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Highlights: 

 The DC PSE method was successfully implemented to solve the Navier-Cauchy 
equation for linear static elasticity. 

 Convergence of DC PSE was proven against empirical and analytical results. 
 Most of the computational time in the author’s code is attributed to large sparse matrix 

inversion and the particle neighbor search algorithm. 
 

Abstract. Discretization corrected particle strength exchange (DC PSE) is a 
particle based spatial differential operator designed to solve meshless continuum 
mechanics problems. DC PSE is a spatial gradient operator that can discretize a 
computational domain with randomly distributed particles, provided that each 
particle has enough neighboring particles. In contrast, conventional methods such 
as the standard finite difference method require the computational domain to be 
discretized into a Cartesian grid. In linear elasticity simulations, especially steady 
state cases, this domain is mostly discretized using mesh-based methods such as 
finite element. However, while particle methods such as smoothed particle 
hydrodynamics (SPH) have been widely applied to solve dynamic elasticity 
problems, they have rarely been used in steady state simulations. In this study, a 
DC PSE operator was used to solve steady linear elasticity problems in a two-
dimensional domain. The result of the DC PSE numerical simulation was 
compared to numerical results, empirical formula results, and results from 
conventional commercial finite element software, respectively. 
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1 Introduction 

In continuum mechanics simulations, the computational domain is usually 
discretized using either a mesh-based method or a particle-based method. Mesh 
based methods are very widely used and are applied in most commercial 
simulation software, whereas particle-based methods are much less prevalent in 
most engineering applications. The popularity of mesh-based methods is due to 
their efficiency in terms of computational time. Mesh-based methods generally 
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require a smaller number of elements to simulate a complex shaped domain. 
However, particle-based methods still have some advantages compared to mesh-
based methods, such as reduction of computational time for mesh generation and 
their high structural deformation capabilities for solid mechanics simulations. 

The particle-based methods were pioneered by the development of Smoothed 
Particle Hydrodynamics (SPH) by Monaghan & Gingold [1]. However, the 
earliest SPH method was only zeroth-order consistent at best, which led to 
inaccurate results when solving for higher order equations. Decades have passed 
since the development of the earliest SPH method and many other particle-based 
discretization methods have emerged. One of these new particle-based 
discretization methods is Discretization Corrected Particle Strength Exchange 
(DC PSE), which can be made consistent up to any arbitrary order. Developed by 
Schradder in 2011 [2], DC PSE is a corrected particle gradient operator based on 
the Particle Strength Exchange (PSE) operator developed by Mas-Gallic in 1989 
and generalized into an arbitrary differential operator by Eldredge in 2002 [3]. 
DC PSE employs a correction using a polynomial with arbitrary order, which 
ensures consistency to that respective order.  

The steady state linear elasticity equation to be solved in this paper is a strong 
formulation in the form of second-order partial differential equations (Navier-
Cauchy equations). This governing equation is derived only from the momentum 
equilibrium, and it assumes the solid to be linearly elastic (small deformations) 
and incompressible (constant density). Both Neumann (traction) and Dirichlet 
(displacement) boundary conditions are also applied to model either traction, free, 
or displacement boundaries. These partial differential equations are discretized 
using DC PSE to create a system of linear equations, which can then be solved 
implicitly using methods such as LU decomposition [4]. Regarding the 
application of DC PSE in solid mechanics, Bourantas, et al. applied the DC PSE 
operator to solve steady state linear equations by combining it with a standard 
finite difference method in a hybrid formulation [5]. In their method, Bourantas, 
et al. utilize DC PSE for boundary particles, whereas inner particles are solved 
using finite difference method.  

In the present research, DC PSE was applied to the whole simulation domain for 
consistency and to gauge the accuracy of a complete DC PSE elastostatics 
simulation. This paper provides the theoretical background of both linear 
elasticity and the DC PSE operator, as well as several test cases in a two-
dimensional domain to benchmark the performance of DC PSE compared to both 
analytical and conventional finite element results. 
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2 Theoretical Background 

2.1 Linear Elasticity 

The special case of the Navier Cauchy equation that governs the steady state 
linear elasticity equation is derived from the steady state momentum equilibrium 
in Eq. (1). 

 ∇. 𝜎 = −𝑓 (1) 

Hooke’s law for the constitutive equation of a linear isotropic elastic material in 
Eq. (2) is used for the stress-strain relations, where 𝜆 and 𝜇 are the Lamé 
constants. 

𝜎 = 𝜆. 𝑡𝑟(𝜀). 𝐼 + 2𝜇𝜀  (2) 

 𝜆 =
௩.ா

(ଵା௩)(ଵିଶ௩)
 (3) 

 𝜇 =
ா

ଶ(ଵା௩)
   (4) 

In linear elasticity, the material is limited to small deformations only, where the 
linear strain-displacement relations in Eq. (5) can be applied.  

 𝜀 =
ଵ

ଶ
[∇𝑢 + (∇𝑢)்]  (5) 

Therefore, in terms of displacement, the Navier Cauchy equation can be written 
as in Eq. (5) [6, 7]. 

 (𝜆 + 2𝜇)∇(∇𝑢) + 𝜇∇ଶ𝑢 = −𝑓 (6) 

For Neumann boundaries (Ω୒) where the traction acting on the solid surface is 
defined, the following equation is used, where 𝑛 is the boundary surface’s 
outward normal vector and 𝑡 is the traction vector acting on the boundary surface. 

 𝜎. 𝑛 = 𝑡 (7) 

For Dirichlet boundaries (Ωୈ) where the displacement is defined, the following 
equation is used, where 𝑑 is the defined displacement vector. 

 𝑢 = 𝑑 (8) 

These boundaries are visualized for an arbitrary shaped domain in Figure 1. In 
this domain, Eq. (6) is valid for inner particles inside of the domain, denoted by 
Ω. Eq. (7) is valid for boundary particles where traction load is applied, as well 
as boundaries with no prescribed load or displacement (traction free boundary). 
This boundary is denoted by Ωே, or the Neumann boundary. The last boundary is 
the prescribed displacement boundary, denoted by Ω஽, or the Dirichlet boundary. 



 Christopher Adnel & Lavi Rizki Zuhal 

678 

In this boundary, the particle displacement is prescribed (it can be either fixed or 
displaced to a certain length). 

 

Figure 1 Neumann and Dirichlet boundary visualization. 

In a two-dimensional domain, the governing equations can be written as follows: 
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𝑢௫ = 𝑑௫

𝑢௬ = 𝑑௬
                                                 ∈ Ωୈ  (11) 

2.2 DC PSE Operator 

The DC PSE gradient operator developed by Schradder [2] is written as follows: 

 𝑄௠𝑓൫𝑥௣൯ =
ଵ

ఌ൫௫೛൯
∑ ೘೔

೙
೔సభ

∑ ቀ𝑓൫𝑥௤൯ ± 𝑓൫𝑥௣൯ቁ 𝜂 ൬
௫೛ି௫೜

ఌ൫௫೛൯
൰௫೜∈ே൫௫೛൯  (12) 

𝑄௠  : spatial gradient approximation at order m 
𝑚 : spatial differentiation order at basis i 
𝑛 : number of dimensions in Euclidian space 
𝜀൫𝑥௣ ൯ : spatially dependent scaling function 

𝑁൫𝑥௣൯ : neighboring particle set of 𝑥௣ 

𝑓൫𝑥௣൯ : base function to be differentiated in 𝑥௣ 
𝜂(𝑥) : corrected weighting function 

The corrected weighting function 𝜂(𝑥) is based on a squared exponential 
kernel/Gaussian kernel, which is corrected using a polynomial of a certain order 
with 𝑝 as its monomial basis vector. This correction increases the operator’s order 
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of consistency to the same order. 𝜂(𝑥) for two-dimensional cases is shown in Eq. 
(13). To ensure computational efficiency, the particle interaction is also limited 
only up to a certain cut-off radius, 𝑟௖, as visualized in Figure 2. 

𝜂 ൬
௫೛ି௫೜

ఌ൫௫೛൯
൰ =

⎩
⎨

⎧
𝑒

ቆ
ష ∑ (ೣ೛೔

షೣ೜೔
)మ೙

೔సభ

ഄ൫ೣ೛൯
మ ቇ

. 𝑝 ൬
௫೛ି௫೜

ఌ൫௫೛൯
൰ . 𝑎்൫𝑥௣൯, ቚห𝑥௣ − 𝑥௤หቚ ≤  𝑟௖

0                                                                         , ቚห𝑥௣ − 𝑥௤หቚ ≥  𝑟௖

    (13) 

 

Figure 2 Neighboring particle visualization (blue indicates interaction, red 
means no interaction, and grey denotes the particle of interest). 

From Eq. (13), 𝑝൫𝑥௣ − 𝑥௤൯. 𝑎்(𝑥) is the polynomial correction with 𝑎்(𝑥) as the 
polynomial constants. The constant 𝑎௜,௝ is determined by solving the following 
matrix equations: 

 𝐴൫𝑥௣൯𝑎்൫𝑥௣൯ = 𝑏                                                                     (14) 

with 

 𝐴൫𝑥𝑝൯ = 𝐵൫𝑥𝑝൯
𝑇

𝐵(𝑥𝑝)    (15) 

 𝐵൫𝑥𝑝൯ = 𝐸൫𝑥𝑝൯𝑉൫𝑥𝑝൯     (16) 

 𝑏 = (−1)∑ ௠೔
మ
೔సభ 𝐷௠𝑝(𝑥)|௫ୀ଴ 

𝑟௖ 
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⎥
⎥
⎥
⎥
⎤

    (17) 

 𝐸൫𝑥௣൯ = 𝑑𝑖𝑎𝑔 ቌ൥𝑒
หೋ೜൫ೣ೛൯ห

మ

మഄమ ൩

௤ୀଵ

௞

ቍ      (18) 

 𝑏 = (−1)∑ ௠೔
మ
೔సభ 𝐷௠𝑝(𝑥)|௫ୀ଴             (19) 

 𝑧௤൫𝑥௣൯
௤ୀଵ

௞
= ൫𝑥௣ − 𝑥௤൯

௫೜∈ே൫௫೛൯
                 (20) 

In the equations, 𝑉൫𝑥௣൯ is a Vandermonde matrix from the monomial basis 𝑝(𝑧), 
with the subscript l denoting the number of moment conditions that need to be 
satisfied and k denoting the number of neighboring nodes inside the cut-off 
radius. For the matrix 𝐴൫𝑥௣൯ to have its inverse, it is crucial that the number of 
neighboring nodes k is higher or equal to the number of moment conditions l. 
Therefore, the condition 𝑘 ≥  𝑙 must be fulfilled. The determination of cut-off 
radius 𝑟௖ depends mostly on the minimum number of neighboring particles due 
to these moment conditions. Increasing 𝑟௖ above this threshold, however, will not 
produce any notable improvement to the accuracy of the method because of the 
exponential kernel in DC PSE, which diminishes the contribution by particles 
above 𝑟௖ > 3ℎ. 

3 Results Validation 

In this research, two benchmark problems in two-dimensional domains were 
simulated: a simple cantilever beam bending case and a traditional hollowed plate 
stress concentration case. 

3.1 Cantilever Beam with Shear Load 

The cantilever beam schematic in Figure 3Error! Reference source not found. 
shows a beam with length L and width b, which is fixed on the left and downward 
distributed shear load W is applied on the other end. The values of L, b, W, and 
other beam parameters are given in Table 1. In this simulation, the particle 
spacing was varied between 0.01 m to 0.0025 m (500 to 8,000 particles) to check 
for convergency of the scheme. The resulting y-axis midpoint displacement 
comparison between the present work and the analytical Euler beam equation is 
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shown in Figure 4, which shows good convergency to the analytical solution. The 
absolute displacement error diminishes with the decrease of particle spacing, as 
shown in Figure 5.  

 
Figure 3 Cantilever beam with shear load test case schematic. 

Table 1 Cantilever beam with shear load test case details. 

Young’s Modulus 200 Gpa 
Poisson’s Ratio 0.3  

L 1 m 
b 0.05 m 

Thickness 0.001 m 
W 20000 kN/m2 

 
Figure 4 Cantilever beam y-axis deflection plot for various particle spacings. 
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Figure 5 Cantilever beam y-axis deflection error for various particle spacings. 

Based on the results, using 8,000 particles results in a tip deflection relative error 
of 0.14%. The normal stress contour for this benchmark problem using 8,000 
particles is shown in Figure 6. 

 
Figure 6 Cantilever beam normal stress contour (8,000 particles, 𝛿ௌ௖௔௟௘ = 100). 

Regarding the computational time, the computational complexity of the authors’ 
code is approximately O(N2) due to the naïve neighbor search algorithm as well 
as the LU decomposition algorithm used. The computational time for various 
particle numbers for the cantilever beam case is shown in Figure 7. 
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Figure 7 Cantilever beam total computational time for various particle spacings. 

3.2 Hollowed Plate with Tensile Load 

The hollowed plate schematic in Figure 8 shows that the plate is fixed on the left 
and normal distributed load W is applied on the other end. The plate dimension 
(length L, width b, and circular hollow radius R), material properties, and W value 
are given in Table 2.  

 
Figure 8 Hollowed plate with tensile load test case schematic. 
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Table 2 Hollowed plate with tensile load test case details. 

Young'’ Modulus 200 Gpa 
Poisson’s Ratio 0.3  

L 0.6 m 
b 0.3 m 
R 0.075 m 

Thickness 0.001 m 
W 10000 kN/m2 

For this test case, the particles are distributed through the outer and inner 
boundary lines to capture the plate’s curvature, especially the circular hollow 
boundary. The inner particles are distributed using a standard Cartesian grid. This 
particle distribution is shown in Figure 9. It demonstrates the strength of particle 
methods, where particles can be distributed arbitrarily, provided there are enough 
neighboring particles for each particle’s gradient approximation. 

 
Figure 9 Hollowed plate with tensile load particle distribution. 

In this test case, stress concentration occurs on the circular hollow surfaces and 
the value of the normal stress at that location is used as a comparison between the 
results present work, commercial FEM software, numerical calculation, and an 
empirical formula. The empirical formula for the stress concentration is given in 
Eq. (21) and Eq. (22), where 𝑑 is the hole diameter, 𝑊 is the width of the plate 
perpendicular to the tensile load vector, and 𝜎ஶ is the tensile load acting on the 
plate [8]. The result of this comparison is detailed in Table 3, which shows good 
agreement between the results from the present work, commercial FEM software 
(0.78% difference), and the empirical result (2.2% difference). The overall 
normal stress contour from the present work also matches the ANSYS simulation 
result well, as shown in Figure 10. 

A convergency test was also conducted for this test case by varying the particle 
number used in the simulation. The maximum normal stress vs particle number 
chart in Figure 11 shows that the present DC PSE discretization scheme has good 
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convergence to the empirical results, with convergence reached at approximately 
5,000 particles. Regarding computational efficiency, the effect of particle number 
increment on computational time for the second test case is shown in Figure 12.  

 𝐾௧ = 3 − 3.14 ቀ
ௗ

ௐ
ቁ + 3.667 ቀ

ௗ

ௐ
ቁ

ଶ
− 1.527 ቀ

ௗ

ௐ
ቁ

ଷ
      (21) 

 
ఙ೘ೌೣ

ఙಮ
= 𝐾௧

ଵ

ଵିቀ
೏

ೈ
ቁ
   (22) 

Table 3 Hollowed plate with tensile load simulation results (162733 particles). 

 
 

 

 

 
 
 

 
Figure 10 Hollowed plate with tensile load normal stress contour (162,733 
particles, top: present work, bottom: ANSYS simulation) (𝛿ௌ௖௔௟௘ = 2,000). 

𝝈ஶ 10,000 kN/m2 
𝑲𝒕 (Empirical Formula) 2.1559  

𝝈𝒙𝒙 𝒎𝒂𝒙 (Empirical Formula) 43118 kN/m2 

𝝈𝒙𝒙 𝒎𝒂𝒙 (Numerical DC PSE) 44070 kN/m2 
𝝈𝒙𝒙 𝒎𝒂𝒙 (Numerical ANSYS) 43731 kN/m2 

Relative Error from Empirical 0.0221  
Relative Error from ANSYS 0.0078  
Particle Number 162,733  
ANSYS Node Number 41,265  
ANSYS Element Number 40,748  
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Figure 11 Hollowed plate maximum normal stress convergency plot. 

 
Figure 12   Hollowed plate total computational time for various particle numbers. 

4 Conclusion  

Based on the DC PSE simulation conducted in the present work, it can be 
concluded that the DC PSE differential operator is able to achieve high accuracy 
for steady state linear elasticity problems. All the test cases simulated using DC 
PSE yielded below 1% relative error compared to either analytical results or 
commercial finite element software.  

0

20000

40000

60000

80000

100000

120000

400 5400 10400 15400

M
ax

im
um

 N
or

m
al

 S
tr

es
s 

(k
N

/m
2)

Particle Number

Present Work (DC PSE) Empirical

-100000

0

100000

200000

300000

400000

500000

600000

0 20000 40000 60000 80000 100000 120000 140000 160000T
ot

al
 C

om
pu

ta
ti

on
al

 T
im

e 
(m

s)

Particle Number



Discretization Corrected Particle Strength Exchange for Steady 
State Linear Elasticity 

687 

However, to achieve this level of accuracy, the present DC PSE formulation 
requires a much higher number of particles compared to conventional finite 
element methods, which severely impacts computational efficiency. Fortunately, 
particle methods such as the present DC PSE formulation do not require a mesh 
generation algorithm, as the particles can be distributed freely. This was 
demonstrated by the hollowed plate test case, where the boundary particles can 
be distributed to follow the boundary shape, while the inner particles can be 
simply placed on a cartesian grid.  

In future works, the authors wish to implement this DC PSE gradient operator to 
other problems in solid mechanics, such as dynamic elasticity and fracture 
mechanics. Implementation of DC PSE in fluid structure interaction applications 
is also a promising field the authors wish to explore 
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