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Highlights:

e The problem of inclined cracks subjected to normal and shear stress in bonded
dissimilar materials was formulated.

e The modified complex potentials function method was used to formulate the
hypersingular integral equations.

e The obtained system of hypersingular integral equations was solved numerically
using the appropriate quadrature formula.

e  The stress intensity factors at the crack tips depend on the elastic constant’s ratio and
crack geometries.

Abstract. The inclined crack problem in bonded dissimilar materials was
considered in this study. The system of hypersingular integral equations (HSIES)
was formulated using the modified complex potentials (MCP) function method,
where the continuity conditions of the resultant force and the displacement are
applied. In the equations, the crack opening displacement (COD) serves as the
unknown function and the traction along the cracks as the right-hand terms. By
applying the curved length coordinate method and the appropriate quadrature
formulas, the HSIEs are reduced to the system of linear equations. It was found
that the nondimensional stress intensity factors (SIF) at the crack tips depend on
the ratio of elastic constants, the crack geometries and the distance between the
crack and the boundary.

Keywords: complex variable function; bonded dissimilar materials; hypersingular
integral equation; stress intensity factor.

1 Introduction

The stress intensity factors (SIF) at the crack tip are among the physical quantities
that can be used to analyze crack problems in engineering structures. Systems of

Received July 22", 2020, Revised August 4", 2020, Accepted for publication August 13", 2020.
Copyright ©2020 Published by ITB Institute for Research and Community Services, ISSN: 2337-5779,
DOI: 10.5614/j.eng.technol.sci.2020.52.5.5



666 Khairum Haomzah, et al.

HSIEs or singular integral equations have been proposed to find the SIF for crack
problems in an infinite plane by Nik Long and Eshkuvatov in [1] and Denda and
Dong in [2], and for half plane elasticity by Chen, et al. in [3] and Elfakhakhre,
etal. in [4].

Crack problems in bonded dissimilar materials are discussed in [5-8]. The SIF for
two inclined cracks in bonded dissimilar materials were calculated using
Fredholm integral equations with the density distribution as undetermined
function in [5]. The body forces method and traction free conditions of the cracks
were used in finding the solution of inclined, kinked and branched cracks in
bonded dissimilar materials in [6]. The nondimensional SIF for two- and three-
dimensional crack problems in bonded dissimilar materials were computed using
the finite element procedure based on the ratio of COD in [7]. The HSIEs were
used to calculate the nondimensional SIF for multiple cracks in the upper part of
bonded dissimilar materials in [8]. The mixed-mode dynamic of SIF for an
interface crack in two bonded half planes was investigated by summing the
extended finite element method and a domain independent interaction integrated
method in [9]. The nondimensional SIF for the collinear interface cracks in two
bonded half planes were calculated by combining the solution for an inner and an
outer collinear crack in [10].

The objective of this paper was to determine the behavior of nondimensional SIF
at the crack tips for crack problems in upper and lower parts of bonded dissimilar
materials subjected to remote shear stress o, =o,_=p or normal stress

o, =o, = p by using the MCP function method.

2 Problem Formulation

The stress components (Ux ,ay,axy) , the resultant force function (X,Y ), and the

displacements (u,v) are expressed in terms of the two complex potentials
O(w)=¢'(w) and ¥(w)=y'(w) as follows:

o, -0, +2io, =2[E)CD'J. (o

v j a))] (1)
)+, (@) @)

ZGj(uj +ivj)=’(1¢j(“))_w®j(w)_'/’j (@) (3)

)+ (
f =Y, +iX, =¢,(0)+ 0D, (0)+y
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where w=Xx+Iy is a complex variable, G, is the shear modulus of elasticity,
x;=(3-v;)/(1+v;) for plane stress, x;=3—4v; for plane strain, v, is

Poisson’s ratio and j =1,2 [11]. The derivative of the resultant force Eq. (2) with
respectto o, yields:

di{—Yj+in}= (0)+D, (o )+3—w[0)® (@ )+Tl(w):|

w @
=[N +iT],

(4)

where the normal (N) and tangential (T) components of traction along the segment
w,w+dw depend on the position of a point » and the direction of the segment
dw/dw . The complex potentials for the crack L in an infinite plane can be
expressed as [1]:

po)= L [ 2O ©)

1 1 pg(t)dt 1 (g(t)tdt
:2_{ +ng() jg() 2 (6)

where g (t) is COD function defined by:
i(x+1)g(t)=2G(u(t)+iv(t)) teL ©)

and (u(t)+iv(t))=(u(t)+iv(t)) —(u(t)+iv(t)) denote the displacements at
point t and superscript + and — are the upper and lower crack faces, respectively.

Consider two cracks L, and L, in the upper and lower parts of a bonded

dissimilar material, respectively, and the conditions for remote shear stress and
normal stress are:

1 1
—0, =— —0, =—0 8
= (8)

O,
E1 el , X2 E1 N E2 Y2
where E, =2G,(1+v,) and E, =2G,(1+V,) are Young’s modulus of elasticity

for upper and lower parts of bonded dissimilar materials, respectively, and
assuming other stress is zero. The MCP function for crack L, can be described
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by summation of the principal (¢1p(a)),l//1p(a))) and complementary

(¢ (@).w,. (@)) parts of the complex potentials as follows:
t(@)=¢, () + ¢ (o) 9

vi (@) =y, (@) +y (@) (10)
where the principal parts of complex potentials are referred to an infinite plane
elasticity. For crack L, the complex potentials are represented by ¢,(w) and
w,(®). Applying continuity conditions to the resultant force Eq. (2) and

displacement functions Eqg. (3), then substitute Egs. (9) and (10) and after some
manipulations the following complex potentials are obtainable:

¢1C(a)) =Al[a)dTp(a))+y/_1p(a))],a)esl+ L, (11)

Vi (a)) =4, ¢1p (ﬁ_Al[a)(Dlp(_a)) (12)
+a)2<l>'lp(a))+a);//'lp(a))]a)e S, +1L,

¢, (0)=(1+2)d, (), €S, +1, (13)

v, (0)=(a—2,) 0D, (@)+(1+a )y, (@), 0eS, + L, (14)

where Ep(a))=¢lp(g)), L, is the boundary, S, and S, are the upper and lower

parts of bonded dissimilar materials, respectively, and »,,s, are bi-elastic
constants defined as:
am G,-G Ja— x,G, —,G, .
G, +xG, G, +«,G,

(15)

The HSIEs for the cracks in both the upper and lower parts of bonded dissimilar
materials involve four traction components {N(t,)+iT (to)}jk(j =12k=12),
which can be divided into two groups. The first two tractions {N (t)+iT (ty )}11
and {N(t,)+iT(t,)}, are obtained when the observation point is placed at
points t,, € L, and t,, € L,, respectively, caused by g, (t,) at t, € L,. The traction
for {N(t,)+iT(t,)}, can be obtained by summing the principal and

complementary parts. Substituting Egs. (5) and (6) into Eq. (4) yields the
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principal part, and substituting Egs. (11) and (12) into Eq. (4) gives the
complementary part of the traction. Then, letting point » approaches t,, on the

crack and changing dw/dw into dtw/dt,, , yields:

{N(to)+iT (t, )}, ={N(t,)+iT (tm)}1p +{N () +iT (t, )}

g, (1)t 1 — (16)
= hp A1 t1 t10 0, dt1+_ Az tl’tlo g, t1 t1
”J(nno) I ) 27[{( L
where
d 10 R
Ai(tl’tlo) (t1 t10)+A1|: (tl’tm) d: (5(t1’t10)+84(t1’t10))
dE1 N dEl dElO dElO Y
+E(B4(t1,tlo)+ B“(tl’tm))_d_tldtm Be(tl,tlo)}wLAzEB‘l (t.to)
dtwo dty
A ) B () ] B0 BT 00 () S )|

and

2
Bl(t1’t10) L tl tlo)z dtl dtlo B
( (1—t10

- ti—to( dtdt dt1 dtso
tl’ 0 0 T
( tl) th [t1 tlo(d 0} dt1 dtlo}
1

(tvtm):I:tl 2':1"'t10i|(t )3

1
o)
2(3'E10 -2t _El) G(Elo —El)(ilﬂ _tlo)
3 + -\
(tl —1-:10) (t1 —tlo)
1

Be(tl,tlo)z[tlJrflo—2t10](t1_£ )3.

B4 (tl’tlo) =

Bs (t1't10):
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Eq. (16) represents a single crack in the upper part of a bonded dissimilar
material. Substituting Egs. (13) and (14) into Eq. (4) and applying Egs. (5) and
(6) yields the traction for {N (t,,)+iT (t,,)}, as follows:

(N () +iT (1)} = (1+A2)EIM+L'[ A, (.4, )g, (1) dt,
T (t-ty) 27 a7)
e CUEXOE

where

1 d'E1 dEZO 1
Aa(tutzo)_(l"'Al)(il —t )2 E dt,, CH_AZ)m

. _
A (tty) = m{(1+%)d—tl+(l+%)

1 dtidi
(El —Ezo )3 dtl dt20

+ [(l"‘Az )2ty —(1+2) 2 + (a2, )(El + )J

The second two tractions {N(t,)+iT (t,)}, and {N(t,)+iT(t,)} ~are

obtained when the observation points are placed at t,eLl, and t,el,,
respectively, caused by g, (t,) at t, eL,. In this process we need to introduce
two bi-elastic constants defined as follows:

A GGl—G2 = x,G, — kG, (18)
, +K,G, G, + kG,

which is evaluated by changing the subscript 1 to 2 and 2 to 1 in Eq. (15). The
system of HSIEs for two cracks L, and L, in both the upper and the lower parts
of a bonded dissimilar material is obtained as follows:

{N (to) +iT (t, )}l ={N(t)+iT (t )}, +{N(to ) +iT (1)} (19)
[N (t)+iT (t)], ={N (ta)+iT (1)}, + {N (t)+iT (t)},,-  (20)

In solving the system of HSIEs for a single crack in the upper part Eq. (16) and
two cracks in both the upper and the lower parts Egs. (19) and (20) of a bonded
dissimilar material, it is well known that the curved length coordinate method can
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be used to transform the integral along the cracks into real axis s; with an interval
of 2a, [1,3]. The COD function g(t) is defined as follows:

gj(tj) t=4(s,) :\/a?_SJ'ZHj(Sj) (21)

where H,(s;)=H,(s;)+iH ,(s;).(i=12).

3 Results and Discussions

The SIF at the crack tips A, and B, of the crack L;(j=12) are defined as
follows:

(Ki=iK,), =27 lim t-t,

g’ (tl) = \/EFAJ» (22)

(K1 - iKz )Bj - \/gtl—lm ‘t _tB, 9 l2 (tZ ) = MFBJ (23)

where F, =F, +iF,, and F;, =F, +iF,, are the nondimensional SIF at
crack tips A, and B, respectively.

Consider an inclined crack with length 2R in the upper part of a bonded dissimilar
material subjected to remote stress o, =o, = p as defined in Figure 1.

Gy

P

A J

Figure 1 Aninclined crack in a bonded dissimilar material.
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Table 1 shows the nondimensional SIF when a =90° and h/2R varies for
different elastic constant ratios G, /G, . Our numerical results are completely in

agreement with those of Isida and Noguchi [6]. It is found that the Mode I
nondimensional SIF, F, at crack tip A is equal to F, attip A,, whereas the

Mode Il nondimensional SIF, F,, at crack tip A is equal to the negative of F,
attip A, .

Table1 Nondimensional SIF for a crack parallel to the interface (Figure 1).

h/2R
G,/G,  SIF /
0.1 0.2 0.3 0.4 0.5

Fia2 59498 29055 2.0810 1.7138 1.5110
F1a2[6] 59490 29050 2.0810  1.7140 1.5110

0.0 Foe 30300 09940 04936 02890  0.1849
Fool6] 30310 09940 04940 02890  0.1850

Fie 14765 11522 11295 11083  1.0899

o5 Fwelfl 11760 11520 11300 11080 10900
: Fo» 00950 00721 00562 00428  0.0322
Facl6] 00950 00720 00560 0.0430  0.0320

Fie 08831 08994 09125 09242  0.9348

,o  Fwelf] 08830 08990 09130 09240 09350

Fan2 -0.0670  -0.0489 -0.0383 -0.0302  -0.0235
Faa2[6]  -0.0670 -0.0490 -0.0380 -0.0300  -0.0240

Figure 2 shows the nondimensional SIF when R/h=0.9 and « varies. It is
observed that at crack tip A; (Figure 2(a)), as « increases F, increases and F,

increases for a >50°, whereas F, decreases and F, increases as G,/G,
increases.

15
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(a) SIF at crack tip Ax (b) SIF at crack tip A2

Figure 2 SIF when R/h=0.9 and « varies (Figure 1).
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At crack tip Az (Figure 2(b)), as « increases F, increases and F, increases for
a >50°. As G, /G, increases F, decreases at crack tip A, and, F, increases for
a < 60° and decreases for o < 60°.

Consider the two inclined cracks in the upper and lower parts of a bonded
dissimilar material subjected to remote stress o, =o, = p displayed in Figure

3.

-— —_—
P P
Gy
Go
-—— —_—
P P

Figure 3 Two inclined cracks in a bonded dissimilar material.

Figure 4 shows the nondimensional SIF at all cracks tips for two inclined cracks
for different values of G,/G, when ¢, =a, =20° and R/h varies (Figure 3). It
is observed thatas R/h and G, /G, increase F, increases at crack tips B; and B,
whereas at crack tips A; and A,, F, increases as R/h increases and F, decreases
as G, /G, increases.

As G, /G, increases F, decreases at crack tip A; and increases at crack tip Bi.
As R/h and G, /G, increase F, does not show any significant difference at crack
tips A2 and Bo.

The nondimensional SIF when «, varies for R/h=0.9 and «, = 45° atall cracks
tips are presented in Figure 5. It is found that as ¢, and G,/G, increase F,
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decreases at crack tips A; and Az. But F, increases for o, <45° at crack tips A;
and A, and as G, /G, increases F, decreases at crack tip A, and does not show
any significant difference at crack tip Az. At crack tip B;, F, increases for
a, < 20° and decreases for o, >20°, and F, increases as G, /G, increases.

At crack tip Bz, F, decreases for ¢, <40° and increases as G, /G, increases for
a, <40°. However F, does not show any significant differences at crack tips By
and B2 as ¢, and G, /G, increase.

25 GoG1=0.1 2
195 | . G2G1Z0.5 e
175 | --- G2G1=1.0 1
155 | ---G2IG1=2.0 09
w
— - G2G1=50 g
135 g 08 | G2/G1=0.1
115 £07 | - G2GI=05
Fia, £
0.95 5 06 | -- G2GI=10
o
0.75 Z o5 | ---G21G1=2.0
0.55 0a | = G2/G1=5.0
FzA1 e
0.35 0.3 F
2A2
0.15 0.2

0 0.1 02 03 04 05 06 07 08 09
0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9

R/h */h
(a) SIF at crack tip Ax (b) SIF at crack tip Az
2
s —G2/G1=0.1
‘ 18 | ... G2/G1=0.5 /
18 .
0s . 16 | - - G2GI=1.0 /
A
08 w10 ---G2/G1=2.0 s
— - A
—G2/G1=0.1 2 - G2/G1=5.0 '_// ;o
07 g 12 o
e G2/G120.5 g
§ 1 F]B
06 | ---G2IG1=1.0 g 2
S 08
---G2/G1=2.0 =z
05
- G2/G1=5.0 06
04 . -F
-Fas, e O o -
03 02
0 0.1 0.2 03 04 05 086 07 0.8 0.9 0 0.1 0.2 0.3 04 0.5 06 07 0.8 0.8
R/h R/h
(c) SIF at crack tip B1 (d) SIF at crack tip B2

Figure 4 SIF when ¢ =a, =20° and R/h varies (Figure 3).
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(a) SIF at crack tip A1 (b) SIF at crack tip Az
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045 Fag, 05 ;‘ s

[ —
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Figure 5 SIF when a, =45°, R/h=0.9 and «, varies (Figure 3).

4 Conclusion

An inclined crack in the upper part and two inclined cracks in the upper and lower
parts of a bonded dissimilar material subjected to remote stress with different
elastic constants G, and G, were studied. The systems of HSIEs for these
problems were formulated by using the MCP function method. The behavior of
the nondimensional SIF at all crack tips depends on the ratio of elastic constants,
the crack geometries and the distance between the crack and the boundary.
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