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Highlights:

e A collaborative intrusion detection network in a heterogeneous environment of IDS
with classification capability was developed.

e Lower processing time of acquaintance management by the use of a merge risk-
ordered acquaintance selection.

e  High accuracy of intrusion decision based on the IDS acquaintance feedback by the
use of multi-class risk-cost analysis in the acquaintance selection process.

Abstract. The collaborative intrusion detection network (CIDN) framework
provides collaboration capability among intrusion detection systems (IDS).
Collaboration selection is done by an acquaintance management algorithm. A
recent study developed an effective acquaintance management algorithm by the
use of binary risk analysis and greedy-selection-sort based methods. However,
most algorithms do not pay attention to the possibility of wrong responses in multi-
botnet attacks. The greedy-based acquaintance management algorithm also leads
to a poor acquaintance selection processing time when there is a high number of
IDS candidates. The growing number of advanced distributed denial of service
(DDoS) attacks make acquaintance management potentially end up with an
unreliable CIDN acquaintance list, resulting in low decision accuracy. This paper
proposes an acquaintance management algorithm based on multi-class risk-cost
analysis and merge-sort selection methods. The algorithm implements merge risk-
ordered selection to reduce computation complexity. The simulation result showed
the reliability of CIDN in reducing the acquaintance selection processing time
decreased and increasing the decision accuracy.
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The Multi-Class Risk-Cost Analysis for CIDN

1 Introduction

An intrusion detection system (IDS) is a technology that detects the existence of
computer intrusions [1]. It is an essential part of the defensive system in network
security. The detection system implements a signature based or anomaly based
detection method. The capability of IDS in detection, prevention, and response
capability has been investigated in Refs. [2,3]. However, with the growing
number of advanced attacks, attacks are getting harder to detect. One of the
reasons is that a single IDS has limited resources and knowledge to detect all
attacks [4], especially large, coordinated botnet attacks [5].

A proposal to effectively resolve this problem is by implementing a collaborative
intrusion detection network (CIDN), i.e., a collaboration framework among IDSs.
CIDNs are widely implemented and have been studied in cloud computing [6],
10T [7,8], blockchain [9], and big data [10]. The purpose of these studies was to
gain knowledge, information, and consultation among IDSs to improve IDS
performance. Consultation based CIDN is a type of collaboration by sending
consultation requests of observed data to be detected by the CIDN in order to
improve the overall detection accuracy of the CIDN. The acquaintance
management algorithm is a vital function of the framework. It selects the set of
IDS that leads to the lowest overall risk-cost by evaluating the trustworthiness of
each available IDS [11]. A greedy-selection-sort based algorithm was introduced
in [4,12] to optimize the selection process instead of brute-force based selection.
It uses a binary-based risk-cost case as the metric for trustworthiness in the
selection process.

However, the greedy-selection-sort-based acquaintance management algorithm
requires a relatively long acquaintance selection time when there is a large
candidate list. This is because the computational complexity of the algorithm is
0(n?) in a worst-case scenario and on average takes T(n * [) running time.
Moreover, our previous study [11] has shown that the use of a binary-based risk-
cost analysis may produce an inaccurate risk-cost for multi-class detection cases,
where the DDoS attack consists of more than one botnet or class of attack. This
can lead to an unreliable set of selected collaborators, resulting in lower decision
accuracy.

This research proposes an acquaintance management algorithm based on multi-
class risk-cost analysis to reduce the acquaintance selection time and improve the
accuracy of the risk-cost estimation. The proposed acquaintance management
algorithm implements an ordered risk-cost approach to reduce its complexity.
The trustworthiness of an IDS is evaluated by a multi-class risk-cost analysis to
obtain an accurate risk-cost estimation. The effectiveness of the proposed
acquaintance management algorithm was evaluated using the decision accuracy
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metric. The result showed that the proposed algorithm produces a more effective
set of acquaintances with higher decision accuracy in less selection time
compared to a comparative state-of-the-art algorithm.

This paper presents the following contributions. Firstly, this research developed
a complete framework to simulate the process of a consultation-based CIDN that
can simulate the flow of the detection process, collaboration updating, the
selection process, and the feedback aggregation decision of the CIDN in order to
improve its detection and classification accuracy. Secondly, this research
proposes an acquaintance management algorithm that optimally selects a set of
an acquaintances in less selection processing time with higher decision accuracy.
Thirdly, this research developed a risk-cost analysis method based on multi IDS
feedback by considering all possible consequences, including from wrong
response decisions.

2 Related Work

A collaborative intrusion detection network (CIDN) is an overlay network that
connects IDSs so that they can exchange information [4]. The collaboration
works in three modes, i.e., information, knowledge, and consultation. In
information mode, each IDS shares information about the detection result, such
as alerts [13] and IP level security logs for a higher prediction ratio in proactive
detection [14]. In knowledge mode, the new knowledge is shared among IDSs,
such as new clusters [15] and new attack behaviors [16]. In consultation mode,
the collaboration is done by sending consultation messages when the IDS has less
confidence in the detection prediction, such as in [4]. The collaboration can be
implemented in peer-to-peer [17], concentrated [18], and distributed [19]
topologies.

In consultation-based CIDNs there are several important challenges in
constructing an effective collaboration, such as collaboration management [20],
incentive-based resource management [21, 22], malicious node detection [23,24],
and consultation-request timing scenario [25]. The collaboration management
algorithm selects a set of acquaintance IDS, where the trustworthiness can be
estimated by several proposed evaluation parameters, such as satisfaction value
[26], intrusion sensitivity [27], and risk-cost [4,11,28].

In risk-cost-based collaboration management, the IDS selects a set of
acquaintances, resulting in the lowest overall risk-cost of the detection decision.
Ref. [29] started consultation-based IDN research by trust-management to
evaluate the behavior of IDN members. Its purpose is to select which IDS to
collaborate with in order to improve the accuracy of attack detection. However,
this study did not consider the possibility of rapid behavioral change as in
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malicious insider attacks. Ref. [28] proposed a consultation-based collaboration
by aggregating IDS detection feedback. Risk-cost analysis based on IDS output
was introduced to measure the trustworthiness of the IDS. In this case, an agent
manager sends a consultation request to some IDS detection agents. This was
studied further in Ref. [12], through collaboration management that not only
selects but also manages the relationship in the CIDN. A greedy-selection-sort-
based acquaintance management algorithm and binary risk-cost analysis were
proposed, resulting in a relatively long acquaintance selection time when there is
a large candidate list. This method potentially produces low decision accuracy
when used in multi-botnet attacks, as the batch of consultation messages may
consist of multi-class attacks. A recent study [11], proposed a multi-class risk-
cost analysis, which leads to higher decision accuracy for multi-class attacks.

3 System Architecture

3.1 CIDN framework

Suppose there is an environment consisting of i number of IDS, IDN
{IDS;,1DS,,IDS;, ..., IDS;}, parameterized by its performance, IDS =
[FP,FN,FoTP]. Viewed from a CIDN point of view there are: IDS caller
(IDS; € IDN), the IDS in search of acquaintance, and several called IDS(IDS; €
IDN;s # j), IDSs other than IDS,, that can potentially become IDS;
acquaintances. The roles of IDS; and IDS; are interchangeable, depending on the
updating period of each IDS. From the IDS; point of view, the available IDS; that
can collaborate with IDS; first enter the probation list of IDS;, P° =
{p1, 02,03, -p;}, P° S IDN , with P* = {IDN}/IDS;.

Acquaintance management in /DS evaluates the trustworthiness of each IDS; in
P*®. The goal is to select a set of IDS; that has the lowest risk-cost from the
acquaintance list. When the updating period arrives, the trustworthiness of IDS;
is evaluated by sending random test data X,y = {x1, x2,x3, ..., x}, where x is
traffic data, to P°. Each IDS; in P* then observes X, with its detection method.
The detection result Z js from each IDS; is then sent back to IDS,. Based on a set
of feedbacks Ugg = {Z37,75,Z5,..,Z7} from P%, the IDS; evaluates the
detection performance (H,F,FoTP) of each IDS;. When the performance
satisfies the ID S performance threshold, the IDS; is moved to candidate list C* =
{c1,¢0,C5,...,cp}, C5 S PS5,

However, not all IDS listed in C* will be included in the collaboration, because

the collaboration is looking for the lowest overall risk-cost of collaboration. Thus,
IDS; will be considered an acquaintance and included in acquaintance list A° =
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{ai,a;,a;,...,a;}; A° € C° when IDS; contributes to achieving the lowest
overall risk-cost of acquaintance list R(A). An illustration of this process is
shown in Figure 1.

IDS_3

Figure 1 CIDN acquaintance selection process.

The collaboration in consultation-based CIDN is manifested in the consultation
request of observed suspect data Xg,spect, 1.€ the. message CR (Xsuspect) from
IDS; to IDS; in acquaintance list A°. The messages communicated among CIDNs
are shown in Table 1. The sending of consultation requests is not carried out on
every observed data but based on the uncertainty of the IDSs classification
algorithm output. The classification output of any IDS can be analyzed from a
confusion matrix such as in Figure 2.

Table 1 Messages exchanged between IDS.

Messages Definition
Join, cquest Request from new ID; to ID S, to collaborate with
Xiest Test data sent from /DS to IDS;
Uiest Detection reply of X, from acquaintances to /DS
CRX sy spect) Observed data sent from IDS; to its acquaintances
CF (Ugyspect) Detection feedback of X spece sent from acquaintances to 1D S

The collaboration framework carries out four major functions. The first is
detection and classification, including feature extraction by the use of feature
selection and linear expansion; the second is the acquaintance management; the
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third is trust and consultation management; and the final function is making the
feedback aggregation decision. The proposed framework is depicted in Figure 3.

Predicted
Actual | Normal Attack A Attack B
Normal TN FP FP
Attack A FN TP FoTP
Attack B FN FoTP TP

Figure 2 Example of the classification confusion matrix.

Features Triangle area Class profile :
g —X T 8 —» P i Class profile
selection map generation

*—Thresho\d(H,FjP
Acquaintance " )
Acquaintance list
management
Profile C{i) i
v v
XTs Triangle area 5| Classification N Consultation L Feedbacks
map algorithm management aggregation

Figure 3 The framework of the proposed consultation-based CIDN model.

3.2 Acquaintance Management Algorithm

After receiving feedback items Uz from P, the IDSs selects the candidate list
by evaluating the feedback performance of Z; from each IDS;. From the available
candidate list, acquaintance selection is done by evaluating the IDS; in the
candidate list that result in the lowest overall risk-cost. The overall risk-cost is
estimated from the feedbacks risk-cost and the maintenance risk-cost.

This research proposes an acquaintance management algorithm to evaluate the
overall risk-cost of the acquaintance list. The acquaintances are selected in a
sequence of IDS;, starting from the one with the lowest risk-cost R(Zj). The
algorithm constructs the sequence by implementing a merge-sort method, which
on average yields O(n log log n) computation complexity. The present research
developed the algorithm based on the research in [30], which was proved capable
of providing high-quality candidates. The pseudo-code of the algorithm is
depicted in Algorithm 1.
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This research implements a feedback risk-cost analysis based on our previous
research [11]. The analysis is carried out by considering the risk-cost of all
consequence probabilities of the decision (3) taken by IDSs when given a set of
U’ feedback items from CIDN. The risk-cost value can be seen as the estimated
risk of cost or loss consequences when the system takes any decision according
to observed traffic such as in Eq. (1). When the U*® input is a set of feedback, the
risk value will depend on the marginal value of the parameters.

R(6) = (R(x = normal) + R(8|x = attack) @)

Algorithm 1. Acquaintance Management
1. atupdate event do
2. // send random X, to P
3./l receives Uipsy = {Z;} from IDS;e P
4. forallIDS; € P do

5 ift; > tmature then

6. P < P\ IDS;

7 if H; > H; and F; > F; then

8 C<CUIDS;

9. end if

10. end if

11. end for

12. A< {}

13. for all IDS; € C do

14. R; <« R(Z))

15. end for

16. [index] « sort(R;)

17. C" « SortIDS; € C according to index

18. fori=1to |C'| do

19. A< AUIDS;

20. if Riorq1(A) < T then
21 T « Rtotal(A)
22. 1l =|A4|

23. if | = l,,,,, then
24, j=1C"l+1
25. end if

26. else

27. A< A\IDS;

28. end if

29. end for

30. return A
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The parameter p = P[X = 1] is the prior probability of an attack happening in
the IDS. Decision § can be in the form of a no response when no attack is
detected (normal traffic) or a response when an attack is detected. The risk
analysis applies the product to several feedback items, |A|, from the IDS in the
acquaintance list {A}. The risk-cost analysis follows the consequences from all
possible decisions (8), as shown in Figure 4.

Report Response Condition Consequence
No Intrusion il
—>
No Response
Intrusion =
> L
0 | . o
No Intrusion
Response > 0
Right Response
No Alarm
Wrong Response
g hesp > L
; Ll |
No Intrusion
Alarm
ESE—
No Response | inymision
» L
No Intrusion = K
Response > 0
) Right Response
Intrusion
Wi R
rong Response L

Figure 4 The decision tree of the expected risk-cost from all possible decisions (8).

From each feedback Zi, the analysis gets information from a confusion matrix as
shown in Figure 2. The loss consequence occurs in two possible response
decisions, i.e. no_response and wrong_response, when intrusion occurs. A loss
consequence of ano_response decision occurs when the detector output is a false
negative (FN). A loss consequence of a wrong_response decision occurs when
the attack is wrongly classified by the IDS so that the wrong_response is not able
to stop the attack. This happens when the detector output is in false on true
positive (falseTP) condition. A cost consequence occurs when the detector
output is in false positive (FP) or true positive (TP) condition. However, this
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research only considered the cost consequence of false positive condition
responses. The risk-cost formula for all consequences is listed in Table 2.

Table 2 Expected risk-cost consequences of the detection output.

Detector Real Expected risk-cost decision
condition No Response Response
NoAlarm  No intrusion 0 C*FN=C(((1-F)(1-p)
Intrusion L((1-H)p) L((1 —H)p * falseFN /FN)
Alarm No intrusion 0 C*FP=C(F(1-p))
Intrusion L(H *p) L(H *p * falseTP /TP)

From Eq. (1) and Table 2, the following further analysis of risk-cost is obtained:

|A] 141
RW)=)  min (L*p]_[ H?(l—Hi)l-“>,<<C*(1—p>]_[ Ff”(l—Fi)l-“)
i=1 1

(2)
+ ( A false FNgl_a)false TP?))\

Lp| | HfQ-H)™ —
D FN&=9 Tp¢

In CIDN, the overall risk-cost is influenced by two concerns. Firstly, the
acquaintance risk-cost, which is the risk-cost of decisions from the obtained
acquaintance list feedback, R(U(A) = R(A). Secondly, the risk-cost due to the
maintenance of collaboration. The value of the maintenance risk-cost can be seen
from the number of resources allocated for the collaboration. The greater the
number of collaborators, the more resources will be allocated for the computation
and communication resources. For this reason, the risk-cost value of the
maintenance process is formulated as a function of acquaintance list size (|A4]).
Thus, the total risk-cost is obtained by summing the CIDN feedback risk-cost and
the maintenance risk-cost as follows:

Reotar = R(A) + (|A] * 6 3)

with @ = {0; if z=0(normal) 1; if z # 0 (attack)

4 Result and Analysis

This research applied supervised learning in the IDS detection method. The
complete feature selection and normal profile generation processes are presented
in [31] and [32]. The KDD Cup 99 dataset from [33] was applied to evaluate
our model. For the learning phase, the DDoS dataset from KDD Cup 99
kddcup.data 10 _percent was used as the basis for generating training data X. Tr.
The DDoS dataset in kddcup corrected was then used as the basis for testing
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dataset X. Ts, which was randomly generated in the testing phase. The simulation
parameters are shown in Table 3.

Table 3 Simulation parameters.

Parameter Value
lmin 1
Threshold(H,F) Based on IDS; performance
C
et 0.2
L
W (X¢es) 1000
Mature 0.5
tupdate 50
Xiest composition Random
(7] 0.001

A comparison between the proposed acquaintance management and a greedy-
selection-sort algorithm based on [12] was conducted in the analysis phase. The
comparison was done in terms of selection time, size of the acquaintance list |A|,
and accuracy of the feedback aggregation decision of acquaintance feedback
(finw (U)). The simulations were run within the scope of discrete event simulation
with time parameter ¢t symbolizing an activity [34].

The CIDN was modeled as IDS_caller (IDSs) and called_IDS (IDS;), where each
IDS was parameterized by FP, FN and FoTP. For the analysis of the acquaintance
management algorithm, 100 called IDS were generated in the IDN set to
represent the IDN environment. The analysis was done in four environments, i.e.
IDN; = [< 2%, < 2%, < 3%], IDN, = [< 2%,< 5%,3 < FoTP < 6%],
IDN3 = [< 2%,<5%,6 < FoTP < 9%], and IDN, = [< 2%, < 5%, = 9%].
An IDS caller was then generated for each environment, which was
parameterized by IDS.qj10r = [FP < 2, FN < 5,FoTP < 10]. The analysis was
done on the average of all IDS acquaintance management outputs.

4.1 Processing Time

The simulation result showed that the selection time of the proposed acquaintance
management algorithm was lower than comparison [12]. This is in accordance
with the algorithm’s complexity of O(n + nlogn+n) = O(n log log n) for

the proposed algorithm, compared to O (n @) = 0(n?) for comparison. In the

simulated scenario, the minimum number of acquaintances (l,,;, ) increased
along with the size of the candidate list ({,,;;, < n). With the proposed algorithm,
the minimum number of acquaintances (l,,;,) did not affect the selection
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processing time. This is because the selection iteration is executed only once. The
comparison is shown in Figure 5.

35 T T T T T T T T T T g

WL =£# scarol fung's cost in carol fung selection alg. 4
2 =@=our cost in our selection alg. o
e =4=*random selection alg. ﬁ/
Q 251 i
g »
& @

2 - -
) &
E g
= 7’
c 151 ,{} -
he: ol
© 2
& it ° -
[o) o &
A &

Acquaintance length (L)

Figure 5 Acquaintance selection processing time comparison.

4.2 The Influence of Environmental Performance

In a CIDN environment with high classification performance such as IDN; there
are more candidates and more combination options in acquaintance selection.
Thus, the selection does not require too many members to achieve a low risk-cost
value or high CIDN decision accuracy. However, in an environment with worse
performance, such as IDN, or IDN;, CIDN needs more called_IDS in the
acquaintance list to gain high decision accuracy. The number of candidates in the
candidate list also influences the obtained acquaintance list performance.

A smaller candidate list size leads to limited called_IDS options that can be
collaborated with to improve CIDN performance. Thus, it decreases the
acquaintance list size and the CIDN feedback decision accuracy, for example in
IDN,. The average acquaintance list size derived for every environment can be
seen in Figure 6 where Alg. YP is the proposed algorithm and Alg. CF is
comparison. The result is in line with the theoretical analysis discussed in the next
section.
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Acquaintance list size (IDS)

0

IDN_1 » _ -
BAlg. CF 1.952380952 1.857142857 2.419354839 2
BAlg. YP 2.333333333 3.25 5.193548387 4.5

Figure 6 Average acquaintance list size comparison.

From the accuracy performance result, the proposed acquaintance algorithm was
able to provide an acquaintance list that produced better feedback decision
accuracy than comparison. This is because the risk-cost analysis used in the
proposed algorithm can accurately distinguish called_IDS trustworthiness. From
the generated 100 IDS in the IDN set, the size of the probation and candidate list
produced by both algorithms were the same in every scenario. However, as the
risk-cost analysis from the proposed algorithm provided a more accurate
estimation of risk-cost, the acquaintance list feedback decision accuracy was
higher. This can be seen in the case example of feedback decision accuracy in
every environment, as shown in Figure 7.

However, the proposed algorithm still had a drawback. The memory used in the
selection process was higher because of the merge-sort method, which produces
space complexity O(n), i.e., higher than O(1) for comparison. The higher
number of acquaintance size also produces a higher number of consultation
messages, which possibly burdens the network.
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BAlg. YP 99.8 99.64 99.7

Figure 7 Average acquaintance list accuracy comparison.
4.3 Theoretical Analysis

4.3.1 CIDN Decision Accuracy
Lemma:

If R(y) is a risk-cost value based on a stand-alone IDS decision y, and R(A4)
is a risk-cost value based on feedback y, from a group of |A| IDS in CIDN,
then R(y) > R(A).

Proof:

From input data X = {x1, x2,x3, ..., x*}, a stand-alone IDS detects and classifies
Xinto Y = {y},y2,y3, ..., y'}. It has the probability of accurately classifying X

in class C;, which has (u,)C1, ﬁ 02, (1) as statistical profile, as formulated in

Eq. (4): ) 12 “
d =f (m) exp exp [_E(W) ] dy

In a CIDN with |A| number of acquaintances, each data x! from X;.s = {x1,
x2,x3, ..., xt} will be sent to the acquaintances. Thus, the IDS will receive a set
of feedback items U = {Z1,72,73, ..., 2%}, with Z¢ = {z}, 25,2, ..., zf } and 2} is
the feedback from called_IDS; for data x*. From the incoming data Z¢ as the
group of |A| data from the acquaintance list, the analysis is done on U by the use
of the central limit theorem. From the statistical analysis on every data Z¢, i.e.,
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ya = mean(Z), it constructs a C1 profile. Then, it has (u(yA)Cl,ﬁaz €D

as C1 statistical profile. Thus, the probability of accurately classifying X in class
Cl1 can be calculated as follows:

Q

1) dazHen@ )
2 U(YA)CI va

exp

P
\\/ﬁ Oy C1/ \/\/ﬁ }

From P and Q analysis, the probability of accurately classifying X into C1 from

CIDN decision (@) is higher than from a stand-alone IDS (P) value. The Q value
is classification accuracy, which is defined as Acc = %. A higher Q value
means that the hit rate in CIDN is higher (H is directly proportional to TP) and
the false rate is lower (F is inversely proportional to TN). Thus, if Q > P, then

R(A) < R(y), as shown by Eq. (2).

4]

4.3.2 Acquaintance Management
Lemma:

If R(z;) is the risk-cost value based on the IDS caller decision output, R(z4)
is the risk-cost value based on feedback z! from called_IDS;, and R(z,) is the
risk-cost value based on feedback z?2 from called_IDS,, where R(z;) < R(z,),
then the risk-cost from CIDN acquaintance {4;} = {z,, z;) is lower than from
acquaintance {A,} = {z,z,}; R(4;) < R(4,).

Proof:

Suppose, a CIDN with |A| number of acquaintances applies a feedback
aggregation decision 6 = I(f1(x) + fo(x) + f3(x)+ ... +fj4(x)), with f;(x) is
the classification function of called_IDS; in CIDN. Each f; will have a
classification error of e(f;(x)), which aligns with risk-cost value (z;) according
to Eq. (2). Then, decision function § will produce decision error e = I(§ # y) if

E=1(e(fi(x) + e(fL(x)) + e(f5(x)+...+e(f;(x)) > T,), where T, is the
error threshold.

For this reason, heuristic analysis selects called_IDS;, which has a lower

e(f;(x)) and produces a lower value of E. Suppose there are two called_IDS in
candidate list C = {IDS;,IDS,}. From Bayes theorem for f; and f,, if P,(f;) =
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P(e|fy) is the probability of error in f; and P,(f;) = P(e|f) is the one in f,,
then the probability of error Egs. (6-8) are as follows:

P(f1) =P(en f1)/P(f1) (6)

P(fz) = P(en f)/P(f2) (7)

P(e) = P(en fi) + P(en f2) = P(fP(f1) + P(L)P(f2) (8)
The probabilities of any error occurring in f; and f, are:

P(file) = P(elf1)P(f1)/P(e) ()]

P(fzle) = P(elf2)P(f2)/P(e) (10)

Heuristically, it is clear that if P(f;) > P(f,), then P(e) > P(e). By using a
sorting method in acquaintance selection, a lower e(f;(x)) value will result in a
lower probability of aggregation decision error Pg(6§). Thus, it will have a lower
risk-cost R(A). In the case of R(z;) < R(z;), the result has R(4;) < R(4,).

5 Conclusion and Future Work

The proposed acquaintance management algorithm utilizes a sequence of sorted
risk-cost candidates in the acquaintance selection process. Compared to a state-
of-the-art algorithm, the proposed algorithm provides a reduced selection
processing time and higher CIDN decision accuracy. In the proposed algorithm,
the overall risk-cost value is estimated only in one iteration during the
acquaintance selection process. This reduces the algorithm’s computation
complexity to O (n log n), i.e., lower than O (n?) for the comparative algorithm.
By using our previous risk-cost analysis in the proposed algorithm, it was proven
to be able to select the acquaintance list that leads to the lowest overall risk-cost
value and to a 2.7 percent higher CIDN decision accuracy on average. However,
as a consequence of the implementation of merge-sort, the space complexity of
the algorithm is higher (O(n)) compared to that of the comparative algorithm

(0(1)).

For a better understanding of CIDN, the necessity of autonomous decision-
making in CIDN will be investigated further in a future study by the use of a
cooperative multi-agent model. Also, the necessity of resource management
research, which directly concerns consultation management and incentives for
collaboration, will be part of our future research.
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