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Abstract. This paper presents an improvement to dq-domain method of
calculating electromagnetic transients. The proposed methodology works on dq-
domain model for all components of the power system and during all time
iterations. This is a new direction distinct from the old one where the network is
invariably modeled in phase-domain. By modeling the network in dq-domain
there is no more problem of interfacing machine to network as usually met in the
existing method as machine is modeled invariably in dg-domain. Besides
eliminating the time consuming transformation procedure between dgq-domain to
phase-domain or visa versa the new method is able now to fully exploit the
infinite stability region of the trapezoidal rule of integration. The
prediction/correction procedure of the conventional dq-domain method, which is
notoriously known limiting the stability region, is no longer required. Comparing
simulations using the new method and ATP, one of the conventional dq-domain
version, show perfect conformity for small time step. For long time step while
ATP is failing, the new method still converges accurately up to Nyquist’s
interval.

Keywords: all-dq0-domain modeling; EMTP; infinite stability; multi-nodal method;
trapezoidal rule.

1 Introduction

Recent developments in the electromagnetic transients program (EMTP) has
been directed to phase-domain modeling [1-4]. In [1], the machine phase-
domain model is used motivated more by the need to take into account the
saturation more rigorously. In [2-4], the choice is driven more by the weakness
inherent in the old dg-domain procedure [5,6] which is based on
prediction/correction procedure. This last procedure is used to get around the
interfacing problem. In a way this procedure has been succeeded to solve the
problem of the time varying of the phase-domain machine parameters elegantly
but in the same time unfortunately it degrades the infinite stability region of the
trapezoidal rule. This paper presents a new method based on dq-domain without
resorting to that stability weakening procedure.

The solution approach almost common to any existing EMTP is based on
Dommel multi-nodal method [5,6]. In the method, each lumped parameter is
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discretized individually using trapezoidal integration rule to create a linear
relation between current and voltage at a given time ¢ plus a known constant
representing historical current/voltage at the time #-Az. The set of all
components current/voltage linear relations are assembled, according to
Kirchoff’s Law, in one equation, preferably in term of bus-conductance matrix
as it offers sparsity that can be exploited to save space and to speed up
calculation [7-10]. The resulting system of linear equations is solved for all bus
voltages at time ¢. This procedure is iterated at every time step up to the end of
simulation.

When all components are of non time-varying parameters, the resulting bus-
conductance matrix needs to be assembled and decomposed only once at the
initial stage. The situation will be different for component of nonlinear and/or
time-variant parameters where the coefficient of the linearized current and
voltage relation may change from one time step to another. Therefore, in order
not to rebuild and refactor the conductance matrix at every time step, each
nonlinear and/or time-variant component is represented separately as a current
source using compensation procedure [11].

In the proposed method all components of the power system are modeled in dq0
domain in their respective individual discretizations as well as in their
integration as a system of equations during all time cycle iterations. The main
advantage of working in an all-dq0-domain procedure is its higher efficiency
resulting from the space saving and less flops offered by a straightforward
procedure in comparison to the phase-model.

The presentation of this paper will be organized as follows. In Section 2 the dq0
domain model of two main components of a power system, synchronous
machine and lumped coupled balanced three-phase element, will be presented.
Justification of the models, which is based on the Park’s transformation theory,
is well established [12-13]. The lumped coupled three phase element may
represent the components of the network in general. In this paper, element of
distributed parameter is not covered. Section 3 contains the description of the
implementation of the new EMTP. The numerical simulation and discussions
can be seen in Section 4. The paper conclusion is found in Section 5.

2 The All DQO-Domain Modeling

2.1 Synchronous Machine In DQ0-Domain [6,12,13]

The following is the explanation of some symbols used in this paper. The
symbols y ,v, i stand for flux linkage, voltage and current and  and / for
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resistance and inductance, respectively. Subscripts f'and / stand for the field and
d-axis damper windings while subscripts g and k stand for the eddy current and
g-axis damper windings respectively. Throughout this paper we use different
type letters to indicate the designation of the symbols such as bold for vector or
matrix, small for time domain variables or scalars and capital for phasors or
admittances/impedances. We make distinction too between admittance/
impedance as a parameter of a component and as an element of the nodal
matrix. The first is in small letter and the second is in capital.

By following motor convention and g-axis leading d-axis by 90° [13], the
differential and algebraic equations governing the relationship of the machine
terminal voltages, currents and flux linkages can be written in dq0-domain
partitioned in stator and rotor block of variables as follows:

d
ri +Qy + Yo o v,
dt )
d
rrir + ‘l’r = r
dt
where
[y, ] v, (i, ] 0
V.=, [, V.=V, i,=i, |, Q=0
LV, v, Ly | 0
—l//f— Vs _lf | ¥,
l//h vh lh l//h
\lls = > Vr = > lr = B \Ils = )
Y, Ve Ly Ve
L ¥ | Vi L Wy

r,=Diag[r, r, r, |, ¥, =Diag[ry 1, 1y 11

When saturation is neglected the flux linkage is a linear function of current
which for a synchronous machine can be written in stator and rotor partitions as

v, | I m y i
MERNH

where 1, =diag (1.1, ),

q
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I 1. 0 0
I L, 1, 0 0
I, 1, 0 0 '
1 = o o0 I I andm=|0 0 [ [, 3)
¢ 0 0 0 0
0 I, I

Here we focus only on the electromagnetic transients by assuming that the
speed during short circuit is constant. This is quite reasonable in the case of a
generator in no load. Even in a loaded case, the error may be very small for a
short period between the inception and the clearance of the fault by the
protection system. Nevertheless, a complete representation of the mechanical
dynamic can easily be included.

Since all parameters in dq0-domain are time invariant then (1) can be rewritten

as:
r, 0]i | [u, I, mlldi/dt| [v,

+ + = @)
0 r.|li,| |[0] |m" 1 ||di/dt] |v,
where : u, =Q(Li, +mi, ) is the ‘speed voltage’ term.

It can be observed that the speed voltage term depends onl and m, the machine
parameters, so that in the reduction process it has to be excluded.

Therefore, for reduction purpose (4) can be rewritten in frequency domain as:
r, 0 I, m|||L V,
tjo| =
0 r m 1 I, \A

or concisely

z, z,][1] [V S
z, z. 1] |v, ©

where Z =r +jol ,Z =r +jol and Z_ = jo m

Machine is interfaced to the network through stator only, so the rotor equation
in (5) is required to be represented to the stator side. To bring this about, I is
eliminated from (5):

(z,-2,2)7,)1,=V,-2,ZV, (6)
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Finally, the machine admittance as seen from stator terminal amounts to

Y

_ -1
mach = (Zs - ZerIZ:n) (7)
To be noted, asZ_and Z _has a special nonzero structure and Z_is diagonal

then it can be shown that Y

mach

is diagonal:
T mach mach mach 8
Ymach _dlag(yd ’yq ’yO ) ( )

2.2 Lumped Balanced Three-Phase Element in DQ0O-Domain

Without losing generality network element is treated as lumped balanced three
phase impedances. The equation of the voltage drop across a line in dq0 domain
can be written

(r,, QL )i, +1,, di /dt=Av, )
where
Av, i rkmzdiag(rd 7, ro)
Avkm: Avq . ikm = lq ’
Av, i L = diag(ld l, 10)
Again for reduction purpose after omitting the speed voltage QI _i, ., (9) can
be rewritten in frequency domain as:
Z. 1. =AV, (10)
where Z, =r_+jol
In admittance form (10) can be rewritten
Y AV, =1 (11

Again it can be observed that asr, andl, are diagonalso Z,  or Y,  is.

To conclude this section, it can be stated that either machine or network element
has its dq0-axis decoupled. An all-dq0-domain modeling was introduced for the
first time in [14].
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3 The Calculation Procedure

In this paper, the machine stator/rotor, the series and shunt component and the
fault differential equations are discretized in dq0-domain. With the dq0-domain
parameters of the machine, the series and shunt component are all of time-
invariant parameters, discretization on their respective differential equations is
required only once, that is before entering the time step cycle, hence the
efficiency of the procedure. While for the fault, two cases may appear. First, in
a balanced fault in which its dqo-domain admittances are constant so that they
are required to be discretized once as above. Second, in an unbalanced fault
where its dq0-domain admittances are time variant then they have to be
discretized at every time step cycle.

3.1 The Formulation

3.1.1 The Discretization of Synchronous Machine

In this paper the synchronous machine is modeled in its full form as in (4). With
a constant frequency assumption the speed voltage term u_ can be treated as a
resistive voltage drop. Therefore, (4) now is rewritten as

e+l om][i] [1. m]a[i@] [v.¢
. +Ql, O], L m]a[io]_[vo )
L 0 r. | ir(l‘) m' lr dt ir(t) Vr(t)
By using trapezoidal rule of integration (12) is discretized as
I i,(0)] [v.()] [hist
r, r,|i® _ \AQ) N ist, 13
LB Ty ir(t)_ v.(?) hist_
where
2
1'11=l‘s+ Q+_ ls . r12= Q+_ m’
2 \l
1'21=Zm ) r22=r +_lr5
2 2
X, =T +(Q-—)ls, X”:(Q-_jm’
h h
2 \J
1'21=;m , X, =TI, - lr’

hist =-v (t-h)+x i (t-h)+x,i (t-h),

hist, =-v, (¢ h)+ X, i (¢-h)+ i, (- )
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Incorporation of (13) to the network equation is carried out directly in dqo-
domain with rotor equation reduced.

The reduced equation is
i (¢) = v (t) + hist™ (14)

where

red __ -1
I =L, -I,0,

12 r

21

hist* = hist_ -r,r;, {v,(¢-h)+hist_}

2 r22

Incorporation of the machine equation to network equation is easier in
admittance form so the admittance version of (14) can be written as:

g, () =i,(0)-],(t) (15)
where

i, () = g=hist" and g = (r™ )’

S

With an assumption that rotor field voltage is constant then (15) is ready to be
incorporated to the network equation.

3.1.2 The Discretization of Network Branches

Individual branch equation (5) can be discretized straightforwardly as follows

r, A @O+ i (-h)=Av, (t)-Av, (t-h) (16)
1

. =(rkm+Qlkm)+% (17)
lk

r,. =(r,+Ql, )-7"1 (18)

Transforming (27) to admittance form we get
gkm+AVkm = ikm - -]km (19)

where
Jim = Zims {rknﬁikm (t-h)+Av(t- h)} and g, . =r_ .
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3.1.3 The System Equation

After the machines and the branches of the power system having been
discretized as shown above then by bringing them to their Norton equivalent, an
integrated dq0-domain system of equations can be constructed in term of bus
admittance matrix compactly as follows [15]:

G,. V.. =1, (20)

bus ° bus

where G, = is the bus admittance matrix, V, andI,  are the voltage vector and

the net source current vector respectively. The non-zero structure of G, is
arranged to assume the non-zero structure of single phase case in which each
entry will be consisting of a 3x3 sub matrix. While each entry of V, and I,

will be consisting of a 3x1 sub vector that represents the dq0-axis voltages and
net source currents. As the zero-axis circuit is fully decoupled from dq-axis
circuits, a separate formulation can be envisaged to enhance efficiency. Source
current at a bus is the net source currents incidence to the bus. They are
representing the historical states of the branches and machines connected to the
bus. By forcing the bus where the fault located to be numbered last (20) can be
partitioned in group of faulted bus and healthy buses as follows:

{GHH GMV} {I}
, = e2))
GH[ Gﬂ' Vf If

where G, is the sub matrix corresponding to the healthy buses, G, is the sub
matrix corresponding to faulted bus, and G, is the sub matrix coupling the
healthy buses and the faulted bus. V, and I,; are the vectors of the voltages and

the net source currents of the healthy buses respectively, and V,andI, is the
vectors of voltages and currents of the faulted bus respectively.

3.1.4 Incorporation of Fault

Matrix G, is constant at every time cycle while fault admittance matrix, as

shown in the following is, except when balanced, ever changing from cycle to
cycle.

Fault impedance is more natural to be represented in phase domain in input. The
differential equation of a fault in phase domain can be written as follows
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au aul di au
fault » +lf It abc =Vf It (22)

abe “abce abe abe
dt

Both parameters of the fault, r:;‘:" and 121'1", are time-invariant. However, to

incorporate the fault into the system equation (20), which is in dq0-domain, it is
more efficient to transform the fault equation from phase domain to dq0-domain
rather than the other way round. The dq0 version of (22) is

di
fault fault \ o fault dq0 __ _ fault
(ryomt QU Vi + Uit 20 =y (23)

dq0 dq0 dq0 d t dq0

where

fault __ fault ~t fault __ fault ~t efault __ o« fault fault __ fault .
rdq() _CPrabc CP’ ldq() _CPlahc CP’ dq0 _CP abe * Ydqo _CPvahc and CP 1S

the Park’s transformation matrix.
When the fault is balanced both rdf::" andrdf:;" are diagonal-matrix and time

invariant [13-14] so that after having been discretized the fault equation can be
incorporated straight- forwardly to (20), once at the initialization stage.
Otherwise, those fault parameters are full-matrix and time-variant. Therefore,
the fault incorporation to (20) has to be carried out at each time cycle.

The system equation of (20) when fault incorporated will change to:
G Hf G FF Vf If

GFF = fo +G

where
fault

The most time consuming routine in the direct solution of (24) is the
decomposition of the coefficient matrix of the linear system of equations. As the
matrix is varying from cycle to cycle it is really tedious to decompose it at every
cycle. The proposed algorithm offers a speedup by exploiting the special

structure and characteristic of the coefficient matrix. The fault sub matrix G,

being 3x3 which is generally small in comparison to the healthy sub
matrix G, , is the only time-varying sub matrix of G, . By designing a
procedure using two block solutions, an efficient procedure can be obtained by

allowing repeated decomposition only for a small part while the large part is
decomposed only once at initialization stage.
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The following is the equation for fault buses reduced from (24) by
eliminating V,, :

(GFF -G;-IIG;;HGHI)VI =1 -G;lfG;;HIH (25)
After V, having been obtained, V,; is then solved from

V, =G, (I, -G, V,) (26)

Hf " f

Detailed steps to solve (25) and (26) are as follows:

I. Initialization stage:
1. Decompose G,

2. Solve G,,X=G,, for X

3. Calculate Gy =G, X

II.  Time cycle iteration
At every time cycle do steps 4 to 8

4. Solve G, V™ =1, for V;™
5. Calculate I} =1, -G, V™

6. Calculate Gy =G, -Gy

7. Solve GV, =I; for V,

8. Calculate V™ = V™ -XG,,V,
9. Stop

This cycle iteration has only an O(|U]) time complexity, where |U] is the number
of non-zero factors of decomposed G, , determined by the time expended at
step 4, the most time consuming in the procedure.

4 Results and Discussion
4.1 The Simulation Data

As an illustration we simulate short circuit transients in a power system of five
buses as shown in Figure 1. Data of the network are presented in Table 1. The
three machines are identical with typical data in Table 2.
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Figure 1 A five bus, three machines power system.

Table 1 Network data.

No. NS NR Rpu Xpu Notes
Z, 1 2 0.30  0.30 NS — sending end bus
Z, 2 3 0.20  0.40 NR - receiving end bus
73 3 4 0.10 0.10 R —resistance
Z, 1 4 0.30 0.50 X —reactance at 60 Hz
Zs 1 5 030  0.60 Base MVA — 100 MVA
Zs 4 5 030  0.60
?151 Lilrles have the same zero-axis resistance and inductance. Ry=2.0 pu and X,=
Table 2 Synchronous machine data.
Lf 6176.50 L, 604476 L, 604476 R, 0.1728
L,  340.00 Lg 6133.89 L, 6525.64 R, 10.877
Ly, 6024.10 L, 22843 L, 0.7488 R, 2.6471
L, 10.31 Lgk 5733.78 R, 0 R, 52312
L, 24000 L, 98496 R, 0.3708
Note: All inductance values are in Ohm, evaluated at 60 Hz. Machine

ratings: 100 MVA, 24 kV. Terminal voltage: 19.6 kV (maximum line to
neutral).
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4.2 The Simulation Results

The time simulations of the short circuit transients by using the proposed
method are shown in Figure 2. Machines G,, G, and G; are initially on no load.
The fault is a solid three-phase short circuit at bus 4 and atd, =0 for v,. The
time step is 0.0001 seconds. As a comparison the same problem is simulated

using ATP [16] and the results are superposed in the same figures. The
similarity of the results of the proposed method and ATP is almost perfect.

Solid Three Phase Fault

Current In A

1
0 0.02 0.04 0.06 0.08 01 0.
Time in seconds

(a) Phase-a current at machine Gj.

x 10 Solid Three Phase Fault

Current in A

i i i i i i
0 0.02 0.04 0.06 0.08 01 0.12

Time in seconds
(b) Phase-a current at the fault.

Figure 2 Solid Three-Phase Fault at Bus 4.



In Figure 3 the plot of the solution for an unbalanced fault is presented. The
fault is a solid phase-a to ground short circuit atd, =0ofv,. Again the
simulation using ATP is superposed and it can be observed that visually there is
almost no discrepancy of the currents in phase-a and phase-b in Figure 3(a) and

The All-DQ-Domain EMTP

Figure 3(b) respectively.

Current in Ampere

Current in A

1000

500

ault at Phase-a

i i i i
] 0.02 0.04 0.06 0.08 0.1 0.12
Time in seconds

@ Phase-a current at machine G

Single Phase To Ground Fault

1000 f--4-4-----

-1500

1 1 1
0.02 0.04 0.06 0.08 0.1 0.12
Time in seconds

(b) Phase-b current at machine G1

Figure 3 A solid phase-a to ground fault at Bus 4.
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4.3 Accuracy and Convergence

The proposed method and ATP, for small step, give practically the same
solution for currents and voltages. However, there is a big difference for long
time step. In Figure 4 it is shown the plot of the simulation of the solid three
phase fault for a range of time steps using the proposed method. There is no
stability problem as found in ATP. In the latter the simulation always fails to
converge when the time step is greater than 1 ms.

x10* Solid Three Phase Fault

Cutrent in Ampere

Time in seconds

(@)

Solid Three Phase Fault

Current in Ampere

; | i |
0.036  0.038 0.04 0.042 0.044 0046 0.048 0.05
Time in seconds

(b)

Figure 4 Plots for a range of time steps.

The proposed method, based on a genuine trapezoidal rule that has infinite
regions of convergence [17], its solutions are always within reasonable accuracy
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even for long time step such as 3 ms, see Figure 4(a). Experimenting with very
long time steps beyond the Nyquist interval (8.3 ms), has been giving a
convergent solution although the plot of the result becomes meaningless as it
loses important details, to tract the power frequency wave.

5 Conclusions

A new improvement to the dq-domain methodology of the electromagnetic
transients program has been presented. The proposed procedure is based on all-
dq0-domain formulation. The procedure has been shown effective to retain the
infinite stability regions of a trapezoidal rule of integration while at the same
time avoiding the time-consuming recurrent transformations between phase-
domain and dq-domain. The unavoidable transformations in the case of the
unbalanced fault have been managed to be constricted in a small part of the
over-all procedure which incurs only a small portion of the total flops.

Appendix

Park’s Transformation Matrix [13].

cos @ sin @ 1/\/5
2 2 2
C, = 3 cos(H—Tﬂ) sin(@—Tﬁ) 1/~2 , where 6 = wt +6, .
2 2
cos(8 + Tﬁ) sin(@ + Tﬂ) 1/ \/E
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