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Abstract. The applicability of parameter-varying reduced-order controllers to 

aircraft models is proposed. A generalization of the balanced singular 

perturbation method of the linear time-invariant (LTI) system was used to reduce 

the order of the linear parameter-varying (LPV) system. Based on the reduced-

order model, a low-order LPV controller was designed using the H
synthesis 

technique. The performance of the reduced-order controller was examined by 

applying it to the lateral-directional control of a 20th-order aircraft model. 

Furthermore, the time responses of the closed-loop system with several reduced-

order LPV controllers and a reduced-order LTI controller were compared. The 

simulation results show that an , 8th-order LPV controller can maintain stability 

and provide the same level of closed-loop system performance as a full-order 

LPV controller. This was not the case with the reduced-order LTI controller, 

which cannot maintain stability and performance for all allowable parameter 

trajectories. 

Keywords: H
 synthesis; singular perturbation approximation; reduced-order LPV 

controller; stability; aircraft dynamics. 

1 Introduction  

A generalization of the balanced truncation method for LTI systems to reduce 

the model order of LPV systems has been published by Zobaidi, et al. [1],   
Goddard [2], and Wood, et al. [3]. Next, Widowati, et al. [4] have used a 

generalized balanced truncation to reduce the order of a parameter-varying 

controller. In paper [4], we have investigated the degradation of LVP closed-
loop performance due to the parameter-varying reduced-order LPV controller. 

A study of the application of a balanced singular perturbation approximation 

(BSPA) to reduce the controller order of LTI systems has been published by 

Saragih and Yoshida [5].  Widowati, et al. [6] proposed a method to reduce 
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unstable LPV systems by generalizing BSPA for LTI systems via contractive 

right coprime factorization. Further, Saragih and Widowati [7] have presented 

sufficient conditions for the existence of right coprime factorization of 

parameter-varying controllers. 

In this paper we compare the performance of an LPV closed-loop system using 
several reduced-order LPV controllers and a reduced-order LTI controller. This 

paper uses the balanced singular perturbation method, whereas in [1] the 

balanced truncation method was used to reduce a high-order plant. To verify the 
validity of the proposed method, it was applied to a model reduction for N-250 

aircraft. Aircraft dynamics may be particularly severe in the case of high-

performance aircrafts flying over a wide range of operational flight conditions 
(take-off, cruise, landing, altitude, airspeed). In the early days of automatic 

flight control systems, most systems were designed by using LTI control. 

However, aircraft dynamics vary for different flight conditions, whereas LTI 

controller is only suitable for certain flight conditions, and therefore cannot 
guarantee performance for other flight conditions. If an LTI controller is not 

capable of maintaining performance, the controller parameter values need 

adjustment. It is well known that the variation of some aircraft parameters is 
strongly related to air data variables, such as airspeed and altitude of the 

aircraft. It is necessary to rely on adjusting the flight controller parameters to the 

air data variables, a technique referred to as gain-scheduling.  

In an attempt to reduce conservatism in control design and to improve 

numerical computation for systems significantly affected by measurable time-

varying parameters, several new Linear Parameter Varying (LPV) approaches 

have emerged in the last few years. These LPV approaches explicitly take into 
account the relationship between real-time parameter variations and control 

system stability and performance. Therefore, the LPV controller theoretically 

guarantees performance and robustness for whole ranges of operating 
conditions. Most of the LPV approaches are based on linear matrix inequalities 

(LMI) and are solved numerically with some efficiency. While multitudes of 

theoretical results exist in this area [8-11, 2], only a few aerospace application 

oriented papers have been published to demonstrate the effectiveness of LPV 
controllers [12,13]. Related studies by the authors of the current paper on the 

application of LPV in flight control systems were published [14,15], but these 

works focused on full-order controller cases. The purpose of this paper is to 
propose robust gain-scheduling for uncertain LPV systems for lateral-

directional control of N-250 aircraft by using reduced-order controllers. 

The paper is organized as follows. Section 2 describes a brief review of the 
linear parameter varying (LPV) system. LPV synthesis is given in Section 3. 

Order-reduction of the LPV system by using the BSPA method is discussed in 
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Section 4. In Section 5, the reduced-order LTI and LPV control designs are 

demonstrated. Concluding remarks are presented in Section 6. 

2 Brief Review of LPV System  

In this paper, we consider a linear parameter-varying system. For a compact 

subset sRW  , parameter-variation set F denotes the set of all piecewise 

continuous mapping R(time) into W with a finite number of discontinuities in 

any interval, 
min max

{ : , , 1,2, , }i i iF R W i s          .
 

A compact set sRW  , along with continuous functions nns RRA : , 

unns RRB


: , 
nns yRRC


: , uy nns RRD


:  

represent an n
th
-order 

parameter-varying plant, ( )G  , whose dynamics evolve as 

    () ()() ()()xt Atxt Btut   ,                                                            (1) 

   () ()() ()()yt Ctxt Dtut   ,  Ft  )( , 

where x(t)
nR , y(t) yn

R , u(t) un
R .  A state space realization of the 

parameter-varying plant,
 

( )G  , is written as 

   

   

( )   ( )
( )

( )   ( )

A t B t
G

C t D t

 


 

 
  
  

,  Ft  )( . 

 

The parameters of LPV system (1) are the functions of parameter  with 

unbounded parameter-variation rates; hence the dependence of system 

parameters on  can be omitted.    

The parameter-varying system )(G  is quadratically stable [2] if there exists a 

real positive-definite matrix 0TP P  , such that  

    ( ) ( ) 0TA t P PA t   , ( )t F        (2) 

The induced 2L  norm of a quadratically stable parameter-varying system, 

)(G , with zero initial conditions, is defined as [2] 

 
2

2

,2
( ) 0,

2

( ) sup sup
i

t u u

y
G

u


  


 

.      (3) 
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3  LPV Synthesis  

To formulate a performance-oriented parameter-varying output feedback 

synthesis problem, the parameter-varying plant is written as follows 

  1 2
() ()() ()() ()()xtAtxtBtwtBtut     , 

  1 11 12
() ()() ()() ()()ztCtxtDtwtDtut    

,  (4) 

  2 21 22
() ()() ()() ()()ytCtxtDtwtDtut     ,  Ft  )( , 

where y is the measurement, u(t) is the control input, w(t) is the disturbance, z(t) 
is the controlled output, x(t) is the state vector. Readers are referred to 

references [2,3] for the definition of quadratic stabilizability and quadratic 

detectability. The following assumptions are made for the parameter-varying 
plant:  

1.  22
( ) 0D t   

2.        2 2 12 21
( ) ,  ( ) ,  ( ) ,  and ( )B t C t D t D t     are parameter-independent. 

3. The pairs ))),((( 2BtA   and ))),((( 2CtA   are quadratically stabilizable and 

quadratically detectable over W, respectively. 

The construction of a full-order controller has been developed by Apkarian, et. 

al. [8]. The design objectives are to satisfy H  performance criteria, i.e. the 

parameter-varying closed-loop system is quadratically stable over W and the 2L  

gain of the parameter-varying closed-loop system is bounded by ,  0    for 

all possible trajectories  . We assume the full-order controller to be m
th
-order. 

The parameter-dependent full-order controller has state space realization as 
follows. For brevity, t is omitted. 

 

 

  
()

  

K K

K K

A B
K

C D

 


 
 
 
  

,  F .             (5)  

The parameters of the gain-scheduled controller given by (5) are the functions 

of parameter  with an unbounded parameter-variation rate, hence the 

dependence of controller parameters on  can be omitted.   

Theorem 3.1. [8] Consider a generalized LPV plant (4) with parameter 
trajectories. There exists a gain-scheduled output feedback controller (5) 

enforcing internal stability and a bound   on the 2L  gain of the closed-loop 

system, whenever there exist symmetric matrices X and Y and a parameter-

dependent quadruple of state-space data ( ,, KK BA KK DC , ), such that the 
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following linear matrix inequality problem holds, (for brevity, the parameter-

dependence of state space matrices   is omitted).    

 

2

2

1 21 1 2 21

1 12 2 1 21 11 12 21

(*) * * *

(*) * *
0,

( ) ( ) *

K

T

K K

T T

K K

K K K

XA B C

A AY B C

XB B D B B D D I

C D D C C Y D C D D D D I





  
 

   
   
 

    

 (6) 

            0








YI

IX
.                                                                       (7) 

Note that the notation (*) is induced by symmetry, for example 

 
(*) * T T TM N M M N N K

K L K L

      
   

   

 

In such a case, a gain-scheduled (parameter-varying) controller of the form (5) 
is readily obtained with the following two-step scheme: 

1. Solve for N, M, the factorization problem: TNMXYI   

2. Compute AK, BK, CK, DK  with  

.

,)(

),(

,))()((

2

2
1

222222
1

KK

T
KKK

KKK

T
KKK

T
KKK

DD

MYCDCC

DXBBNB

MCXBYCBYCDBAXCDBAANA















  

4  Order-Reduction of LPV System  

In this section, we use a generalization of the BSPA method to reduce the model 

order of a parameter-varying system (1). This generalization is based on 
solutions of the parameter-varying Lyapunov inequalities of LPV systems. 

Consider the n
th

-order quadratically stable model of the LPV system in equation 

(1). By using a balancing-state transformation matrix we obtain the transformed 
controllability and observability Gramians. 

 ),(
~~

21 diagQP , 

 11211 ),,,(),,,(   rrnrr diagdiag  
  and  

 .,,1,,,1,,)( 1 nrrjPQ jjjj      

 P and Q are solutions of Lyapunov inequalities [2]. 
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A balanced LPV system can be expressed by 

),()(
~

)()(
~

)(~ tuBtxAtx    

 ( ) ( ) ( ) ( ) ( ).y t C x t D u t           (8) 

Partition the balanced LPV system conformably, with ),( 21diag is 
described as follows 

 

11 12 1 11

21 22 2 22

1

1 2

2

( ) ( ) ( )
( ),

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

A A x Bx
u t

A A x Bx

x
y t C C D u t

x

  

  

  

       
        
      

 
    

 

 
 

 


       (9) 

where 
1

rx R  and 
2

n rx R  .  

Furthermore, the BSPA method is used to reduce the order of the balanced LPV 

system (9). The dynamics of the reduced-order model can be expressed in the 

form  

   1 1

1

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

x t A x t B u t

y t C x t D u t

 

 

 

 


     (10) 

where 

 
1

11 12 22 21

1

1 12 22 2

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

A A A A A

B B A A B

    

    





 

 
 

 
),()()()(

~
)(

),()()()()(

2

1

222

21

1

2221





BACDD

AACCC








        (11) 

by asumming 
22 ( )A   nonsingular F  . 

If the LPV system is not quadratically stable, but must be quadratically 

stabilizable and detectable, then it cannot be directly reduced by using the above 

method. If the unstable LPV system is stabilizable via parameter-varying state 
feedback, then we can construct a quadratically stable contractive right coprime 

factorization (CRCF).  Consider the following theorem. 

Theorem 4.1. [3] Let )(G have continuous, quadratically stabilizable, 

quadratically detectable realizations, then the contractive right graph symbol of 

)(G  is given by   
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 G ( ) :=
1/2

1/2

1/2

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( )( )

( ) ( )

N A B F B S

C D F D SM

F S

     

    

 







 
 

       
 
 

  (12) 

where 1( ) ( ) ( ) ( ) ( ),  ( ) ( ) ( ),  ( )T TF S B X D C S I D D R               

( ) ( )TI D D  , and X = 
TX > 0  is a constant solution of the generalized 

control Riccati inequality (GCRI)  

1 1

1 1

( ( ) ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( ) 0, .

T T T

T T

A B S D C X X A B S D C

XB S B X C R C F

         

      

 

 

  

    
    (13) 

 

Furthermore, we can reduce the coprime factor realization by using a 

generalization of the BSPA method [6] with the following procedure.  )(G  
is 

written as )(G )()( 1   MN , where ))(),((  MN represents a CRCF of 

)(G , )(N and (M ) are quadratically stable. Let Q=X and P=(I+YX)
-1

Y 

be the observability and controllability Gramians of G )( , with X solves GCRI 

and Y solves a generalized filtering Riccati inequality (GFRI),  

1 1

1 1

( ( ) ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( ) 0, .

T T T

T T

A B D R C Y Y A B D R C

YC S C Y B S B F

         

      

 

 

  

    
     (14) 

Furthermore, G )(  is balanced by using a state transformation matrix T, such 

that the transformed Gramians  QP
~~

.
 Next, BSPA method is applied to 

obtain  

 Gr )( := ,
)(

)(













r

r

M

N
 

which has r
th
-order, r < n. Moreover, we obtain the reduced-order LPV system, 

  )(rG  = ).()( 1  
rr MN

 

5  Computational Issues 

The constraints given by linear matrix inequalities (6) and (7) are parameter-

dependent, i.e. there is an infinite set of linear matrix inequalities for every 

parameter value. These linear matrix inequalities can be solved by a polytopic 

technique. The parameter vector, ( )t , takes values in a box of R
s
 with corners 
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s
v rri

i
2},,,2,1:{   . In other words, the parameter vector varies in 

polytope with vertices 
1 2
, , ,

rv v v   , so that the parameter can be written by 

convex combination,   

 
1 2

1 1

( ) { , , , }: : 0, 1 ,
r

r r

v v v i i i i

i i

t Co       
 

     .0t  

The problem of linear matrix inequalities (LMIs) (6) and (7) is approximated by 
solving them at each of the vertices. The constraints given by these LMIs at 

each of the vertices, can be solved using the interior point method in convex 

programming. The consequence of this approximation is that the number of 

LMIs becomes 12 1 s
and the number of decision variables becomes nx(nx+1), 

with nx as number of states.  The variables X, Y in LMIs (6)-(7) are 

approximated by convex interpolation of solution at each of the vertices. 

The parameter-varying controller (5) with state space matrices ),(),(  KK BA

),(KC and )(KD range in a polytope of matrices, whose vertices are the 

images of vertices 
rvvv  ,,,

21
 , that is, 

1

( ) ( )
, 1,2, , : ,

( ) ( )

i i i i

i i i i

r
K K K KK K

i

iK K K K K K

A B A BA B
Co i r

C D C D C D

 


  

       
       

          
  

1

0, 1.
r

i i

i

 


   

6 N-250 LPV Control Design and Simulation 

To verify the capability of the singular perturbation approximation, simulations 
were conducted by using it to reduce an aircraft model [15]. The performances 

of the closed-loop systems with the reduced-order LPV controllers and LTI-

reduced controller were compared. 

6.1 Modeling of N-250 Aircraft  

The N-250 is a turboprop aircraft with two engines and is equipped with a three-

axis fly-by-wire (FBW) system. The FBW system is designed to deflect the 
aircraft control surface, comprising flap, spoiler, rudder, aileron, and T-tail 

elevator, by applying electric signals to actuators (see Figure 1). The N-250 is a 

regional commuter aircraft, which has a capacity of 64-70 passengers, a cruise 
speed of 300 knots (556 km/hour), a maximum velocity of 330 knots, and flight 

range of 1.482 km. 
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Figure 1 N250 Aircraft control surface. 

For the purpose of simulation, the N250 is classified as a Class II aircraft, for 

which the whole mission is dominated by flight phase B. Consequently, the 

ideal model is chosen from the minimum requirements of flight phase B for 
Class II aircraft. The linear equation of the N-250 PA-2 used in this research is 

derived from the non-linear equation of the motion of the aircraft. Aerodynamic 

forces and moment coefficients were obtained from N-250 PA-2 wind-tunnel 
tests conducted by PT Dirgantara Indonesia (formerly PT IPTN). The 

linearization process of the equation of motion was carried out by introducing 

small perturbations over all variables of the equation, a technique referred to as 

small perturbation method. In the linearized form, the resulting equation of 
motion consists of two independent motions: longitudinal and lateral-directional 

motion. The linearized model is fine-tuned using flight test data and a parameter 

identification process based on the flight test data analysis introduced by Laban 
[16] and Lean [17]. Figure 2 shows the technique with which the identification 

process was applied to the problem of estimating the aerodynamic coefficients 

based on flight test data. During the flight test program, a specially-designed 

dynamic maneuver was applied to the test aircraft, and various aircraft dynamic 
variables were measured. The aircraft control surface deflections were measured 

and were applied to the dynamic aircraft system model. Basically, this process 

consists of two major phases (see Figure 2), given the real-time presentation of 
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the raw flight test measurements, which in our case were provided by a 

telemetric system at the former Flight Test Center, IPTN. The first phase is data 

reconstruction/compatibility check of measurement data from aircraft response 

due to input given by the pilot.  

 

 

Figure 2 N250 Aircraft identification process. 

During the data reconstruction process, a matching mechanism was performed 

on input and output data recorded during flight tests, based on aircraft 

kinematics equations. The extended Kalman filter was applied to suppress noise 
that arises from atmospheric conditions and inaccuracy/uncertainty in flight 

parameter measurement devices. In the second phase, an optimization was 

performed to obtain values of aerodynamic coefficients using a least-square 
method [18], which minimizes output mismatch. Modeling the N250 aircraft 

motion based on flight testing took several months, and various flight test 

maneuvers had to be conducted to cover most of the flight envelope. 

The primary aircraft control surface consists of aileron and rudder for lateral-

directional motion and elevator for longitudinal motion. The secondary control 

surface consists of spoiler and flaps. In this paper, we consider only the lateral-

directional dynamics; the longitudinal dynamics are assumed to remain at 
equilibrium. The lateral-directional dynamic of the aircraft can be expressed as 

an unstable LPV system with the following state space model: 
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 in which the state vector consists of lateral velocity (v), roll rate (p), yaw rate 

(r), roll angle ( ), and azimuth angle ( ); the input vector consists of aileron 

deflection ( A ) and rudder deflection ( R ); the measurement vector consists of 

side-slip (  ), roll rate (p), yaw rate (r), roll angle ( ), azimuth angle ( ), and 

lateral acceleration (ay).  : air density, g: gravity, m: mass of the aircraft, S: 

surface area of the aircraft, b: wing span. For details about the symbols, refer to 
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Etkin [19]. All states are available for supplying feedback to control the aircraft. 

The dynamics of the N-250 aircraft under consideration vary greatly as a 

function of speed (V) and flap setting (f). Signal V and f are measured in real 

time. The take-off aircraft speed ranges between 80 KEAS (Knot Equivalent Air 

Speeds) and 320 KEAS. The flap settings vary between 0, 20, 30, and 40 deg. 
The nominal data of the aircraft are given in Table 1. 

Table 1 The nominal data of the aircraft at take-off flight conditions. 

 Parameters values 

Speed (knots) : KEAS 

Center of Gravitation(%) :cg 

Aircraft Mass : kg  

Altitude : feet 

Flap setting : deg 

80 - 320 

26.7 

20267.5 

1250  

0, 20, 30, 40 

 
The parameter-dependent state space data are obtained by trimming and 

linearizing the nonlinear model at speed V = {80, 85, 90, 95, 100, 105, 110, 

115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180, 185, 190, 195, 
200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 

280, 285, 290, 295, 300, 305, 310, 315, 320} KEAS and flap setting ƒ = {0, 20, 

30, 40} deg. Next, we choose entries of parameter-dependent state space data as 

the vertices of the polytopic plant. However, choosing all the entries as the 
vertices would result in a large number of LMI constraints to be checked and 

can cause computational impracticalities. Hence, we consider only those 5 

entries of state space data that are most significantly affected by the aircraft 
speed and flap setting. By observing singular value plots of the plants with 

respect to variations of state space data that are affected by the true aircraft 

speed and flap setting, it turns out that entries ' ' ' ' ', , , ,v p v p rL L N N N  produce 

significant changes in the plant. The variations of V and f result in a parameter 

range of  '
1 vL  [−0.3132, −0.0181],  '

2 pL  [−5.6951, −1.2095], 

 '
3 vN  [−0.0220, 0.0237],  '

4 pN  [−1.4561, 0.9450], and '

5 rN   

[−1.1020, −0.2057]. The high-order plant consists of the lateral-directional 

dynamic and weighting functions that are incorporated to satisfy the controller 
design specifications. The plant order of this aircraft model is 20

th
 order. 

6.2 Reduced-Order Controller Design  

The reduced-order model is calculated by using the BSPA method as suggested 
in the preceding section. Based on the reduced-order model, the low-order 

controllers are designed by using H synthesis. Note that the parameters 
' ' ' ' ', , , ,v p v p rL L N N N  enter the state space matrices in an affine way and are 
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considered to represent a convex polytope with 32 = 2
5
 vertices. Allow the 

parameters to be time-varying with no rate bound, which makes it necessary to 

find solutions for the LMIs (6) and (7), evaluated at each of the 32 vertices. The 

X, Y solutions of these LMIs are approximated by convex interpolation of 
solution at each of the vertices. 

 

Furthermore, states space data of the full-order and reduced-order LPV 
controllers were constructed using convex interpolation of their values at the 32 

vertices.  The upper bound of the parameter-varying closed-loop performance 

for all parameter variations is 50.0003. The LMI Control Toolbox for 

MATLAB [20] was used for numerical computation. The aim of the controller 

design is to satisfy the following specifications:  

1. Frequency domain specification: the closed-loop system has a bandwidth of 

10 rad/s, low sensitivity if frequency   8 rad/s, in the high frequency range 

the measurement noise is attenuated around 2 dB. 

2. Time domain specification: Steady state errors are within 7% tolerance, 

overshoot   10% and transient response in 4-8 seconds, control surface 
magnitude and rates do not exceed actuator saturation limits, system 

response to command meets level-1 flying quality. 

Table 2 Maximum deflection and rate of aileron and rudder. 

 Maximum deflection Maximum rate 

Aileron 22  degree 50 degree/second 

Rudder 20  degree 37 degree/second 

 

The controlled output consists of aileron position, rudder position, aileron rate, 

rudder rate, side-slip error, and yaw-rate error. In this case, to simulate the time 
responses of the gain-scheduled controller along parameter trajectories, we 

chose the following spiral parameter trajectories, 

 '

1 0.12685 0.1007exp( 4 ) cos(100 )vL t t         

 '

2 2.8805 1.71195exp( 4 ) sin(100 )pL t t        

 '

3 0.0041 0.0173exp( 4 ) sin(100 )vN t t     
  

 '

4 0.15395 0.760exp( 4 ) cos(100 )pN t t        

 '

5 0.5832 0.287exp( 4 ) sin(100 )rN t t       . 
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Figure 3  Time responses of the closed-loop system with the 20th-order LPV 

controller and LTI controller for all parameter trajectories. 

The time responses of the closed-loop system with the 20
th

-order (full-order) 

LPV and fixed LTI controller are described in Figure 3. The LTI controller is 

designed for fixed parameter values of the following aircraft flight conditions: 

speed = 90 KEAS, center of gravity = 26.7%, mass = 20,267.5 kg, altitude = 
1250 feet, and flap setting = 40 degrees. 

Next, we compared the parameter-varying closed-loop performance with the 

full-order and reduced-order LPV controllers and the LTI controller. Time 
responses of the closed-loop system with the 20

th
-, 10

th
-, 9

th
-, and 8

th
-order LPV 

controllers for all parameter trajectories with respect to impulse input are given 

in Figure 4. Figure 3 and Figure 4 show that the closed-loop time responses 
achieve stability within 6 seconds, except in the closed-loop with the LTI 

controller, where time responses of the aileron and rudder position achieve 

stability within 7.5 seconds. 
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The step responses have a settling time of less than 8 seconds. These figures 

also show that all saturation and rate limits for aileron and rudder from the 

design specifications are satisfied.  

 

Figure 4 Time responses of the closed-loop system with the full-order and 

reduced-order LPV controllers for all parameter trajectories. 

The time responses of the parameter-varying closed-loop systems with a 
reduced (19

th
)-order LTI controller are depicted in Figure 5. In this case, as can 

be seen in Figure 5, the closed-loop time responses cannot be made stable. From 

the above results, the order of the LPV plant found by the BSPA method can be 
as low as 8th while maintaining closed-loop system stability and providing the 

same level of closed-loop system performance as the 20
th
-order LPV controller. 

 



184 Widowati, Bambang Riyanto & Hari Muhammad 

 

 

Figure 5 Time responses of the closed-loop system with a 19th-order  LTI 

controller for all parameter trajectories. 

7 Concluding Remarks 

A 20th-order turboprop aircraft model has been reduced using the balanced 

singular perturbation method. An effective H  controller based on the reduced-

order model to control lateral-directional motion of aircraft was proposed. A 

reduced-order LTI controller cannot maintain performance for all allowable 
parameter trajectories. Reduced-order LPV controllers guarantee performance 

and robustness for whole ranges of operating conditions. Reduced-order LPV 

controllers are able to do better over the entire operating range of the turboprop 
aircraft than reduced-order LTI controllers.  
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