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Abstract. The applicability of parameter-varying reduced-order controllers to
aircraft models is proposed. A generalization of the balanced singular
perturbation method of the linear time-invariant (LTI) system was used to reduce
the order of the linear parameter-varying (LPV) system. Based on the reduced-
order model, a low-order LPV controller was designed using the H_ synthesis
technique. The performance of the reduced-order controller was examined by
applying it to the lateral-directional control of a 20th-order aircraft model.
Furthermore, the time responses of the closed-loop system with several reduced-
order LPV controllers and a reduced-order LTI controller were compared. The
simulation results show that an , 8"-order LPV controller can maintain stability
and provide the same level of closed-loop system performance as a full-order
LPV controller. This was not the case with the reduced-order LTI controller,
which cannot maintain stability and performance for all allowable parameter
trajectories.

Keywords: H_ synthesis; singular perturbation approximation; reduced-order LPV
controller; stability; aircraft dynamics.

1 Introduction

A generalization of the balanced truncation method for LTI systems to reduce
the model order of LPV systems has been published by Zobaidi, et al. [1],
Goddard [2], and Wood, et al. [3]. Next, Widowati, et al. [4] have used a
generalized balanced truncation to reduce the order of a parameter-varying
controller. In paper [4], we have investigated the degradation of LVP closed-
loop performance due to the parameter-varying reduced-order LPV controller.
A study of the application of a balanced singular perturbation approximation
(BSPA) to reduce the controller order of LTI systems has been published by
Saragih and Yoshida [5]. Widowati, et al. [6] proposed a method to reduce
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unstable LPV systems by generalizing BSPA for LTI systems via contractive
right coprime factorization. Further, Saragih and Widowati [7] have presented
sufficient conditions for the existence of right coprime factorization of
parameter-varying controllers.

In this paper we compare the performance of an LPV closed-loop system using
several reduced-order LPV controllers and a reduced-order LTI controller. This
paper uses the balanced singular perturbation method, whereas in [1] the
balanced truncation method was used to reduce a high-order plant. To verify the
validity of the proposed method, it was applied to a model reduction for N-250
aircraft. Aircraft dynamics may be particularly severe in the case of high-
performance aircrafts flying over a wide range of operational flight conditions
(take-off, cruise, landing, altitude, airspeed). In the early days of automatic
flight control systems, most systems were designed by using LTI control.
However, aircraft dynamics vary for different flight conditions, whereas LTI
controller is only suitable for certain flight conditions, and therefore cannot
guarantee performance for other flight conditions. If an LTI controller is not
capable of maintaining performance, the controller parameter values need
adjustment. It is well known that the variation of some aircraft parameters is
strongly related to air data variables, such as airspeed and altitude of the
aircraft. It is necessary to rely on adjusting the flight controller parameters to the
air data variables, a technique referred to as gain-scheduling.

In an attempt to reduce conservatism in control design and to improve
numerical computation for systems significantly affected by measurable time-
varying parameters, several new Linear Parameter Varying (LPV) approaches
have emerged in the last few years. These LPV approaches explicitly take into
account the relationship between real-time parameter variations and control
system stability and performance. Therefore, the LPV controller theoretically
guarantees performance and robustness for whole ranges of operating
conditions. Most of the LPV approaches are based on linear matrix inequalities
(LMI) and are solved numerically with some efficiency. While multitudes of
theoretical results exist in this area [8-11, 2], only a few aerospace application
oriented papers have been published to demonstrate the effectiveness of LPV
controllers [12,13]. Related studies by the authors of the current paper on the
application of LPV in flight control systems were published [14,15], but these
works focused on full-order controller cases. The purpose of this paper is to
propose robust gain-scheduling for uncertain LPV systems for lateral-
directional control of N-250 aircraft by using reduced-order controllers.

The paper is organized as follows. Section 2 describes a brief review of the
linear parameter varying (LPV) system. LPV synthesis is given in Section 3.
Order-reduction of the LPV system by using the BSPA method is discussed in
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Section 4. In Section 5, the reduced-order LTI and LPV control designs are
demonstrated. Concluding remarks are presented in Section 6.

2 Brief Review of LPV System
In this paper, we consider a linear parameter-varying system. For a compact
subset W — R®, parameter-variation set Fp denotes the set of all piecewise

continuous mapping R(time) into W with a finite number of discontinuities in
any interval, F, ={p:R—>W,p <p <p ,i=12--s}

'min

A compact set W c R®, along with continuous functions A:R® —R™",
B:R*5>R™, C:R®>R™™", D:R®*>R™™ represent an n"-order

parameter-varying plant, G(p), whose dynamics evolve as
OO HCOE (1)
YOO EEOE ). F,,

where x(t)eR", y(t)e R™, u®eR™. A state space realization of the
parameter-varying plant, G(p), is written as

(p®) [B(p(1))
G Vo) eF,.
(p)= |: (t) | (t) i| P( ) SR

The parameters of LPV system (1) are the functions of parameter o with
unbounded parameter-variation rates; hence the dependence of system
parameters on © can be omitted.

The parameter-varying system G() is quadratically stable [2] if there exists a
real positive-definite matrix P = P" >0, such that

A ()P +PA(p(t)) <0, Yp(t) eF, (2

The induced L, norm of a quadratically stable parameter-varying system,
G(p), with zero initial conditions, is defined as [2]

Ivl,
il

I6(o),, = sup sup ®

p()eF, u#0,uel,
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3 LPV Synthesis

To formulate a performance-oriented parameter-varying output feedback
synthesis problem, the parameter-varying plant is written as follows

(4)

where y is the measurement, u(t) is the control input, w(t) is the disturbance, z(t)
is the controlled output, x(t) is the state vector. Readers are referred to
references [2,3] for the definition of quadratic stabilizability and quadratic
detectability. The following assumptions are made for the parameter-varying
plant:

1. D,(p®)=0
2. B,(p(1)), C,(p(t)), D,(p(t)), and D, (po(t)) are parameter-independent.

3. The pairs (A(p(t)), By) and (A(p(t)), C,) are quadratically stabilizable and
quadratically detectable over W, respectively.

The construction of a full-order controller has been developed by Apkarian, et.
al. [8]. The design objectives are to satisfy H_ performance criteria, i.e. the

parameter-varying closed-loop system is quadratically stable over W and the L,

gain of the parameter-varying closed-loop system is bounded by 7+ 7 >0 for
all possible trajectories p. We assume the full-order controller to be m™-order.

The parameter-dependent full-order controller has state space realization as
follows. For brevity, t is omitted.

.@EA@%
I VpeF,. (5)

The parameters of the gain-scheduled controller given by (5) are the functions
of parameter pwith an unbounded parameter-variation rate, hence the

dependence of controller parameters on o can be omitted.

Theorem 3.1. [8] Consider a generalized LPV plant (4) with parameter
trajectories. There exists a gain-scheduled output feedback controller (5)

enforcing internal stability and a bound » on the L, gain of the closed-loop

system, whenever there exist symmetric matrices X and Y and a parameter-
dependent quadruple of state-space data (Ag,By,Cx,Dx), such that the
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following linear matrix inequality problem holds, (for brevity, the parameter-
dependence of state space matrices O is omitted).

XA+B,C, +(*) * * *
Al AY +B,C, +(* * *
(XB, +A§KK D,)" (B + leSKKDZl()T) 7l « |0 ©
C,+D,D,C, cy+D,C, D,+D,D/D, -yl
X 1
[ : Y}O. (7)

Note that the notation (*) is induced by symmetry, for example
M+N+(*) *| [M+MT+N+N" KT
K L K L
In such a case, a gain-scheduled (parameter-varying) controller of the form (5)
is readily obtained with the following two-step scheme:

1. Solve for N, M, the factorization problem: 1—=<YAN N
2. Compute A, Bk, Ck, Dk with

4 Order-Reduction of LPV System

In this section, we use a generalization of the BSPA method to reduce the model
order of a parameter-varying system (1). This generalization is based on
solutions of the parameter-varying Lyapunov inequalities of LPV systems.
Consider the n™-order quadratically stable model of the LPV system in equation
(1). By using a balancing-state transformation matrix we obtain the transformed
controllability and observability Gramians.

o;=4;(PQ),0; 20,4, j=L-r,r+L.-n

P and Q are solutions of Lyapunov inequalities [2].
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A balanced LPV system can be expressed by

SO0 EEHO
y(t) =C(p)x(t) + D(p)ut). (8)

Partition the balanced LPV system conformably, with >=€l1@&>Jjs
described as follows

F}Pm>%wﬂﬂ{mﬂw)
%] [Au(p) As(p) B,(p)] ©)

X2
y(t) =[ C.(p) Cz(p)]{ }+[~>(p)U(t),

<

b

2

where g eR" and X, e R"".

Furthermore, the BSPA method is used to reduce the order of the balanced LPV
system (9). The dynamics of the reduced-order model can be expressed in the
form
%, (1) = Ae)x 0+ B(p)u(), 10)
y(®) =C(p)x,(t) + D(p)u(t),
where
A(P) = Ay (P) = AL (P) Ay () Ay (),
B(p) = B,(p) - A,(p) A, (p)B,(p),

C(p) =C.(p) = C.(P) A5 (P) A (p), (11)
D(p) = D(p) ~C, (P) A3 (0)B, (p),

by asumming A, (p) nonsingular vpeF,.

If the LPV system is not quadratically stable, but must be quadratically
stabilizable and detectable, then it cannot be directly reduced by using the above
method. If the unstable LPV system is stabilizable via parameter-varying state
feedback, then we can construct a quadratically stable contractive right coprime
factorization (CRCF). Consider the following theorem.

Theorem 4.1. [3] Let G(p)have continuous, quadratically stabilizable,

quadratically detectable realizations, then the contractive right graph symbol of
G(p) is given by
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G(p) ::{N(P)} A(p) +B(p)F(p) ‘B(p)S”Z(p) (12)
M (p) qm+waunrxms“m)’
F(p) S™(p)

where F(p)=-S"(p)B(p)X + D" (0)C(p), S(p)=1+D"(p)D(p), R(p) =

| +D(p)D" (p), and X = XT> 0 is a constant solution of the generalized
control Riccati inequality (GCRI)

(A(p)—B(p)S ™ (P)D" (P)C(P))" X + X (A(p)—B(p)S *(p)D' (p)C(p)) (13)
—XB(p)S(p)B (p)X +CT ()R (p)C(p) <0, VpeF,.

Furthermore, we can reduce the coprime factor realization by using a
generalization of the BSPA method [6] with the following procedure. G(p) is

written as G(p) = N(p)M ~1(p), where (N(p), M(p))represents a CRCF of
G(p), N(p) and M(p) are quadratically stable. Let Q=X and P=(l+YX)™Y

be the observability and controllability Gramians of G () , with X solves GCRI
and Y solves a generalized filtering Riccati inequality (GFRI),

(A(p)=B(p)D" ()R (P)C(p)) Y +Y (A(p)~B(p)D" (P)R(p)C(p))’
-YCT(p)S™(p)C(p)Y +B(p)S(p)B" (0) <0, VpeF,
Furthermore, G (p) is balanced by using a state transformation matrix T, such

that the transformed Gramians P :(5 =2, Next, BSPA method is applied to
obtain

—| Ny (p)
G, = ,
() [M r(P)}

which has r'-order, r < n. Moreover, we obtain the reduced-order LPV system,

G, (p) =Nr (DM (p).

(14)

5 Computational Issues

The constraints given by linear matrix inequalities (6) and (7) are parameter-
dependent, i.e. there is an infinite set of linear matrix inequalities for every
parameter value. These linear matrix inequalities can be solved by a polytopic

technique. The parameter vector, p(t), takes values in a box of R® with corners
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{,o\,i :i=12,--,r}, r=2°. In other words, the parameter vector varies in

polytope with vertices Pys P Py + SO that the parameter can be written by
convex combination,

p(t):Co{pvl,pvz,~~-,pvr}::Zlocipi ra 20, Zai =1,vt>0.
i=1

i=1

The problem of linear matrix inequalities (LMIs) (6) and (7) is approximated by
solving them at each of the vertices. The constraints given by these LMIs at
each of the vertices, can be solved using the interior point method in convex
programming. The consequence of this approximation is that the number of

LMIs becomes 2% +1and the number of decision variables becomes Ny(Nyt+1),

with n, as number of states. The variables X, Y in LMIs (6)-(7) are
approximated by convex interpolation of solution at each of the vertices.

The parameter-varying controller (5) with state space matrices Ax (o), Bk (o),
Ck (p), and Dk (p)range in a polytope of matrices, whose vertices are the
images of vertices Py Puy s Py, that is,

Adp) Bel(p)|_ A. Be|. < | A B
{CK(p) DK(P)}_CO{CK. DKJJ_LZ,---,r}__iZl:ai{CKi DKJ,

a =0, Zr:ai =1.
i=1

6 N-250 LPV Control Design and Simulation

To verify the capability of the singular perturbation approximation, simulations
were conducted by using it to reduce an aircraft model [15]. The performances
of the closed-loop systems with the reduced-order LPV controllers and LTI-
reduced controller were compared.

6.1  Modeling of N-250 Aircraft

The N-250 is a turboprop aircraft with two engines and is equipped with a three-
axis fly-by-wire (FBW) system. The FBW system is designed to deflect the
aircraft control surface, comprising flap, spoiler, rudder, aileron, and T-tail
elevator, by applying electric signals to actuators (see Figure 1). The N-250 is a
regional commuter aircraft, which has a capacity of 64-70 passengers, a cruise
speed of 300 knots (556 km/hour), a maximum velocity of 330 knots, and flight
range of 1.482 km.
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Ailerons
Active fly-by-wire

Standby mechanically
signaled

Active fly-by-wire
Standbv mechanically
signaled

Flaps
All fly-by-wire

Figure 1 N250 Aircraft control surface.

For the purpose of simulation, the N250 is classified as a Class Il aircraft, for
which the whole mission is dominated by flight phase B. Consequently, the
ideal model is chosen from the minimum requirements of flight phase B for
Class Il aircraft. The linear equation of the N-250 PA-2 used in this research is
derived from the non-linear equation of the motion of the aircraft. Aerodynamic
forces and moment coefficients were obtained from N-250 PA-2 wind-tunnel
tests conducted by PT Dirgantara Indonesia (formerly PT IPTN). The
linearization process of the equation of motion was carried out by introducing
small perturbations over all variables of the equation, a technique referred to as
small perturbation method. In the linearized form, the resulting equation of
motion consists of two independent motions: longitudinal and lateral-directional
motion. The linearized model is fine-tuned using flight test data and a parameter
identification process based on the flight test data analysis introduced by Laban
[16] and Lean [17]. Figure 2 shows the technique with which the identification
process was applied to the problem of estimating the aerodynamic coefficients
based on flight test data. During the flight test program, a specially-designed
dynamic maneuver was applied to the test aircraft, and various aircraft dynamic
variables were measured. The aircraft control surface deflections were measured
and were applied to the dynamic aircraft system model. Basically, this process
consists of two major phases (see Figure 2), given the real-time presentation of
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the raw flight test measurements, which in our case were provided by a
telemetric system at the former Flight Test Center, IPTN. The first phase is data
reconstruction/compatibility check of measurement data from aircraft response
due to input given by the pilot.

Aircraft input & Aircraft output

Input

Model input

Identification
algorithm . Output error

Figure 2 N250 Aircraft identification process.

During the data reconstruction process, a matching mechanism was performed
on input and output data recorded during flight tests, based on aircraft
kinematics equations. The extended Kalman filter was applied to suppress noise
that arises from atmospheric conditions and inaccuracy/uncertainty in flight
parameter measurement devices. In the second phase, an optimization was
performed to obtain values of aerodynamic coefficients using a least-square
method [18], which minimizes output mismatch. Modeling the N250 aircraft
motion based on flight testing took several months, and various flight test
maneuvers had to be conducted to cover most of the flight envelope.

The primary aircraft control surface consists of aileron and rudder for lateral-
directional motion and elevator for longitudinal motion. The secondary control
surface consists of spoiler and flaps. In this paper, we consider only the lateral-
directional dynamics; the longitudinal dynamics are assumed to remain at
equilibrium. The lateral-directional dynamic of the aircraft can be expressed as
an unstable LPV system with the following state space model:
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V] YWV F) YoV f) YoV f) geosd O([v] [Yia(v. f) Y, f)
Pl LV, f) LoV, f) Le(v,f) 0 0P Lga (V. f)  Lgr (V. f) S
FI=INGV, f) NV, f) Np(v,f) 0 0| |*[NaalV. ) Ndr(\/:f){ }
¢ 0 | Tand o ofl? 0 0
LV 0 0 Secd 0o o|v 0 0
B ] % 0 0 o |,
P 0 573 0 0 0 |,
1] o 0 573 0 |||
¢ 0 0 573 0 | 4
4 0 o o0 0 573,
&) vy, f) o o o 0|
where
, S , UeS , s
v H=Sc, v.h Yp(V, 1)=5E2Cy (V. 1) YV D=5, (.1
L L L

LV, H)=——L— (V. f) LV, )= (v, f) LV, f)=————(V,f)
Y Iyxs + IxzsNy P Iyxs + IxzsNp ' Iyxs + IxzsNr

2 2 2

UsS UeS UeS
=i, v =5, =, )

XX XX XX

2 2 2

usS UeS UeS
Ny =S, 1) Np =S e, v, 1) N =SB ey v, )

7 Yy4 ¥4

N N N
NSV, fy=—Y (v, f NV, f)=—P (v, f NLV, f)=——T (v, f)
v |zzs+|xzs|-v(v ) PV 1) Izzs+|xzst(\/ ) ' l22s + Lxasbr
, Y, Y, ' Lga
YV, f) =92, f ' _ fdr LjaV, f)=—-—928 (v, f
dalV. 1) m(V ) Yr (V. 1) m(\/'f) /. D) Ixxs*'xzsNda(V )
' Ld Nda
Lar(V, f)=—"C——(V,f)  Nga(V,f)=——"2—(V,f)
' Ixxs + IxzsNdr a I22s + Ixzsbda
) Y,V , N
YoV, £) ="V, ) Ngr(V, f)=—-9——(v,f)
mg l2s + Ixzslar

in which the state vector consists of lateral velocity (v), roll rate (p), yaw rate
(r), roll angle (¢ ), and azimuth angle (y ); the input vector consists of aileron

deflection (5, ) and rudder deflection (g ); the measurement vector consists of
side-slip (£), roll rate (p), yaw rate (r), roll angle (), azimuth angle (y ), and

lateral acceleration (ay). ¢ : air density, g: gravity, m: mass of the aircraft, S:
surface area of the aircraft, b: wing span. For details about the symbols, refer to
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Etkin [19]. All states are available for supplying feedback to control the aircraft.
The dynamics of the N-250 aircraft under consideration vary greatly as a
function of speed (V) and flap setting (f). Signal V and f are measured in real
time. The take-off aircraft speed ranges between 80 KEAS (Knot Equivalent Air
Speeds) and 320 KEAS. The flap settings vary between 0, 20, 30, and 40 deg.
The nominal data of the aircraft are given in Table 1.

Table 1 The nominal data of the aircraft at take-off flight conditions.

Parameters values
Speed (knots) : KEAS 80 - 320
Center of Gravitation(%) :cg 26.7
Aircraft Mass : kg 20267.5
Altitude : feet 1250
Flap setting : deg 0, 20, 30, 40

The parameter-dependent state space data are obtained by trimming and
linearizing the nonlinear model at speed V = {80, 85, 90, 95, 100, 105, 110,
115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180, 185, 190, 195,
200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275,
280, 285, 290, 295, 300, 305, 310, 315, 320} KEAS and flap setting f = {0, 20,
30, 40} deg. Next, we choose entries of parameter-dependent state space data as
the vertices of the polytopic plant. However, choosing all the entries as the
vertices would result in a large number of LMI constraints to be checked and
can cause computational impracticalities. Hence, we consider only those 5
entries of state space data that are most significantly affected by the aircraft
speed and flap setting. By observing singular value plots of the plants with
respect to variations of state space data that are affected by the true aircraft
speed and flap setting, it turns out that entries L, L ,N,,N ,N, produce
significant changes in the plant. The variations of V and f result in a parameter

range of p1=L'Ve [-0.3132, —0.0181], p2=L'pe [-5.6951, —1.2095],
p3 =N, e [0.0220, 0.0237], p4:N'pe [-1.4561, 0.9450], and p, =N,

[-1.1020, —0.2057]. The high-order plant consists of the lateral-directional
dynamic and weighting functions that are incorporated to satisfy the controller
design specifications. The plant order of this aircraft model is 20" order.

6.2  Reduced-Order Controller Design

The reduced-order model is calculated by using the BSPA method as suggested
in the preceding section. Based on the reduced-order model, the low-order
controllers are designed by using H_ synthesis. Note that the parameters

LV,Lp,N;,N'p,N; enter the state space matrices in an affine way and are
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considered to represent a convex polytope with 32 = 2° vertices. Allow the
parameters to be time-varying with no rate bound, which makes it necessary to
find solutions for the LMIs (6) and (7), evaluated at each of the 32 vertices. The
X, Y solutions of these LMIs are approximated by convex interpolation of
solution at each of the vertices.

Furthermore, states space data of the full-order and reduced-order LPV
controllers were constructed using convex interpolation of their values at the 32
vertices. The upper bound of the parameter-varying closed-loop performance
for all parameter variations is 50.0003. The LMI Control Toolbox for
MATLAB [20] was used for numerical computation. The aim of the controller
design is to satisfy the following specifications:

1. Frequency domain specification: the closed-loop system has a bandwidth of
10 rad/s, low sensitivity if frequency < 8 rad/s, in the high frequency range
the measurement noise is attenuated around 2 dB.

2. Time domain specification: Steady state errors are within 7% tolerance,
overshoot = 10% and transient response in 4-8 seconds, control surface
magnitude and rates do not exceed actuator saturation limits, system
response to command meets level-1 flying quality.

Table 2 Maximum deflection and rate of aileron and rudder.

Maximum deflection Maximum rate
Aileron + 22 degree 50 degree/second
Rudder + 20 degree 37 degree/second

The controlled output consists of aileron position, rudder position, aileron rate,
rudder rate, side-slip error, and yaw-rate error. In this case, to simulate the time
responses of the gain-scheduled controller along parameter trajectories, we
chose the following spiral parameter trajectories,

p, =L, =-0.12685+0.1007 exp(—4t) - cos(100t)

p, =L, =—2.8805+1.71195exp(—4t) -sin(100t)
p, =N =0.0041-+0.0173exp(—4t) -sin(100t)
p, =N, =-0.15395+0.760exp(—4t) - cos(100t)

ps =N =—-0.5832+0.287 exp(—4t) -sin(100t)
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Figure 3 Time responses of the closed-loop system with the 20™-order LPV
controller and LTI controller for all parameter trajectories.

The time responses of the closed-loop system with the 20™-order (full-order)
LPV and fixed LTI controller are described in Figure 3. The LTI controller is
designed for fixed parameter values of the following aircraft flight conditions:
speed = 90 KEAS, center of gravity = 26.7%, mass = 20,267.5 kg, altitude =
1250 feet, and flap setting = 40 degrees.

Next, we compared the parameter-varying closed-loop performance with the
full-order and reduced-order LPV controllers and the LTI controller. Time
responses of the closed-loop system with the 20"-, 10™-, 9"- and 8"-order LPV
controllers for all parameter trajectories with respect to impulse input are given
in Figure 4. Figure 3 and Figure 4 show that the closed-loop time responses
achieve stability within 6 seconds, except in the closed-loop with the LTI
controller, where time responses of the aileron and rudder position achieve
stability within 7.5 seconds.
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The step responses have a settling time of less than 8 seconds. These figures
also show that all saturation and rate limits for aileron and rudder from the
design specifications are satisfied.
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Figure 4 Time responses of the closed-loop system with the full-order and
reduced-order LPV controllers for all parameter trajectories.

The time responses of the parameter-varying closed-loop systems with a
reduced (19™)-order LTI controller are depicted in Figure 5. In this case, as can
be seen in Figure 5, the closed-loop time responses cannot be made stable. From
the above results, the order of the LPV plant found by the BSPA method can be
as low as 8th while maintaining closed-loop system stability and providing the
same level of closed-loop system performance as the 20™-order LPV controller.
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Figure 5 Time responses of the closed-loop system with a 19th-order LTI
controller for all parameter trajectories.

7 Concluding Remarks

A 20th-order turboprop aircraft model has been reduced using the balanced
singular perturbation method. An effective H_, controller based on the reduced-
order model to control lateral-directional motion of aircraft was proposed. A
reduced-order LTI controller cannot maintain performance for all allowable
parameter trajectories. Reduced-order LPV controllers guarantee performance
and robustness for whole ranges of operating conditions. Reduced-order LPV
controllers are able to do better over the entire operating range of the turboprop
aircraft than reduced-order LTI controllers.
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