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Highlights:

e  More detailed characterization of the mechanism of oxidation in ODS Fe-16Cr-4Al-
INi-0.4ZrO2 alloy at 700 °C, 800 °C, and 900 °C compared with other published
findings.

e  The provided high temperature oxidation parabolic rate equations for three test
temperatures indicated very high oxidation resistance of the alloy.

e  The appearance of vacancies and voids underneath oxide scales was revealed, which
play a role in the development of various oxides.

Abstract. This paper discusses the oxidation behaviors of ODS steel alloy of Fe-
16Cr-4Al1-1Ni-0.4ZrO; at 700 °C, 800 °C, and 900 °C. X-ray diffraction (XRD) as
well as X-ray mapping in a scanning electron microscope were used to
characterize the oxidation behavior of the samples. The rate of oxidation was
measured based on the thickness of the oxide formed on the surface of the samples.
Six types of oxides were identified in all ODS Fe-16Cr-4Al-1Ni-0.4ZrO, alloy
samples after the oxidation tests, dominated by Fe,03, Fe;04, CroFeO4, AlFeOs,
AlFeOy4, and AlFe;O4. The oxidation kinetics of ODS Fe-16Cr-4Al-1Ni-0.4ZrO,
steel at 700, 800, and 900 °C followed logarithmic oxidation rate behavior.

Keywords: ferritic steel; interdiffusion; isothermal oxidation, mechanical alloying;
oxide dispersion strengthening.

1 Introduction

Nuclear power plants currently supply 11% of world energy demand, which will
continue to increase in the future [1] as such power plants are do not contribute
to the green-house effect. The development of nuclear power generation now has
reached Generation IV, ensuring higher reliability, safety, and sustainability [2].
Higher efficiency of power generation requires higher operating temperatures,
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which has consequences especially for the cladding of high-pressure vessels in
the reactors [3]. This part serves to protect the outer layer of the blanket wall from
oxidation conditions at core outlet temperatures of up to 1,000 °C in future Very
High Temperature Reactors (VHTR), much higher than in the current Light
Water Reactors (LWR), which are operated at only about 400 °C [4]. Beside
irradiation, the cladding material suffers from rigorous oxidation attacks at higher
temperatures.

Efforts to develop ferritic chromium steel alloys used as high temperature
materials for Generation IV nuclear reactors have been intensively carried out
[5]. High temperature oxidation resistance of the steel is provided by a protective
scale of chromia (Cr,03). This oxide, however, is unstable at temperatures higher
than 900 °C due to further oxidation forming volatile oxide of CrOs; [6].
Improvement of ferritic Fe-Cr based materials by addition of aluminum to
produce alumina forming ferritic steel is done to form higher stability of alumina
(AL;O3) as a protective layer that acts together with chromium as oxygen getter
[7]. Meanwhile, carbide particles acting as strengthener of the steel tend to
coarsen and reduce the creep strength of the material [8]. Therefore, oxide
dispersion strengthened (ODS) alloys have been developed involving nano size
particles of oxides such as Y»Os, which have no coarsening effect [9]. Several
other oxides have been considered as dispersoid strengthener in ferritic ODS
steels [10], but most studies focused on microstructural evaluation and
mechanical properties [11,12]. While most high temperature ferritic ODS steels
involve Y03 as nano strengthener particles, only limited investigation has been
done on ZrO» [13,14]. Recently, a study on the oxidation characteristics of ZrO,
ODS ferritic steel with a chemical composition of Fe 25 wt.% Cr and 0.5 wt.%
Zr0O, has been done [15]. A systematic study on the oxidation behavior of alumina
forming ferritic ZrO, ODS steels at higher temperatures still needed to be carried
out. The present study aimed to determine the isothermal oxidation behavior of
ferritic ODS steel alloy of Fe-16Cr-4Al-1Ni-0.4ZrO, at 700, 800, and 900 °C.

2 Experimental Work

ODS alloy of 78.6Fe-16Cr-4Al-1Ni-0.4ZrO, was prepared from high-purity raw
powders of Fe (150 pm), Cr (44 pm), Al (10 pm), Ni (50 pm) and ZrO, (30-60
nm). The powders were mixed in a vial with 316 stainless steel balls at a powder
to ball weight ratio of 10 to 1. Mechanical alloying was conducted in a planetary
ball mill at 1,920 rotation per minutes for 2 h. The as-milled powders were then
compacted to form green compacted ODS buttons. Sintering was carried out by
heating the buttons at 1,000°C for 6 h in total, under high-purity argon
atmosphere. The as-sintered buttons were then cut into several sample coupons
using a low-speed diamond cutting machine. Using an electric furnace, oxidation
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tests were carried out by heating the sample coupons in air at 700, 800 and 900
°C for 5, 20, 50, and 100 h.

X-ray diffraction (XRD) was used to characterize the oxides formed on the
surface of the samples using a Rigaku SmartLab X-ray diffractometer equipped
with Match software. The morphologies and chemical compositions of the oxides
on the oxidized samples were obtained using a scanning electron microscope
(SEM) with an energy dispersive spectroscope (EDS) attached. The instrument
used was a JEOL JSM-6510A analytical scanning electron microscope operated
at an accelerated voltage of 15.0 kV. The kinetics of the oxidation process at
different temperatures were measured based on the thickness of the oxides
formed on the samples [16] by measuring at 15 different positions on the SEM
image to get the average thickness of the samples.

3 Results and Discussion

Figure 1 shows the SEM micrograph and the X-ray mapping of the as-milled
powders. This result showed that the mechanical alloying provided the pre-
sintered raw materials for the ODS alloy. Sintering the as-milled powders at 1000
°C for 6 h resulted in an almost fully sintered alloy, as shown in Figure 2.
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Figure 1 SEM micrograph and X-ray mapping of the as-milled alloy powder.
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The X-ray mappings of all alloying elements as well as zirconia indicate a
homogeneous distribution of the elements and reinforced nano particulates in the
ODS alloy. The EDS analysis showed that the average chemical composition of
the as-sintered ODS was 75.27% Fe, 18.32% Cr, 4.64% Al, 0.97% Ni, 0.74% Ti,
and 0.05% ZrOs.
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Figure 2 SEM micrograph and X-ray mapping of the as-sintered ODS alloy.

Isothermal oxidation of the alloy resulted in the formation of scales of various
oxides on the surface of the ODS samples, indicated by the XRD patterns of
surface scales on the samples shown in Figures 3-5. The first oxide formed was
Fe,0s, followed by Fe;04, which occurred on the Fe>Os-alloy interface due to
lower oxygen partial pressure. Outward diffusion of Fe?*" and Fe*" and inward
diffusion of O% in Fe;O4 scales cause the formation of FeO. However, over longer
times this iron oxide reacts with the chromia and alumina formed underneath of
iron oxides, forming spinels: Cr,O3 + FeO — Cr,FeOs and Al,O3 + FeO —
Al,FeO4 [17]. These spinels contribute to increased oxidation resistance of the
material, as found by other researchers [18]. The composition of the scales in the
samples indicated that in addition to chromia spinels, oxidation at higher
temperature and longer times led to the formation of alumina spinels.

Figures 6 and 7 show the morphologies of the scale oxides on the surface of the
samples oxidized at 700 °C, 800 °C and 900 °C, respectively, for 5 h and 100 h.
Needle-like iron oxide of Fe>Os; was found after oxidation at 700 °C, which
changed to plate-like oxide when the temperature was increased to 800 °C. At
900 °C, however, the morphology of the iron oxide further changed to rod-like or
nano-rod iron oxide [19]. Needle-like iron oxide crystals were clearly observed
in surrounding pores of the ODS alloy when these defects were oxidized, as
shown in Figure 8. Meanwhile, Figure 9 shows nano-rod iron oxides grew in
addition to plate-like iron oxides.
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Figure 3 XRD patterns of ODS alloy oxidized at 700 °C for (a) 5 h and (b) 100 h.
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Figure 4 XRD patterns of the ODS alloy samples oxidized at 800 °C for (a) 5 h
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Figure 5 XRD patterns of the ODS alloy samples oxidized at 900 °C for (a) 5 h

and (b) 100 h.

374



Isothermal Oxidation Behavior of Ferritic Oxide Dispersion
Strengthened Alloy at High Temperatures

(a) (b) (©)

Figure 6 Oxide morphologies of ODS samples oxidized for 5 h at (a) 700 °C, (b)
800 °C, and (c) 900 °C.

Figure 7 Oxide morphologies of the ODS alloy samples oxidized for 100 h at (a)
700 °C, (b) 800 °C, and (c) 900 °C.
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Figure 8 Oxidation of pores found on some parts of the ODS alloy sample
oxidized at 700 °C for 100 h. Microstructure of (b) is a magnification of the yellow
window in (a).
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Figure 9 (a) Growth of rod type and plate type iron oxides found in the ODS
alloy sample oxidized at 900 °C for 100 h and (b) is a larger magnification of the
rod-type iron oxide.

The X-ray mapping of the scale surface of the sample oxidized at 900 °C for 100
h, shown in Figure 10, indicates the occurrence of both spinels of Cr.FeO4 and
AlFeOs in the outer part of the scale, supporting the finding from the XRD.
However, the mass fractions of these spinels were lower compared to the iron
oxides.
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Figure 10 Surface scale morphologies during oxidation at 900 °C for 100 h.
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Most of the spinels were obtained in lower parts of the scale. Observation of the
surface of the sample oxidized at 900 °C for 100 h found an area that had
experienced spalling during oxidation due to a low Pilling-Bedworth ratio (PBR)
of Fe,Os [8]. As depicted in Figure 11, the base part of the spalled area showed
the distributions of oxide particles relatively rich in Al and Cr, indicating the
positions of Cr.FeO4 and AlFeOs underneath the outer scale layer rich in iron
oxide.

(d) (¢)

Figure 11 Identification of chromium and aluminium rich oxides in an area
where the iron-oxide outer layer has spalled in the sample oxidized at 700 °C for
100 h. (a) Scanning electron micrograph of the surface experienced spalling, (b)
magnification of a certain part of (a), (c) X-ray mapping of Al, and (d) X-ray
mapping of Cr.

The oxidation kinetic of Fe-16Cr-4Al-1Ni-0.4ZrO, ODS alloy at different
temperatures was measured based on the thickness of the scales on each sample
for different temperatures and times. The kinetic curves are presented in Figure
12. From three possible kinetic behaviors, logarithmic behavior applies for all
temperatures, i.e., x =49.038Int - 9.477, x = 108.89Int - 26.472, and x = 177.96Int
— 11.142, respectively for 700 °C, 800 °C and 900 °C. Meanwhile, Figures 13
and 14 show examples of electron micrographs and the X-ray mappings of
elements in the cross sections of the samples oxidized at 900 °C for 5 h and 100 h,
respectively. The X-ray mappings clearly show the dominance of iron oxides in
the outer scales. The EDS analysis in the area around the lower part of the scale
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in the alloy oxidized at 900 °C for 100 h, shown in Figure 15, indicates the
occurrence of chromium and aluminum containing oxides, expected as spinels of
FeCr,04 and FeAl,Oa.

900
800

)
]
oS 9O
S O

500
400
300
200
100

Scale thickness (um

0 20 40 60 80 100 120
Oxidation time (hours)

Figure 12 Oxidation kinetics of the ODS alloy samples oxidized at 700 °C,
800 °C and 900 °C.
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Figure 13 SEM micrograph and X-ray mapping of the ODS alloy sample
oxidized at 900 °C for 5 h.
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Figure 14 SEM micrograph and X-ray mapping of the ODS alloy sample
oxidized at 900 °C for 100 h.

The electron micrographs of the cross section shown in Figures 13 and 14 also
indicate the formation of Kirkendall voids below the iron oxides scales, often in
an extended longitudinal direction parallel to the surface of the scales.

Meanwhile, Figure 15 shows the interior of the void in the ODS sample oxidized
at 900 °C for 100 h.
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Figure 15 EDS analysis for different locations underneath the oxide scale in the
ODS alloy sample oxidized at 900 °C for 100 h.
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Some particles were found attached to the walls of the voids. These particles were
identified as oxides crystals of mixed oxides of ferrous as well as chromium,
aluminum, as also found previously by other researchers [17]. These alumina and
chromia rich oxides were expected to occur as spinels of FeCr,O4 and FeAl,O4,
as also reported previously [20].

4 Conclusions

ODS steel alloy of Fe-16Cr-4Al-1Ni-0.4ZrO; exposed at temperatures
corresponding to service overheating of 700 °C, 800 °C and 900 °C as discussed
in this study gives reliable oxidation behavior, which is valuable in assessing the
effect of overheating in service when ODS steel is used as cladding material in
nuclear reactors. The experimental results revealed that the scales formed were
dominated by iron oxides of Fe,Os and Fe;O4. However, spinels were formed
underneath the scales of FeCr,04 and FeAl,O4. The oxidation kinetics followed
logarithmic oxidation rate behavior, with the rate equations of x = 49.038Int -
9.477, x =108.89Int - 26.472, x = 177.96Int — 11.142, respectively. Coalescence
of vacancies underneath the oxide scale results in voids and facilitates downward
diffusion of oxygen, providing further oxidation of the ODS matrix as well as
triggering scale delamination.
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