Index

AUTHOR

Α

Siti Rozaimah Sheikh Abdullah, 573 Tito Adibaskoro, 170 Eleonora Agustine, 516 Osama M.H. Ahmed, 870 Ali Akhtarpour, 380 Ameer Abdulridha Ajmi Alali, 380 Khaled M. Alawasa, 597 Israa Abdulwahab Al-Baldawi, 573 Mushtaq A. Al-Furaiji, 632 Lienda Aliwarga, 216 Aadel A.R. Alkumait, 48 Mubarak A.M. Fadul Almula, 556 Abdullah I. Al-Odienat, 597 Ahmed K. Alshara, 632 Qudama Al- Yasiri, 632 Muhammad Noorul Anam, 355 Hairil Anwar, 516 Lena Ardiah, 683 Arii Ardjuna, 251 Herto Dwi Ariesyady, 693 Mohd Fadzil Arshad, 1 Faezeh Asadpour, 103 M. Asrurifak, 501, 824 Shinta Ayuningtyas, 337

В

Irsan S. Brodjonegoro, 729 Wiratni Budhijanto, 430 Bambang Budiono, 28, 762 Bagus Budiwantoro, 805

C

Salvatore Cafiso, 855 Casnan, 747 Kaige Chen, 411 Zhao Chunju, 707 Adi Cifriadi, 649

D

Hanna Darmawan, 216 Delfebriyadi, 824 Nyoman Triani Herlina Dewi, 762 Mitra Djamal, 369, 451

Ε

Elvina, 64

F

Iffah Faizah, 805 Reza Adhi Fajar, 615 M. Fatkhurrozi, 729 Burhan Febrinawarta, 805

G

Wenqing Ge, 443 Xiaole Ge, 463 Ayele Elias Gebeyehu, 707 Alessandro di Graziano, 855 Hai Guo, 198 Guo Yinjing, 184

Н

Nor Hisham Hamid, 585 Min Han, 198 Marisa Handajani, 693 Gunawan Handayani, 615 Irsyad Nashirul Haq, 149 Hartrisari Hardjomidjojo, 747 Dandung Sri Harninto, 501 Hassimi Abu Hasan, 573 Hendriyawan, 392, 772 Chiem Trong Hien, 133 Bigman M. Hutapea, 501, 824

ı

Mohd Haziman Wan Ibrahim, 1 Thamir K. Ibrahim, 48 Mushrifah Idris, 573 Iswandi Imran, 28, 824 Indriyati, 121 Hardianto Iridiastadi, 290 Yuyun Irmawati, 121 Masyhur Irsyam, 392, 501, 772, 824 Irzaman, 747 Nur 'Izzati Ismail, 573

- 1

Norwati Jamaluddin, 1 Ali A. Jazie, 537

Κ

Muhammad A. Kariem, 805 Mohd Asyraf Kassim, 272 Khoiruddin, 216 Nafis Khuriyati, 839 Hong Joo Kim, 369 M.T.A.P. Kresnowati, 64 Deddy Kurniadi, 149

L

Afiq Mohd Laziz, 585 Edi Leksono, 149 Dianika Lestari, 64 Bo Li, 443 Kunyuan Li, 231 Xiaoniu Li, 198 Zhanfu Li, 231, 463 Erwin Lim, 762 Shengrong Liu, 463 Yu Liu, 791 Lv Wenhong, 184

М

Fujian Ma, 791 Hisham A. Maddah, 303 Harry Mahardika, 516 Mohammed Sh. Mahmood, 380 Sajjad Ali Mangi, 1 Sindur P. Mangkoesoebroto, 479 Lindung Zalbuin Mase, 772 Sheeraz Ahmed Memon, 1 Tan Kean Meng, 272 Reguel Mikhail, 501 Rena Misliniyati, 392, 772 Mohamed Elhaj Ahmed Mohamed, 83 Nurul Fadhilah Muhammad, 573 Julfikhsan Ahmad Mukhti, 337 Munirwansyah, 501

Ν

Daniah Ali Hassoon Nash, 573 Ramli Nazir, 501 Jamal-e-Din Mahdi Nejad, 103 Bao Quoc Nguyen, 133 Phuong Duy Nguyen, 133 Thang Trung Nguyen, 133 Erliza Noor, 747 Sudarto Notosiswoyo, 615 Andri Dian Nugraha, 251 Prihati Sih Nugraheni, 430 Siti Aisyah Nurjannah, 28

O

Jeffrey Onuoma Oseh, 355

Р

Tri Chandra Pamungkas, 615 Giuseppina Pappalardo, 855 Rizkita Parithusta, 479 Ju Pei, 14 Dini A. Prabowo, 805 Iwan Prasetiyo, 323 Made H. Prayoga, 479 Jiafei Pu, 463 Santi Puspitasari, 649 Tita Puspitasari, 121 Karina Meilawati Eka Putri, 662 Nur Achmad Sulistyo Putro, 839

Q

Xianrong Qin, 411

R

Rahmi, 683 Eti Rohaeti, 747 Siska Rustiani, 501

Rexha Verdhora Ry, 251

S

Andhika Sahadewa, 392, 662, 772 Mona Berlian Sari, 369 Joko Sarwono, 323 Wahyudi Budi Sediawan, 430 Kok Yong Seng, 272 Tepy Septyana, 251 Noor Aziah Serri, 272 Zhihua Sha, 791 Ku Zilati Ku Shaari, 585 Shahiron Shahidan, 1 Adam Rasyid Sidiqi, 355 F.X. Nugroho Soelami, 149 Alexander H. Soeriyadi, 430 Prayatni Soewondo, 693 Song Xianqi, 184 YuShou Song, 870 Wahyu Srigutomo, 516 Made Suarjana, 170 Binbin Sun, 443 Yuantao Sun, 411 Suprijanto, 290 Muhammad Syukri Surbakti, 683 Endra Susila, 662 Iftikar Z. Sutalaksana, 290 Novika Suwardana, 216 Muhammad Yoke Syahputra, 662

Т

Cao Tan, 443 Haoran Tang, 198 Xin Tong, 231, 463

U

Mirwan Ushada, 839 Ustadi, 430

W

Negash Wagasho, 707 Hassan A. Wahab, 556 Hongfeng Wang, 463 Yongjun Wang, 443 Abdul Waris, 369 I Gede Wenten, 216 Sri Widiyantoro, 251 Lilik Eko Widodo, 615 Setyo Widodo, 216 Rahadi Wirawan, 369 Elsa Nalita Wongso, 323 Peter Lloyd Woodfield, 683 Andojo Wurjanto, 337

Χ

Zhaoyang Xie, 870

Υ

Dapeng Yang, 791 Yang Lei, 184 Guo Yanling, 83 Yiqing Ye, 231 Yessica, 64 Zhou Yihong, 707 Jian Yin, 791 Andik Yulianto, 693 Brian Yuliarto, 149 Elin Yusibani, 683

Z

Maki H. Zaidan, 48 Nida Maisa Zakiyya, 693 Jianjie Zhang, 411 Qing Zhang, 411 Shengfang Zhang, 791 Jingying Zhao, 198 Haitao Zhu, 556 Rida Zuraida, 290

SUBJECT

1

1-D site response model, 392

Α

AAS, 683, 685, 688, 691 ABAQUS, 662, 663, 666, 685 Abaya Chamo sub-basin, 707, 709, 710, 711, 713, 723 adaptive neuro-fuzzy inference system (ANFIS), 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103 adiabatic, 615, 617, 619, 622 aerobic, 693, 694, 704 aerobic granular sludge, 693 ammonia, 573, 574, 576, 577, 580, 581, 583 anti-bacteria, 430 apparent resistivity, 516, 517, 518, 529, 530, 532, 533, 534

В

backscattering, 369, 370, 372, 373, 375, 376, 377 bacterial cellulose, 121, 123, 128 battery management system, 149, 150, 153, 154, 155 beam hardening, 870, 871, 872, 875, 876, 879, 880 biofuel, 585 biomass, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, biorefinery, 272 biosugar, 272 blended oil, 683 bonded particle model, 231, 233 boundary element method, 729, 730, 731, 744 brake disc, 791, 792, 794, 795, 796, 797, 798, 799, 800, 802, 803 brake impact, 411, 412, 422, 423, 424, 426, 427, 428 brake pad, 791, 793, 794, 798, 799 breakage behavior, 231 bridge design, 501, 502, 515 bubbled airlift reactor, 693 building envelope, 632, 633, 636, 638, 640, 646

С

carbon black, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660 CBM, 251, 252, 254, 255, 266, 267, 271, 272 cement replacement, 1, 2, 8, 11 CLTD/CLF/SCL method, 632 coal bottom ash, 1, 2, 3, 4, 5, 7 coastal dike, 337, 338, 339, 343, 344, 353 COD, 573, 574, 576, 577, 579, 580, coiling up system, 323, 324, 325, 326, 329, 332 collapse risk, 479, 480, 484, 485, 488, 490, 494, 496, 498, 499 comparative study, 632 complex curved PDC bit, 14, 15, 16, 18, 19, 21, 25, 26, 27 computational fluid dynamic, 463, 464 computed tomography, 870 conjugate gradient method, 516, 517, 524, 534 Contois, 693, 697, 702, 703, 704, 705 convection oven, 121, 123, 129 cooling load, 632, 633, 634, 635, 636, 637, 640, 642, 643, 644, 645, 646 cooling pad, 48, 50, 59 coplanar, 323, 329, 332, 333 counting efficiency, 870, 874, 875, 876, 878 crack pattern, 28 crown shape design, 14 CSTR, 537, 538, 539, 540, 543, 551, 552 cutting depth limit of stability, 556 cuttings size diameter, 355, 364, cuttings transport efficiency, 355, cyclic loading, 762, 765, 766

D

data sets, 83, 85, 90 database construction, 184 DBSA, 537, 538, 539, 552 deep soil layer, 824 detector, 369, 371, 372, 373, 374, 375, 377 direct evaporative, 48, 51, 54, 55, 60 disc brake, 791, 792 discrete element method, 231 double-notch, 805, 806, 807, 808, 809, 810, 812, 817, 821 downhole receivers, 251 droplet flow, 585 drought event, 707

Ε

earth dam, 380, 386, 390 earthquake, 479, 480, 484, 485, 486, 489, 490, 491, 492, 497, 499, 500, 501, 502, 503, 504, 506, 507, 508, 509, 515 edible film, 121, 128 EEG, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302 elastomeric bridge bearing (EBB), 649, 650, 651, 653, 654, 655, 657, 659, electronic control natural gas injection device, 443 energy, 597, 598, 599 energy consumption, 231, 238, 239, 241, 242, 243, 244, 245, 247, 248, 250 energy saving, 103 energy storage system, 149, 152, 153, 154, 167 environmental monitoring, 198 equivalent moving load method, 791

F

fail-safe reinforced concrete frame, 479 fatigue, 290, 291, 292, 294, 296, 297, 298, 299 feature vector, 184, 185, 186, 187, 188, 189, 196 fed-batch hydrolysis, 272, 276, 283 FERCAF, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 fermented cassava flour, 64, 65, 75 Fibonacci sequence, 463, 464, 465, 474, 475, 476, 478 field test, 14, 25 finite element analysis, 762, 763, 771 finite element numerical model, 28 FIS, 83, 91, 93 flood defense, 337 flow function, 443, 444, 456 flushing performance, 463, 464, 469, 474, 475, 477, 478 FOC brake strategy, 411, 416, 417, 423, 425, 427, 428 forward modeling, 516, 525, 534 foundation, 662, 663, 664, 667, 668, 669, 670, 672, 674, 675, 676, 677, 681, 684 fracture stimulation, 251 fragility, 479, 480, 481, 486, 487, 488, 489, 491, 492, 493, 495, 496, 498, 499, 500 freshwater, 303, 304, 305, 307, 308, 314, 318, 319 fuzzy inference, 839, 840, 841, 844, 850, 851 FVMA, 184, 185, 186, 189, 194, 195, 196

G

Galerkin finite element, 516 gamma rays, 369, 371, 373 Gaussian process regression, 198, 202, 203, 204, 205, 208, 209, 211, 212 GC, 683, 685, 687, 688, 691, 692 GEANT4, 369, 371, 372, 375, 377, 379

genetic algorithm, 170, 171, 182, 839, 840, 841, 843, 844, 845, 846, 851 Grau second-order, 693, 697, 698, 702, 703, 704 grid-connected inverter, 597, 612 grinding effects, 1, 3

Н

hard clay, 662, 663, 667, 669, 670, 671, 672, 674, 675, 676, 677, 681, 682, 683, 684 hard rock drilling, 14 harmonics distortion, 597 hat-shaped, 805, 806, 807, 808, 809, 812, 814, 816, 817, 820, 821, 822 hazard map, 502, 503 heart rate, 839, 840, 841, 842, 843, 844, 845, 847, 850, 851, 852 henna, 355, 356, 357, 362 high-power natural gas engine, 443, 444 high-speed cutting, 556 highway bridges, 170, 171 hole angle, 355, 364, 365, 366 Hopkinson bar, 805, 810 hydrogenated natural rubber, 649, 655, 656, 658, 659 hydrophobicity, 216, 218, 225, 226, 227

1

i-girder, 170 improved firefly algorithm, 133 incentive index, 839, 841, 842, 843, 849, 851 Indonesia, 501, 502, 503, 504, 505, 507, 508, 512, 514, 515, 516 induced seismicity, 251, 253, 267, 268, 269 industrial brake, 411, 413 infiltration, 615, 616, 617, 618, 619, 624, 625, 627, 629 infrastructure, 855, 856, 857, 859, 861, 862, 863, 866 intensification, 585, 586 ionic gelation, 430, 431, 433, 434, 435, 437, 438, 439 irradiation, 303

Κ

Kobe earthquake, 772, 773, 775, 776, 777, 778, 779, 782, 785, 786

L

laminated bearing pad, 649 lignite, 355, 357, 358, 362, 363, 366 load transfer mechanism, 662, 663, 667, 677, 678, 679, 684 Lucas sequence, 463, 464, 465, 474, 475, 476, 478

N

machine learning, 198, 200, 201, 203, 204, 210, 213 Matlab Simulink, 83, 87 microfluidic, 585, 588 microreactor, 585, 586 microseismic, 251, 252, 253, 256, 261, 263, 264, 265, 266, 267, 268, 269 microwave, 121, 122, 123, 125, 126, 127, 128, 129, 130 mixture, 683, 685, 687, 690 modeling, 747, 748, 749, 750, 751, 754, 755, 758 monochromatic X-ray, 870 Monod, 693, 697, 702, 704 motor control, 83, 84 multi-fuel, 133, 134, 135, 136, 140, 141, 145, 146

Ν

nano-chitosan, 430, 431, 432, 433, 434, 435, 436, 437, 438 nanotechnology, 103, 105, 107, 108, 111, 112, 113, 114, 115, 116, 117, 121 nickel-based superalloy, 556, 557 non-destructive testing, 369 non-isothermal, 615, 617, 619, 624 normal-closed electromagnetic brake, 411 NSP, 479, 492, 493, 495, 497 numerical simulation, 14 nutrient uptake, 573

C

open data, 855, 856, 858, 859, 866 optimization of outlet structure, 443 optimization, 170, 171, 173, 176, 178, 180, 181, 182

Ρ

packaging, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 77, 80 Parand town, 103, 113 partially pre-stressed, 28, 29 particle breakage, 231, 233, 236, 237, 238, 247 particle fineness, 1, 3 particle size, 430, 431, 432, 433, 434, 435, 437, 438 patchouli oil, 683, 684, 685, 686, 687, 688, 690, 691 PCBN cutting tools, 556 performance, 48, 49, 50, 54, 59, 60 performance analysis, 149 phosphorus, 573, 574, 576, 577, 581, 582, 583 photovoltaic, 597, 598, 599, 600 physical properties, 64 phytoremediation, 573, 574, 575, 576, 578 pile, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 677, 681, 682, 683, 684 polychromatic X-ray, 870, 872, 875 polyelectrolyte complex, 430, 431, 433, 434, 435, 437, 439 polynomial fitting, 870, 871, 872, 875, 876, 879, 880 polypropylene, 216, 218

Port Island, 772, 773, 775, 776, 778, 779, 789
power quality, 597, 598, 599, 612, 613
precipitation, 430, 431, 432, 434, 435, 436, 437, 438
precipitation scenario, 707, 714, 722
prestressed concrete, 170, 171, 182
punch, 805, 806, 807, 808, 810, 812, 817, 819, 820, 821, 822
pyrolysis, 747

R

raft, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685 reactive powder concrete, 28 regenerative chatter, 556, 557, 560, 570 reinforced concrete coupling beam, 762, 763 response spectra, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408 reuse, 216, 217 rheological properties, 355, 356, 360, 362 rice husk, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758 road, 337, 338, 339, 342, 343, 344, 353 road agencies, 855, 856 road users, 855 rotational inertia test, 411, 417, 418 RSM, 537, 541 RSSI, 184, 190, 197, 198 rubber vulcanization, 649

S

safety factor, 380, 381, 384, 385, 386, 387, 388, 389, 390 sago mill effluent, 573, 583 sand drain, 380, 388, 390 saturated soft soil, 380 SDSM, 707, 709, 711, 714, 715, 719, 720, 723, 724, 728 SEDC motor, 83, 84, 86, 87, 88, 90, 93, 100 seismic behavior, 762, 763 seismic ground response analyses, 772 seismic hazard evaluation, 392 seismic site response analysis, 392, 394, 395, 408 Semarang, 337, 338, 339, 340, 342, 343, 344, 346, 347, 351, 352, 354, 355 setting time, 1, 3, 8, 9, 11 settlement, 380, 381, 384, 385, 386, 387, 389, 390, 662, 663, 669, 670, 671, 672, 673, 674, 675, 676, 677, 684 sewage, 537, 538, 539, 540, 541, 551, 552 shallow water, 729, 730, 732, 737, 739, 740, 744 shear strength, 762, 763, 769, 770, 771 shelf-life determination, 64 SHSB, 805, 806, 808, 809, 812, 816, 817, 819, 820, 821, 822 silica, 747, 748, 755, 758 simulated driving, 290 single-fuel, 133, 134, 135, 136, 140, siphon pipe shape, 463, 464, 478 site amplification, 824, 825, 826, 832, 833, 834, 836, 837 site class, 392, 393, 395, 406 site response analysis, 824, 826, 830, 832, 833, 834, 836 sleepiness, 290, 291, 294, 297, 298, 299 smart microgrid, 149, 150, 151, 152, 157, 159, 161, 165, 166, 167, 168 soil models, 772, 773, 791 soil-column, 615, 616, 618, 619, 629

solar distillation, 303, 304, 307, 318, solar energy, 103, 104, 105, 107, 108, 113, 114, 115, 116, 117 solar still, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 316, 317, 318, 319, 320 Sombar Dam, 380, 382, 383, 392 sound absorber, 323, 334 spectral acceleration, 824, 826, 832 SPI, 707, 708, 709, 713, 717, 719, 723, 724, 728, 729 Stover-Kincannon, 693, 697, 698, 702, 703, 704 stress distribution, 28, 43, 44, 45, 46 strong earthquake, 772, 785 submerged body, 729, 730, 732, 737, 738, 739, 740, 741, 742, 743, 744, 745 subsidence, 337, 338, 342, 352, 353 sub-wavelength system, 323, 334 sulphate content, 198, 202, 203, 209, 211, 212 surface acceleration, 502, 512, 514, 515 survey, 855, 860 sustainable development, 103, 106, 113, 114, 115 S-wave velocity, 824 swelling, 121, 124, 128, 130

temperature changes, 149, 151, 164, 167 Tetraselmis suecica, 272, 274, 285, 286, 287, 288 thermal comfort, 632, 633, 635, 64 thermal generating units, 133, 134, 135, 136, 140, 146 time history, 479, 486, 488, 490, 491, 493, 495, 497, 498, 499

time of day, 290, 291, 299 time on task, 290 topology optimization, 791, 792, 796, 800, 803, 804 total fuel, 133, 135 total stress approach, 392, 394 transesterification, 537, 538, 546, 552 tube resonator, 323, 324, 325, 327, 329, 330, 334

U

unconventional hydrocarbon, 251 underground localization algorithm, 184 underwater acoustic power, 729, 730, 735, 740, 741, 742, 744, 745 underwater acoustics, 729, 742 upscaling, 747 used oil, 216

V

vacuum filtration, 121, 123, 125 vapor compression cooling system, 48, 50, 51, 53, 60, 61 vertical array record, 772, 775 very stiff clay, 662, 663, 667, 669, 670, 671, 672, 674, 675, 676, 677, 681, 682, 683, 684 viscosity, 683, 684, 685, 686, 689, 691 voltage changes, 149, 160, 163, 164, 166, 167

W

waste oil, 216 water hyacinth, 573, 574, 575, 576, 577, 581 water purification, 303, 304, 307, 316 water quality modeling, 198 water removal, 216, 222, 223, 224, 226, 227 water-ponding, 615, 616, 617, 618, 624, 626 Wenner configuration, 516, 517, 519, 534 wet pad, 48, 51, 52, 53, 54, 57, 58, 59, 61, 62 workstation temperature, 839, 841, 843, 844, 845, 847, 848, 850, 851

Χ

X-ray attenuation, 870, 871, 872, 879

Z

zeta potential, 430, 433, 435, 436, 437, 438

List of Reviewers

- Mohamed A.A. Abdelkareem (Automotive and Tractors Engineering Department, Faculty of Engineering, Minia University, Egypt)
- 2. Mohammad Adampira (Department of Civil Engineering, Science and Research Branch, Islamic Azad University, iran)
- 3. Vincentius Surya Kurnia Adi (Chemical Engineering Department, National Chung Hsing University, Taiwan)
- 4. Hamza Afghoul (Ecole Supérieure de Technologies Industrielles-Annaba-LEPCI-laboratory, Setif-1 University, Algeria)
- 5. Faraz Afshari (Department of Mechanical Engineering, Erzurum Technical University, Turkey)
- 6. Thomas Joachim O. Afullo (Discipline of Electrical, Electronic and Computer Engineering, School of Engineering, University of KwaZulu Natal, South Africa)
- 7. Zainal Ahmad (School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia (USM), Malaysia)
- 8. Khusnul Ain (Biomedical Engineering Airlangga University, Indonesia)
- 9. J. Ajayan (Department of Electronics and Communication Engineering, SNS College of Technology, India)
- 10. Meral Akkoyun (Department of Fiber and Polymer Engineering, Bursa Technical University, Turkey)
- 11. Hasan M. Albegmprli (Engineering Technical College, Building and Construction Engineering Department, Northern Technical University, Iraq)
- 12. Francesco Aletta (UCL Institute for Environmental Design and Engineering, The Bartlett, University College London (UCL), United Kingdom)
- 13. E. S. Ali (Electric Power and Machine Department, Faculty of Engineering, Zagazig University, Ecuador)
- 14. Ammar A.T. Alkhalidi (Energy Engineering Department, German Jordanian University, Jordan)
- 15. Abdullah Almansour (National Centre for Oil and Gas Technology, King Abdulaziz City for Science and Technology, Saudi Arabia)
- 16. Boris Almonacid (Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Chile)
- 17. Almuatasim A. Alomari (College of Engineering, Technology and Physical Sciences, Alabama A&M University, United States)

- 18. Saif Alzabeebee (Department of Civil Engineering, University of Birmingham, United Kingdom)
- 19. Ahmed W. Al-Zand (Dept. of Civil and Structural Engineering, Univ. Kebangsaan Malaysia, Malaysia)
- 20. Semaan Amine (Department of Mechanical Engineering, Beirut Arab University, Lebanon)
- 21. A. V. AnanthaLakshmi (Department of Electronics & Communication Engineering, Pondicherry Engineering College, Puducherry, India)
- 22. Mohd Talha Anees (School of Physics, Universiti Sains Malaysia, Malaysia)
- 23. Willyanto Anggono (Mechanical Engineering Department, Petra Christian University, Indonesia)
- 24. Mohammad Firdaus Ani (Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Malaysia)
- 25. Ersin Arel (Department of Civil Engineering, Istanbul Kultur University, Turkey)
- 26. Azmi Bin Aris (Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, Malaysia)
- 27. Arun Arjunan (Structural Mechanics and Vibro-Acoustics Research Group, School of Engineering, University of Wolverhampton, United Kingdom)
- 28. Lia A.T.W. Asri (Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 29. I Made Astina (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 30. Tinton Dwi Atmaja (Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences, Indonesia)
- 31. Camelia Claudia Avram (Technical University of Cluj Napoca, Romania)
- 32. Zikri Abadi Bin Baharudin (Department of Electrical Engineering Technology, Faculty of Engineering Technology, Universiti Teknikal Malaysia, Malaysia)
- 33. Arian R. Bahrami (Department of Mechanical Engineering, Eastern Mediterranean University, Iran)
- 34. Omar Bait (Department of Mechanical Engineering, Faculty of Technology, University of Batna 2, , Azerbaijan)
- 35. Adil Baykasoğlu (Department of Industrial Engineering, Faculty of Engineering, Dokuz Eylül University, Turkey)
- 36. Ridho Bayuaji (Department of Civil Infrastructure Engineering, Institut Teknologi Sepuluh Nopember, Indonesia)
- 37. Behrouz Behnam (School of Civil and Environmental Engineering, Amirkabir University of Technology, Iran)

- 38. Hamdolah Behnam (Center for Infrastructure Engineering, Western Sydney University, Australia)
- 39. Totok Biyanto (Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Indonesia)
- 40. Mark T. Bomberg (Department of Mechanical and Aeronautical Engineering, Clarkson University, United States)
- 41. Carmel B. Breslin (Department of Chemistry, Maynooth University, Ireland)
- 42. Wiratni Budhijanto (Department of Chemical Engineering, Universitas Gadjah Mada, Indonesia)
- 43. R. Bambang Budiono (Department of Civil Engineering, Institut Teknologi Bandung, Indonesia)
- 44. Rochim Bakti Cahyono (Department of Chemical Engineering, Universitas Gadjah Mada, Indonesia)
- 45. Claudio Carvajal (Irstea, UR RECOVER, France)
- 46. Susit Chaiprakaikeow (Department of Civil Engineering, Faculty of Engineering, Kasetsart University, Thailand)
- 47. Saroj Chapagain (United Nations University, Institute for the Advanced Study of Sustainability, Japan)
- 48. Kwok-wing Chau (Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong)
- 49. Sujoy Krishna Chaudhury (Department of Metallurgical Engineering, Indus University, India)
- 50. C. Choerudin (Department of Chemical Engineering, Institut Teknologi Nasional (ITENAS), Indonesia)
- 51. Athanasius Cipta (Geological Agency of Indonesia, Indonesia)
- 52. Fatayalkadri Citrawati (Research Center for Metallurgy and Materials-Indonesian Institute of Sciences, Indonesia)
- 53. Eduard Marius Cr**ă**ciun (Faculty of Mechanical, Industrial, and Maritime Engineering, "Ovidius" University of Constanta, Romania)
- 54. Hao Cui (School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, China)
- 55. Chenlong Deng (GNSS Research Center, Wuhan University, China)
- 56. Yaoji Deng (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, China)
- 57. Andrei Dragomirescu (Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, University Politehnica of Bucharest, Romania)
- 58. Qingsong Duan (School of Civil Engineering, Southwest Jiaotong University, China)

- 59. Jorge Duarte (Robotic and Mechanical Systems Desing for Industrial Production Research Group, Universidad del Atlántico, Colombia)
- 60. Smith Eiamsa-ard (Department of Mechanical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Thailand)
- 61. Serkan Eker (Dokuz Eylul University, Turkey)
- 62. Ahmed A. Elhattab (Department of Civil, Construction, and Environmental Engineering, The University of Alabama at Birmingham, United States)
- 63. G. Emayavaramban (Karpagam Academy of Higher Education, India)
- 64. Ömer Faruk Ertuğrul (Department of Electrical and Electronic Engineering, Batman University, Turkey)
- 65. Mohamed Nazri Fadzli (School of Materials Engineering, Engineering Campus, Universiti Sains Malaysia, Malaysia)
- 66. Cristina Falcinelli (Department of Engineering, Campus Bio-Medico University of Rome, Italy)
- 67. Chuangang Fan (School of Civil Engineering, Central South University, China)
- 68. Jean Marie Floc'H (IETR, INSA, 20 avenue des Buttes de Coësmes, France)
- 69. Jordi Fonollosa (Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Spain)
- 70. Cristiano Fragassa (University of Bologna, Department of Industrial Engineering, Italy)
- 71. Mohamad Ali Fulazzaky (Islamic Science Research Network, University of Muhammadiyah Prof. Dr Hamka, Indonesia)
- 72. Elsa Garavaglia (Department of Civil and Environmental Engineering, Politecnico di Milano, Italy)
- 73. Dipendra Gautam (Structural and Geotechnical Dynamics Laboratory, StreGa, DiBT, University of Molise, Italy)
- 74. Muhammad Afzal Ghauri (Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan)
- 75. Ahmadali Gholami (Department of Thermofluids, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Malaysia)
- 76. Hendra Grandis (Geophysical Engineering Dept., Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Indonesia)
- 77. Varun Gupta (KIET Group of Institutions, India)

- 78. Tony Hadibarata (Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University, Malaysia)
- 79. Farizal Hakiki (King Abdullah University of Science & Technology (KAUST), Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC), Saudi Arabia)
- 80. Sri H. Harjanto (Department of Metallurgy and Materials Engineering, Universitas Indonesia, Indonesia)
- 81. Rini Nur Hasanah (Department of Electrical Engineering, Faculty of Engineering, Brawijaya University, Indonesia)
- 82. Morteza Hashemi (Department of Geology, Faculty of Sciences, University of Isfahan, Iran)
- 83. Fachrurrazi Hasjim (Syiah Kuala University, Indonesia)
- 84. Muslikhin Hidayat (Chemistry Engineering Department Universitas Gadjah Mada, Indonesia)
- 85. Yuli Setyo Indartono (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 86. Jeby Thomas Jacob (Dept. of Electrical and Electronics Engg., Satyabhama University, India)
- 87. Ali Jwied Jaeel (Civil Engineering Department, Wasit University, Iraq)
- 88. Seid Mahdi Jafari (Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Iran)
- 89. Abu Jahid (Department of Electrical, Electronic and Communication Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh)
- 90. Jan Jezierski (Department of Foundry Engineering, Silesian University of Technology, Poland)
- 91. Boru Jia (Sir Joseph Swan Centre for Energy Research, Newcastle University, United Kingdom)
- 92. Pengfei Jia (College of Electronic and Information Engineering, Southwest University, China)
- 93. Endra Joelianto (Instrumentation and Control Research Group, Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 94. Paul F. Joseph (Department of Mechanical Engineering, Clemson University, United States)
- 95. Hermawan Judawisastra 9Materials Engineering Departments, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 96. P. N. Kadiresh (Department of Aerospace Engineering, BSA Crescent Institute of Science and Technology, India)

- 97. Charalampos Kalalas (Centre Tecnològic de Telecomunicacions de Catalunya, Spain)
- 98. Behzad Kalantari (Department of Civil Engineering, Faculty of Engineering, University of Hormozgan, Iran)
- 99. Mehmet Kalender (Department of Bioengineering, Fırat University, Turkey)
- 100. Adirak Kanchanaharuthai (Department of Electrical Engineering, Rangsit University, Thailand)
- 101. Aynur Gül Karahan (Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Turkey)
- 102. Sahar Kharrufa (Department of Architecture, Ajman University, United Arab Emirates)
- 103. M. Kiec (Faculty of Civil Engineering, Cracow University of Technology, Poland)
- 104. M. D. Koerniawan (Architecture Programme, School of Architecture Planning and Policy Development, Institut Teknologi Bandung, Indonesia)
- 105. Sugeng Krisnanto (Geotechnical Engineering Research Group, Faculty of Civil and Environmental Engineering, India)
- 106. Stefanus A. Kristiawan (SMARCrete Research Group, Civil Engineering Department, Universitas Sebelas Maret, Indonesia)
- 107. Navneet Kumar (Department of Mechanical Engineering, Indian Institute of Science, India)
- 108. M. Syahril B. Kusuma (Water Resources Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 109. Tutuk Djoko Kusworo (Department of Chemical Engineering, University of Diponegoro, Indonesia)
- 110. Kazunari Kuwahara (Osaka Institute of Technology, Japan)
- 111. Szemun Lam (Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Malaysia)
- 112. Panon Latcharote (Faculty of Science and Technology, Thammasat University, Thailand)
- 113. Fourier Dzar Eljabbar Latief (Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia)
- 114. Heeyoung Lee (Department of Civil Engineering, College of Engineering, Kyung Hee University, South Korea)
- 115. Tianjiao Li (Antenna, RF, Microwave Integrated System Laboratory, Department of Electrical and Computer Engineering, University of Central Florida, United States)

- 116. Suched Likitlersuang (Geotechnical Research Unit, Dept. of Civil Engineering, Faculty of Engineering, Chulalongkorn University, Thailand)
- 117. Wenbin Lin (Department of Electronic and Optoelectronic Application Engineering, Far East University, China)
- 118. L. Norberto López de Lacalle (Department of Mechanical Engineering, Faculty of Engineering of Bilbao, Aeronautics Advanced Manufacturing Center (CFAA), Spain)
- 119. Hermes José Loschi (Laboratory of Visual Communications, Department of Communications, School of Electrical and Computer Engineering, University of Campinas, Brazil)
- 120. Yunjiang Lou ((School of Mechanical Engineering and Automation, Harbin Institute of Technology, China)
- 121. Fuyin Ma (School of Mechanical Engineering, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, China)
- 122. José Machado (Algoritmi Research Center, University of Minho, Portugal)
- 123. Liqiang Mai (International School of Materials Science and Engineering, Wuhan University of Technology, China)
- 124. P. V. Malaji (Department of Mechanical Engineering, BLDEA's V P Dr. P G Halakatti College of Engg. & Tech., India)
- 125. Erfan Maleki (Department of Mechanical Engineering, Sharif University of Technology-International Campus, Iran)
- 126. Simone Mancini (Eurisco Consulting Srls-R and D Company, Italy)
- 127. Dave Mangindaan (Food Technology Department, Faculty of Engineering, Bina Nusantara University, Indonesia)
- 128. A. Muthu Manokar (Department of Mechanical Engineering, B.S.Abdur Rahman Crescent Institute of Science & Technology, India)
- 129. Bonar Tua Halomoan Marbun (Study Program of Petroleum Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Indonesia)
- 130. M. Margret (Radiological Safety Division, Indira Gandhi Centre for Atomic Research, India)
- 131. Toshifumi Matsuoka (Fukada Geological Institute, Japan)
- 132. Edy Tonnizam Mohamad (Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia)
- 133. Norzilawati Mohamad (Engineering Materials and Structures (eMast) iKohza, Malaysia-Japan International, Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Malaysia)

- 134. Dariush Abbasinezhad Mood (Department of Computer Engineering and Information Technology, Imam Reza International University, Iran)
- 135. Aghil Moslemizadeh (Department of Petroleum Engineering, Petroleum University of Technology, Iran)
- 136. Ayman M. Moustafa (Dept. of Civil Engineering, Missouri Univ. of Science and Technology, United States)
- 137. Muhammad Mukhlisin (Department of Civil Engineering, Polytechnic Negeri Semarang, Indonesia)
- 138. S. Nallusamy (Department of Mechanical Engineering, Dr. M G R Educational and Research Institute, India)
- 139. Benedetto Nastasi (Department of Architectural Engineering and Technology (AE+T), TU Delft University of Technology, Netherlands)
- 140. Hadi Chahkandi Nejad (Department of Electrical Engineering, Birjand Branch, Islamic Azad University, Iran)
- 141. K. S. Ng (Faculty of Civil Engineering, Universiti Teknologi Mara Cawangan Pulau Pinang, Malaysia)
- 142. Atthapol Ngaopitakkul (Department of Electrical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Thailand)
- 143. Shunhao Ni (Candu Energy Inc., SNC-Lavalin Group, Canada)
- 144. Muhammad Nizam (Department of Electrical Engineering, Sebelas Maret University, Indonesia)
- 145. Yuki Noguchi (Department of Mechanical Engineering and Science, Kyoto University, Japan)
- 146. Suprihanto Notodarmojo (Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 147. Nuryono (Department of Chemistry, Gadjah Mada University, Indonesia)
- 148. Yuriy E. Obzherin (Department of Higher Mathematics, Sevastopol State University, Indonesia)
- 149. Monita Olivia (Department of Civil Engineering, Faculty of Engineering, Universitas Riau, Indonesia)
- 150. Ivan Oropeza-Pérez (Department of Architecture, Universidad de las Americas Puebla, Mexico)
- 151. S. O. Oyedepo (Department of Mechanical Engineering, Covenant University, Nigeria)
- 152. Sujatha P (Department of Electrical and Electronics Engineering, Jawaharlal Nehru Technological University Ananthapur, India)
- 153. Viorel Paleu (Mechanical Engineering Faculty, Technical University Gheorghe Asachi of Iaşi, Romania)

- 154. Nugroho Agung Pambudi (Mechanical Engineering Education, Universitas Negeri Sebelas Maret, Malaysia)
- 155. Eren Pamuk (The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Turkey)
- 156. Hamed Panahi (Departments of Geosciences and Physics, Physics of Geological Processes, University of Oslo, Norway)
- 157. Seno Darmawan Panjaitan (Dept. of Electrical Engineering, Tanjungpura University, Indonesia)
- 158. Anand Pai (Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, India)
- 159. T. A. Papadopoulos (Power Systems Laboratory, Department of Electrical and Computer Engineering, Democritus University of Thrace, Greece)
- 160. Windu Partono (Civil Engineering Department, University of Diponegoro, Indonesia)
- 161. Ronghua Peng (Institute of Geophysics and Geomatics, China University of Geosciences, China)
- 162. Didin Agustian Permadi (Institut Teknologi Nasional Bandung, Indonesia)
- 163. Khamphe Phoungthong (Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Thailand)
- 164. Luca Piancastelli (Department of Industrial Engineering, Alma Mater Studiorum University of Bologna, Viale Risorgimento, Italy)
- 165. M. Pimpinella (Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI, Italy)
- 166. Dhota Pradipta (Geodesy Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Indonesia)
- 167. Filippo Giammaria Pratico (Department of Information Engineering, Infrastructure and Sustainable Energy, University Mediterranea of Reggio Calabria, Italy)
- 168. Ipung F. Purwanti (Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember, Indonesia)
- 169. Xinming Qiu (Department of Engineering Mechanics, Tsinghua University, China)
- 170. Ramin Rafiee (Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Iran)
- 171. Narintsoa Ranaivomanana (LMDC, INSA/UPS Génie Civil, France)

- 172. Zhengyong Ren (Central South University, School of Geosciences and Info-Physics, China)
- 173. Bambang Riyanto (School of Electrical Engineering and Mathematics, Institut Teknologi Bandung, Indonesia)
- 174. Arwindra Rizqiawan (School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia)
- 175. Nitinart Saetung (Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Thailand)
- 176. Mohammad Reza Safaei (Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, VietNam)
- 177. Atul A. Sagade (Solar Energy Research Laboratory, India)
- 178. S. Amin Salamatian (Civil Engineering Department, Shahabdanesh University, Iran)
- 179. Surender Reddy Salkuti (Department of Railroad & Electrical Engineering, Woosong University, South Korea)
- 180. Salmiati (Centre for Environmental Sustainability and Water Security, Universiti Teknologi Malaysia, Malaysia)
- 181. Agus Saptoro (Department of Chemical Engineering, Curtin University Malaysia)
- 182. Ceyda Senem Uyguner-Demirel (Bogazici University, Institute of Environmental Sciences, Turkey)
- 183. Payam Shafigh (Department of Building Surveying, Faculty of Built Environment, University of Malaya, Malaysia)
- 184. Redmond R. Shamshiri (Leibniz Institute for Agricultural Engineering and Bioeconomy, Germany)
- 185. Nilkanth N. Shinde (Department of Technology, Shivaji University, India)
- 186. Moh Nur Sholeh (Civil Engineering, Vocational School, Diponegoro University, Indonesia)
- 187. Ondřej Šikula (Faculty of Civil Engineering, Brno University of Technology, Czech Republic)
- 188. Ravi Pratap Singh (Department of Industrial & Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, India)
- 189. Wanwipa Siriwatwechakul (School of Bio-chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Thailand)
- 190. Johnner Sitompul (Chemical Engineering Process Design and Development, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)

- 191. Manzoor Elahi M. Soudagar (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Malaysia)
- 192. Stefano Stacul (Department of Civil and Industrial Engineering, University of Pisa, Italy)
- 193. Ralf Stannarius (Institute of Physics, Otto von Guericke University, Germany)
- 194. Kurt Martin S. Strack (KMS Technologies, Thailand)
- 195. Hanggara Sudrajat(Department of Chemical Engineering, Universitas Jember, Indonesia)
- 196. Rochim Suratman (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 197. Niken Silmi Surjandari (Civil Engineering Department, Engineering Faculty, Sebelas Maret University, Indonesia)
- 198. Bambang Suryoatmono (Departmentof Civil Engineering, Parahyangan Catholic University, Indonesia)
- 199. Angkeara Svay (Institut des Sciences de la Mécanique et Applications Industrielles (IMSIA), University Paris-Saclay, France)
- 200. Sándor Szénási (John von Neumann Faculty of Informatics, Óbuda University, Hungary)
- 201. Pooya Taheri (Mechatronics Systems Engineering Department, Simon Fraser University, Canada)
- 202. Chat Tim Tam (Department of Civil and Environmental Engineering, National University of Singapore, Singapore)
- 203. Luís Marcelo Marques Tavares (Department of Metallurgical and Materials Engineering, Universidade Federal do Rio de Janeiro, Brazil)
- 204. Philipp Terhörst (Fraunhofer Institute for Computer Graphics Research IGD, Germany)
- 205. Cem Topkaya (Department of Civil Engineering, Middle East Technical University, Turkey)
- 206. Cuong Dinh Tran (Department of Automation, Ton Duc Thang University, Vietnam)
- 207. Farid Triawan (Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Japan)
- 208. Sang-Bing Tsai (Zhongshan Institute, University of Electronic Science and Technology of China, China)
- 209. Demetrios E. Tsesmelis (Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, Greece)
- 210. Kyohei Ueda (Division of Geotechnics, Disaster Prevention Research Institute, Kyoto University, Japan)

- 211. Wahyudi Utama (Department of Quantity Surveying, Universitas Bung Hatta, Indonesia)
- 212. Mehrdad Vahdati (Mechanical Engineering Faculty, K. N. Toosi University of Technology, Iran)
- 213. Giacomo Viccione (Università degli Studi di Salerno, Italy)
- 214. Annarita Viggiano (School of Engineering, University of Basilicata, Italy)
- 215. Maria Grazia Violante (DIGEP-Department of Management and Production Engineering, Politecnico di Torino, Italy)
- 216. Jean Francois Vuillaume (United Nations University, Institute for the Advance of Sustainability, UNU-IAS, Japan)
- 217. Zhiqiang Wan (Department of Electrical, University of Rhode Island, United States)
- 218. Yanan Wang (School of Engineering, Deakin University, Australia)
- 219. Arie Wardhono (Jurusan Teknik Sipil, Universitas Negeri Surabaya, Indonesia)
- 220. Shengji Wei (Earth Observatory of Singapore/Asian School of the Environment, Nanyang Technological University, Singapore)
- 221. Joerg Dieter Weigl (Unicorn Engineering GmbH, Germany)
- 222. Yanan Zhu (Department of Electrical and Computer Engineering, University of Florida, United States)
- 223. Kai Da Xu (Department of Electronic Science, Xiamen University, China)
- 224. Heyong Xu (School of Aeronautics, Northwestern Polytechnical University, Xi'an, China)
- 225. Jian Xu (Software College, Northeastern University, Shenyang, China)
- 226. George D. Yannis (Department of Transportation Planning and Engineering, School of Civil Engineering, National Technical University of Athens, Greece)
- 227. Wanxiang Yao (Tianjin Key Laboratory of Civil Structure Protection and Reinforcement, Tianjin Chengjian University, China)
- 228. Zimeng Yao (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, China)
- 229. Kinsam Yen (School of Mechanical Engineering, Universiti Sains Malaysia, Malaysia)
- 230. Suzana Bt Yusup (Biomass Processing Laboratory, Centre for Biofuel and Biochemical Research, Universiti Teknologi PETRONAS, Malaysia)
- 231. Yuansheng Zhai (School of Mechanical Power Engineering, Harbin University of Science and Technology, China)

- 232. Bo Zhang (Yangtze University, China)
- 233. Qiling Zhang (Changjiang River Scientific Research Institut, China)
- 234. Wengang Zhang (National Joint Engineering Research Center of Geohazards Prevention in Reservoir Area Environment, School of Civil Engineering, Chongqing University, China)
- 235. Leilei Zhao (School of Automation, Beijing University of Posts and Telecommunications, China)
- 236. Shamsul Aizam Zulkifli (Department of Electrical Power Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia)

Journal of Engineering and Technological Sciences Guidelines for Author

1. Standard of reporting

Authors should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. A paper should contain sufficient detail and references to permit others to replicate the work. Fraudulent or knowingly inaccurate statements constitute unethical behavior are unacceptable. Professional publication articles should also be accurate and objective, and editorial 'opinion' works should be clearly identified.

2. Exclusivity of work

The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others this should be appropriately cited or quoted. Plagiarism takes many forms, from 'passing off' another's paper as the author's own paper to copying or paraphrasing substantial parts of another's paper (without attribution), to claiming results from research conducted by others. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behaviour and is unacceptable. In general, an author should not submit for consideration in another journal a previously published paper. We consider for publication from conference paper if it is only an extended version of conference paper with at least 30% of new material.

3. Hazards and Human or Animal Subjects

If the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. If the work involves the use of animal or human subjects, the author should ensure that the manuscript contains a statement that all procedures were performed in compliance with relevant laws and institutional guidelines and that the appropriate institutional committee(s) has approved them. Authors should include a statement in the manuscript that the informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

4. Authorship of the Paper and Copyright

Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported work. All those who have made significant contributions should be listed as co-authors. Whilst those who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. The corresponding author should ensure that all appropriate and inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. No manuscript can be published unless accompanied by a signed publication agreement, which serves as a transfer of copyright from author to publisher. A copy of that agreement is required after the paper is accepted

5. Acknowledgement

Proper acknowledgment of the work of others must always be given. Authors should cite publications that have been influential in determining the nature of the reported work. Information obtained privately, as in conversation, correspondence or discussion with third parties, must not be used or reported without explicit, written permission from the source. Information obtained in the course of confidential services, such as refereeing manuscripts or grant applications, must not be used without the explicit written permission of the author of the work involved in these services.

6. Disclosure Requirements

Author when submitting a manuscript, must disclose any meaningful affiliation or involvement, either direct or indirect, with any organization or entity with a direct financial interest in the subject matter or materials discussed (for example, employment, consultancies, stock ownership, grants, patents received or pending, royalties, honoraria, expert testimony). These kinds of financial involvement are fairly common, unavoidable, and generally do not constitute a basis for rejecting a manuscript. Specifics of the disclosure will remain confidential. If deemed appropriate by the Scientific Editor, a general statement regarding disclosure will be included in the Acknowledgment section of the manuscript.

7. Errors in Published Works

When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. If the editor or the publisher learns from a third party that a published work contains a significant error, it is the obligation of the author to promptly retract or correct the paper or provide evidence to the editor of the correctness of the original paper.

8. Disclaimer

Opinions expressed in articles published in the Journal of Engineering and Technological Sciences are those of the author(s) and do not necessarily represent opinions of the Bandung Institute of Technology (ITB). The Journal of Engineering and Technological Sciences does not guarantee the appropriateness for any purpose of any method, product, process, or device described or identified in an article. Trade names, when used, are only for identification and do not constitute endorsement by Journal of Engineering and Technological Sciences.

9. Manuscript preparation

Use the English language and the SI system (Système International d'Unités, often referred as "International Units") for measurements and units. Manuscript in MS Word or PDF format (generated from MS Word) is to be submitted online through http://journals.itb.ac.id/index.php/jets. The length of manuscript is expected not to exceed 20 printed pages (single space) including abstract, figures, tables and references. An abstract between 100 and 200 words describes the significance of manuscript should be included. The authors should supply 5-10 keyword or phrases that characterizes their manuscript. Use 11 pt Times New Roman fonts for body of the text with 1.0 line spacing between lines. The references should be numbered consecutively in the order of their appearance and should be complete, including authors' initials, the title of the paper, the date, page numbers, and the name of the sponsoring society. Please compiles references as shown in the examples below. Figures are printed in black & white, while color figures are only available online. Adjust the size of figures and tables as they will be appeared. All figure captions should be legible, minimum 8 point type. For all equations, use either Microsoft Equation Editor or MathType add-on. Equations are numbered consecutively in parenthesis, e.g. (1), and set at the right margin.

Reference examples:

- [1] Sutasurya, L.A. & Riyanto, B., Title of Paper, Name of Journal, 8(1), pp. 20-25, Dec. 2005. (Journal)
- [2] Sutasurya, L.A., Handojo, A. & Riyanto, B., Title of book, ed. 2, Publisher, 2007. (Book)
- [3] Williams, J., Name of Paper, Name of Book, Name of the editor(s), eds., Publisher, pp. 67-69, 2006. (Book with paper title and editor)
- [4] Suharto (ed), Title of Paper, Name of Proc., pp. 5-10, 2008. (Conference Proceedings)
- [5] Name of the author(s), Title of paper (if available), Organization, URL Link, (1 April 2011). (URL Link)
- [6] Nicole, R., Title of Paper, Name of Journal, submitted for publication. (Pending publication)
- [7] John, K., Title of Paper, unpublished. (Unpublished manuscript)
- [8] Rashid, L., *Title of Dissertation*, PhD dissertation, Name of Dept., Name of Univ., City, 2010. (Thesis or Dissertation)
- [9] Jenny, P., Name of Institution, City, personal communication, 2010. (Personal communication)
- [10] Name of the author(s), *Title of Technical Report*, Technical Report TR-0334 (34-56), Name of Institution, City, Dec. 2009. (Technical report with report number)