered area. All quantified results are presented as particles per liter (p/L). 

2.4 ATR-FTIR Analysis of ≥ 300 µm Particles 

For polymer-identification, specimens from the 300-500 µm and ≥ 500 µm 

fractions were hand-picked and analyzed by ATR-FT-IR spectroscopy (Nicolet 

iS50, Thermo Fisher Scientific, USA) in the 400-4000 cm-1 spectral range at 8 

cm-1 resolution for 128 scans. The background data were collected before every 

sample spectrum. The number of particles analyzed varied among the filters, 

depending on the feasibility of manually picking and transferring the particles 

onto the specimen-holder of the spectrometer.  

Unknown spectra of the specimens were interpreted by comparison against the 

critical vibrational bands of the reference spectra and database matches in 

OMNIC 8.0 (HR Hummel Polymers & Additives, ≥ 0.60 match factor). Because 

most of the particles in the 53-300 µm filters were not extractable and because of 

the analytical limits of the ATR-FT-IR spectrometer, spectroscopic confirmation 

was not applied for the 6.5-300 µm particles. Nile Red adsorption was used for 

the primary indication of the polymeric nature of those particles (Mason et al. 

[7]). 

2.5 Steps to Minimize and Control Background Contamination 

All samples were processed inside a fume hood with laminar airflow to minimize 

contamination by environmental fibers. Sieves, glassware, and other tools were 

cleaned with 50% ethanol (v/v, (de-ionized water)/(absolute ethanol > 99.8%), 

RCI Labscan limited) and rinsed with de-ionized water prior to usage. 

Immediately before every filtration step, the blank filter papers were observed 

through an optical microscope to ensure that they were free of contamination. 

Powder-free non-latex nitrile gloves and a laboratory cloak were worn during 

sample handling and analysis.  

For the quality control of the real samples, lab-blanks of de-ionized water were 

analyzed in triplicate for each sample set. One sample set refers to a group of 

samples collected from one location. De-ionized water was put into the same 1-

L glass bottles at the sampling point itself, brought to the laboratory, stored, and 
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treated the same as the real samples. Since the samples were analyzed in 5 sets, 

15 lab-blanks were processed. If MPs were detected in the lab-blanks, a 

correction for background contamination was applied to the final particle count 

in the corresponding real samples. 

3 Results and Discussion 

3.1 Microscopic Observations 

Figure 1 displays microscopic images of the MPs in the 300-500 µm and ≥ 500 

µm fractions, observed under an optical microscope, showing particles of several 

shapes (fibers, fragments, and films). As per Rocha-Santos & Duarte [8], 

fragments were defined as particles with a rounded, sub-rounded, angular, or sub-

angular shape. Films were defined as irregular-shaped (but thin) with mostly 

transparent particles, as reported by Zhou, et al. [9]. Different colored particles, 

such as blue, red, white, and transparent particles, were commonly noted. Particle 

color is a property that can be linked to a polymeric nature (Rocha-Santos & 

Duarte [8]) or additives that can leach from the MPs (Obmann, et al. [10]).  

 

Figure 1 Microscopic views of MPs observed under Olympus CX41 (10× 

eyepiece, 10× objective, scale bar = 50 µm): a) blue fiber; b) red fiber; c) and d) 

transparent fiber; e) brownish-transparent fragment; f) transparent film. 

Images of blue-fluorescent particles under the fluorescence microscope are 

shown in Figure 2. These particles were in the range of 6.5-300 µm and could not 

be effectively differentiated for morphology when observed under an optical 

microscope. Observations of the selected major polymer types under red 

(excitation: 542/27 nm, emission: 597/45 nm, TRITC (Tetramethylrhodamine) 

filter) and green (excitation: 475/28 nm, emission: 525/48 nm, FITC (Fluorescein 

isothiocyanate) filter) fluorescence, were largely influenced by background 

staining. Moreover, most of the polymers had a low fluorescent intensity, which 

disturbed clear particle visualization. Thus, blue fluorescence, which had a 

minimal background signal and generated a higher fluorescent intensity of the 
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major polymer types, was selected over red and green. The optical microscopic 

method with fluorescent tagging resulted in more convenient identification and 

counting of MPs. 

 

Figure 2 Blue-fluorescent particles observed under DV Elite (DAPI filter, 

excitation: 390/18 nm, emission: 435/48 nm): a) fragment (200×, scale bar = 25 

µm); b) film (200×, scale bar = 25 µm); c) fragment (40×, scale bar = 15 µm); d) 

fiber (200×, scale bar = 25 µm); e) fragment & fiber (40×, scale bar = 100 µm); f) 

film (40×, scale bar = 100 µm). 

3.2 Background Contamination 

Since MPs are ubiquitous in the environment, careful controls need to be in place 

during sampling, processing, and analysis. On average, 9.0±3.0 p/L, 7.0±3.0 p/L, 

4.0±3.0 p/L, and 2.0±1.0 p/L were found for the following size fractions: 6.5-53 

µm, 53-300 µm, 300-500 µm, and ≥500 µm respectively. Polyethylene (PE), 

polypropylene (PP), and polyamide (PA) were detected among the ≥ 300 µm 

particles. These counts represent external contamination, occurring from the 

sampling point until the end of the analysis. MPs in the lab-blank collected during 

a particular event were deducted from the direct particle count of the real sample 

corresponding to that sampling event. Nile Red staining of the 6.5-53 µm and 53-

300 µm particles involved a longer processing time than for the other samples, 

which only had to be filtered and stored for optical microscopic observation. As 

a consequence, the Nile Red stained samples were more exposed to 

environmental contamination than the other samples. Thus, when the time taken 

for sample processing and analysis was longer, it is reasonable to expect a higher 

background contamination in the real samples.  
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3.3 Size- and Morphology-based MP Count 

Figure 3(a) shows the MP count in the tap water samples, averaged across the 

four size categories. Considering the 45 tap water samples analyzed, 6.5-53 µm 

and 53-300 µm MPs were found in the range of 24.0-85.0 p/L and 8.0-32.0 p/L, 

respectively. The sample values were 4.0-22.0 p/L for the 300-500 µm fraction 

and 0-14.0 p/L for the ≥ 500 µm fraction. The highest MP amount was reported 

for the 6.5-53 µm fraction, which had a significantly higher mean (p < 0.05) than 

the mean MP counts for the other size categories. This could be due to the 

fragmentation of larger particles into smaller ones. Figure 3(b) illustrates the 

morphology-based classification of the MP count for the four size categories. 

Fibers and fragments were the most commonly found particle shapes in all 

samples, while films accounted for the minority. In each size fraction considered, 

the mean for fibers was significantly higher than that for fragments, at p < 0.05, 

implying dominance of fibers in the tap water samples.  

The overall fiber-count was found to be 55.0 p/L, comprising nearly 58% of the 

total particle count. Fragments (36.0 p/L) constituted 37%, with films (5.0 p/L) 

representing only 5%. Considering the total particle count per location, the 

samples from L1 (80.0 p/L) and L2 (92.0 p/L), which used a water filtration system 

(AQUA GUARD, AG-300, 2-column, carbon-resin) to filter the tap water at the 

point of usage, showed less contamination than the non-filtered tap water from 

L3 (102.0 p/L), L4 (101.0 p/L), and L5 (104.0 p/L). The mean values of the size-

based MP counts corresponding to L1 and L2 were significantly lower than those 

from the other locations. This is convincing evidence that the carbon-resin 

filtration facilitated MP reduction.  

Size and shape are major particle characteristics that influence MP uptake and 

translocation after particles are ingested (Wright & Kelley [11]). McCullough, et 

al. [12] have reported that micro- and nano-particles cross the intestinal epithelial 

barrier into bodily fluids and other sites. Wu, et al. [13] have studied the size-

dependent toxicity of MPs, focusing on the cellular uptake of polystyrene (PS) 

particles by human intestinal cells.  

Urban, et al. [14] found that PE particles of up to 50 µm translocate from lymph 

nodes to the liver and spleen, causing inflammatory and immune responses. The 

effects of the shape of polymeric carriers on the bio-distribution and cellular 

uptake are well described in encapsulation technology (Zheng & Yu [15]), which 

can be similarly applied to understand the susceptible shapes for cellular 

ingestion.  

As per Zheng & Yu [15], smaller sized fibers and spherical shaped particles with 

less volume are easily engulfed by cells during phagocytosis. In addition, the 
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prevalence of polymeric microfibers in lung cancer tissue biopsies has provided 

evidence that MPs in the form of fibers lead to higher cellular uptake (Wright & 

Kelley [11]). Hence, the high amount of fibers in these tap water samples 

constitutes a potential risk if they are ingested at a high dose. 

 

Figure 3 Average MP count: a) size-based; b) morphology-based. 

3.4 ATR-FT-IR Identification of ≥ 300 µm Particles 

Figure 4 shows the ATR-FT-IR spectra of a) blue fibers b) red fibers, and c) 

transparent fibers observed under the optical microscope, showing critical 

absorption peaks corresponding to polyvinylchloride (PVC), PE, and PP, 

respectively. Most of the blue and bluish-transparent particles were confirmed to 

be polyethylene terephthalate (PET), while the white, brown, and red particles 

were identified as PE, and the transparent particles as PP. Usually, in the analysis 

of environmental samples, MP researchers use their color for the preliminary 

identification of polymer type. For instance, they ascribe transparent items to PP, 

white particles to PE, and other opaque colors to low-density polyethylene 
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(LDPE) (Rocha-Santos & Duarte [8]). In this study, the results of the FT-IR 

analysis support the above color-based attributes that were assigned to plastic 

particles for preliminary identification. The overall polymer distributions for 300-

500 µm and ≥ 500 µm are shown in Table 2.  

 

Figure 4 ATR-FT-IR spectra of a) blue fibers: PVC; b) red fibers: PE; c) 

transparent fibers: PP. 

Out of 590 particles sorted from the 300-500 µm fraction, 272 were identified as 

polymeric particles, while 182 out of 279 particles were confirmed to be polymers 

in the ≥ 500 µm fraction. This manual sorting and subsequent identification of 

MPs by FT-IR spectroscopy involves a bias. Therefore, Koelmans, et al. [16] 
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have recently put forward several criteria to ensure the reliable assessment of 

polymer identity in MP research. For drinking water, if the pre-sorted particle 

number is > 100, it is recommended to identify at least 50%, with a minimum of 

100 particles (Koelmans, et al. [16]).  

In this study, the number of pre-sorted particles was > 100 for 300-500 µm and 

≥ 500 µm particles. These two fractions were analyzed with 46.1% and 65.2% 

identification rates, respectively, detecting more than 100 particles in both 

instances. Hence, the aforementioned criteria were amply met in the FT-IR 

identification. In both distributions, PE was found to be dominant, representing 

26.5% (300-500 µm) and 18.7% (≥ 500 µm) of the total particles tested by 

spectroscopy. PVC was the second-highest component with 19.1% (300-500 µm) 

and 18.1% (≥ 500 µm). PET, PA, PP, polyacrylamide (PAM), Teflon (PTFE), 

poly(methyl methacrylate) (PMMA), and PS were found in both size fractions. 

Apart from those, some ≥ 500 µm particles were identified as cellophane and 

polybutadiene. The reason for the dominance of PE, PVC, and PA is the abrasion 

of pipes and fittings in drinking water treatment plants and the water supply 

network that runs from the distribution tanks to the households, which are mainly 

made of PVC, PE, and PA (Mintenig, et al. [16]). PET and other polymers are 

more likely to contaminate the raw water that enters the treatment plants.  

The water for Thammasat University is supplied by a conventional water 

treatment plant that treats raw water from the Chao-Phraya River. A recent field 

study by Ericsson & Johansson [18] has shown MP pollution in the downstream 

Chao-Phraya River (Bangkok area), which is the prime entry-route of MPs into 

the treatment plant. There is a high possibility that those particles in the raw water 

are not entirely trapped by the treatment units and escape the plant along with the 

treated effluent. For example, PP and PS particles, which are relatively low-dense 

polymers, can easily escape with clarified water without undergoing 

sedimentation.  

Recent findings on PET and PP in treated water samples from several plants by 

Pivokonsky, et al. [19] support this assumption. Moreover, PAM, an anionic 

polyelectrolyte, was added to the clarification tanks after the alum dosage to 

enable flocculation, suggesting that the PAM in the tap water had contaminated 

the water during the treatment process. In addition, given the signs of positive 

background contamination of PE, PP, and PA, certain particles could be added 

from atmospheric fall-out during sampling, processing, and analysis. Regarding 

PE-, PS-, and PP-MPs, Wu, et al. [13] and Schirinzi, et al. [20] have confirmed 

their potential for cellular uptake. Thus, the amount of PE that was found in this 

study constitutes a potential risk that humans are exposed to by consuming MP-

contaminated water. 
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Table 2 Polymer distribution for 300-500 µm and ≥ 500 µm fractions. 

a) 300-500 µm fraction b) ≥ 500 µm fraction 

PE: 26.5% PTFE: 5.9% PE: 18.7% PAM: 6.0% 

PVC: 19.1% PAM: 5.9% PVC: 18.1% PMMA: 4.9% 

PET: 15.8% PS: 5.1% PA: 14.8% Cellophane: 3.8% 

PA: 10.3% PMMA: 4.4% PET: 13.7% Polybutadiene: 3.3% 

PP: 7.0% - PTFE: 7.1% PS: 2.7% 

- - PP: 6.6% - 

4 Conclusions 

All 45 tap water samples were found to contain particles of a polymeric nature, 

which were averaged across four size fractions: 6.5-53 µm (56.0 ± 14.0 p/L) and 

53-300 µm (21.0 ± 6.0 p/L), sorted by Nile Red tagging; and 300-500 µm (13.0 

± 5.0 p/L) and ≥ 500 µm (6.0 ± 3.0 p/L) sorted by optical microscopy. These 

results show the significantly high amounts of MPs in the lower size fractions. 

Fibers were found in high amounts in all size categories, constituting 58% of the 

total count, followed by fragments and films.  

From the ATR-FT-IR spectroscopy, PE, PVC, PET, PP, PTFE, PAM, and PA 

were mainly detected among the ≥ 300 µm particles. They possibly originated 

from the treatment plant, following the water distribution process. MPs were 

found in tap water that was filtered by carbon-resin filters at the point of usage. 

This shows that particles still contaminate water, irrespective of filtration. With 

the past evidence provided on the cellular uptake of MPs it is vital to extend the 

study of MP concentrations in the water supply system. Subsequently, potential 

pathways and health implications can be correlated, while developing methods to 

mitigate contamination. 
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