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Abstract. A block replacement schedule can be optimized simultaneously with a
spare parts ordering schedule, since all items are replaced at a constant interval.
The solution of joint optimization for spare parts ordering time and block
replacement gives lower costs compared to separate optimization of ordering
time and replacement time. The spare parts for replacement can be classified as
stochastic demand for failure replacement and deterministic demand for block
replacement. In this paper, we propose a simulation model for a separate spare
parts ordering schedule. The solution was compared to the solution for a model
with common spare parts for both failure and block replacement. The system has
N identical components, each with a Weibull lifetime distribution. The costs of
failure and block replacements, and also the costs of ordering, holding and
shortage of spare parts are given. The proposed model was shown to perform
better than the common order model. Also, compared to the age replacement
model, the solution of the proposed model is relatively similar, yet the
economies of scale would be an advantage for the block replacement over age
replacement.

Keywords: block replacement; deterministic demand, joint optimization, maintenance,
spare parts inventory, stochastic demand.

1 Introduction

One of the most important aspects affecting maintenance policies is spare part
inventory control. Traditionally, optimization of maintenance does not take into
account this aspect since it assumed that spares are always available upon
request. In reality, this is not the case. To have spares always available, one
incurs an inventory related cost (ordering and holding costs) and a shortage cost
if the demand is higher than the stock on hand.
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According to the Aberdeen Benchmarking Study [1], spare parts and services
account for 8% of the annual gross domestic product in the United States, with
U.S. consumers and businesses spending more than $700 billion each year on
spare parts and services for previously purchased assets, such as automobiles,
aircraft, and industrial machinery. On a global basis, spending on such
aftermarket parts and services totals more than $1.5 trillion annually. This
implies that the overall magnitude of the problem is quite large. The dominant
usage of spare parts is in the maintenance area, being either corrective or
preventive.

To overcome the problem of making separate decisions on maintenance and
spare parts, several papers have proposed joint optimization of inventory and
maintenance policy. These papers show that such a policy is more cost effective
than a separate optimization of maintenance and ordering policy, since there is
an interaction effect between inventory and maintenance related costs.
However, the coordination schemes developed so far are quite simple. The
research question for this study was therefore focused on the question whether
more advanced coordination mechanisms can lower costs.

Development of an analytical model for a joint optimization problem for a
system consisting of multiple identical units that must be replaced under age
based or block replacement policy is extremely difficult. For both systems it is
difficult to calculate the renewal function, especially if block replacement can
be delayed by a lack of spare parts. The easiest way to solve this problem is to
use a simulation model.

The objective of this study was therefore to modify simulation models that have
been developed in previously published articles and try out a number of new
ideas. In the first place, by applying modified block replacement instead of
block replacement. Smeitink and Dekker [2] showed that this could lower costs.
Furthermore, we separate the ordering model into a model for stochastic failure
replacement (stochastic demand) and a model for planned block replacement
(deterministic demand). For the latter, separate replenishment orders can be
made as the timing of preventive maintenance is, to some extent, known
beforehand.

To gain general insights, we first define a base case and next make several
extensions to obtain more general results.



Simultaneous Opftimization of Block Replacement 497

2 Literature Review

In the past, maintenance and inventory optimizations were considered
separately. In maintenance optimization theory, it is assumed that there is no
cost associated with inventories to support maintenance activities. In reality, in
order to support the maintenance activity, there must be many spare parts in
stock to be used to replace the original units due to failure or block
replacements.

There are many policies in maintenance practice, e.g. failure replacement (for a
component with a constant failure rate), age-based block replacement (for a
component with an increasing failure rate), block replacement,
condition/inspection based replacement, and opportunity based replacement.

The first block replacement policy is age-based replacement for a single unit.
This policy has been specified by Barlow and Proschan [3]. In their model, no
consideration was given to spare part stocking. The model assumes that spares
are always available upon request, without any cost.

In practice, this assumption is unrealistic. To keep stock available, one will
incur an inventory cost. Also there is a delay between ordering and
replenishment, known as lead time. Thus, the spares must be ordered and kept
in such a way that the total inventory cost (ordering cost, holding cost and
shortage cost as a consequence of lead time) is optimized. The model also
assumes that the switch-over of spares is perfect and instantaneous.

Osaki and Kaio [4] developed a more realistic model than the Barlow and
Proschan model, where there is a constant lead time. Park and Park [5] and
Kalpakam and Hameed [6] developed models considering a random lead time.
Their models assume that switch-over of spares is perfect and instantaneous. All
these models optimize maintenance and inventory policy separately and
sequentially. First comes optimizing the replacement interval, followed by
optimizing the inventory stocking policy.

Acharya [7] developed a block replacement policy with periodic review of the
spare part stock. This is the first model that tried to optimize maintenance and
inventory policies simultaneously. This model assumes that the review period
and block replacement interval coincide. This assumption is not applicable for a
continuous review inventory policy since for a continuous review policy the
cycle is in terms of inventory level, instead of in terms of time units. This model
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shows that joint optimization of maintenance and inventory policies gives a
better solution than separate optimization.

All articles mentioned above only consider one type of lead time. In reality, if
the failure of an original unit takes place before the regular ordering time (pre-
specified time instant during the operation period of an original unit), it is
possible to place an emergency order with a shorter lead time. Kaio and Osaki
[8] developed a model to accommodate such a situation. Emergency cost is
more expensive than regular ordering cost, but an emergency order can reduce
downtime cost since it has a shorter delivery time. In this case, the trade-off is
between downtime cost and emergency ordering cost.

It is often possible to do minimal repair instead of placing an emergency order.
After minimal repair, the condition of the original unit will be as good as before
failure. A regular order is placed at regular ordering time. When the unit is
delivered, the original unit is replaced by the new unit. This situation has been
modeled by Kaio and Osaki [9] and Sridharan [10]

For a single component system subject to random failure and with only one
spare in stock or in order at any time, Armstrong and Atkins [11,12] give an
analytical model. In their model, they used a deterministic lead time, L. The
objective of their analytical model was to determine the optimum age
replacement interval (7)) and the optimum ordering time ¢, in order to optimize
the total maintenance and inventory costs. The optimum ordering time ¢, is one
lead time before 7' (¢, = T- L).

Kabir and Olayan [13] extended Amstrong and Atkins’ [11,12] single
component system to a multi-component system under age based replacement
through the use of a simulation model. Their model is known as the (s,S,7)
policy, with § is the maximum stock level, s is the reorder level (ROL), and T is
the optimum BR interval. They concluded that for a multiple component
system, as for a single component system [11,12], a joint optimization (s,S,7)
policy gives a better solution than separate optimization (s,S) and (7).

For a multi-component system under a block replacement policy, Sarker and
Haque [14] have shown that joint optimization (s,S,T) gives a better solution
than separate optimization. Similar to Kabir and Olayan [13], they also used a
simulation model instead of an analytical model because it is extremely difficult
to develop an analytical model for a joint optimization (s, S, T) policy.
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In both models, they used a probabilistic lead time with two types of lead times,
emergency lead time and regular lead time. In reality, it is common to use a
deterministic lead time. Horenbeek, et al. [15] reviewed several articles related
to joint optimization of maintenance and inventory systems. They listed the
charasteristics of all reviewed articles. Among all the articles reviewed in their
study, the model of Sarker and Hague [14] is the most closely related to our
proposed model. The differences between Sarker and Hague [14] and the
proposed model is in the spare parts ordering policy and the lead time. A
separated spare part ordering schedule for planned replacement and for
unplanned replacement is introduced and a deterministic lead time is used, as
used by Amstrong and Atkins [12], instead of a probabilistic lead time, as used
by Kabir Sarker and Haque [14].

Finally, we compared the performance of our modified policy to the (s,S,7)
policy [14]. Also, we compared this modified block replacement policy to an
age replacement policy (ARP). The details are explained in the next section.

3 Problem Formulation

Block replacement (BR) is a common practice in industrial maintenance. Block
replacement is optimum for a system consisting of components with an
increasing failure rate. For a system with many identical items, it is beneficial to
replace all those identical items at the same time, regardless of the previous
failure replacement of individual items. This policy is known as block
replacement.

From a maintenance point of view, the determination of the optimum
maintenance policy is only related to the long-run average costs, which include:

1. Block replacement (BR) cost: cost of spare part, cost of block replacement.
Failure Replacement (FR) cost: cost of spare part, cost of corrective
replacement.

3. Deterioration cost: increasing operational cost due to component aging
(wear-out).

4. Downtime cost: cost due to lost time/production loss due to preventive and
corrective maintenance activity.

The effect of inventory costs (ordering cost, holding cost and shortage cost) of
the spare parts needed for maintenance activities is not considered in this model.
It is assumed that the spare parts are always available at any time without any
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costs. In reality, this assumption is only true if the stock of the spare part is high
enough (overstock) and there is no holding cost to keep the stock available, no
shortage cost, and no ordering cost. To optimize the block replacement (BR)
interval, one therefore has to take into account not only maintenance cost, but
also inventory cost.

If the BR interval is relatively long, then the stock of the spare will be relatively
higher to cover the stochastic failure demands (failure replacement — FR) during
that BR interval. The expected FR cost will also be relatively high. On the other
hand, if the BR is relatively short, the BR cost will be relatively high but the
stock of the spare will be relatively low since the expected demand for FR is
lower.

The problem is to determine the optimum BR interval (T), the optimum reorder
point (s), and the optimum maximum stock level (S) to minimize the total long-
run average cost (cost related to maintenance activity and inventory cost). The
demand in every BR and BR interval are constant. There are two types of
demand, deterministic demand for BR and stochastic demand for FR.

If the lead time is relatively long, the ordering cost is relatively high and the
holding cost is relatively low, it is more beneficial to place a common order for
both BR and FR demands than to make a separate order for BR demand and FR
demand. As an example, any time we have to place an order for BR demand it is
beneficial to also include an order for FR demand. Conversely, any time we
have to place an order for FR demand it is beneficial to include an order for the
next BR demand.

As an extreme scenario, for a certain BR interval value one can order at one
lead time before BR. The order quantity is equal to the BR demand plus the
expected FR demand during one BR cycle. In this case, the ordering cost will be
relatively low but the holding cost will be relatively high.

In a different scenario, we can place an order every one lead time before the BR
time. The FR demand is ordered separately whenever there is a trigger to place
an order (when the stock level is less than or equal to the reorder level). In this
case, the ordering cost is relatively high and the holding cost relatively low.

It is possible to find the optimal BR interval (7), reorder point (s), and the
maximum stock level (S) in order to achieve the optimum long-run average
cost. In order to optimize the total cost for both inventory and maintenance
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related costs, there are two different models that can be used. The first is a
separate optimization policy and the second is a joint optimization policy.

In the separate optimization policy, optimization of BR interval (7) and
optimization of inventory stock (s,S) are done separately and sequentially. First,
optimize the BR interval (7)) and then, based on this optimum 7, one optimizes
the stocking policy (s,S). This policy is known as the (s,S5), and (7)) policy

In the joint optimization model, optimization of the BR interval and stocking
policy (s,S) are done simultaneously, since there is an interaction effect among
s,S, and T on the total average system cost. This policy is known as the (s,S,T)
policy [13,14].

It is extremely difficult to solve this problem analytically. For a multi
component system under an age replacement policy, a simulation model has
been developed by Kabir and Olayan [13]. They concluded that joint
optimization is more cost effective, in general, compared to separate
optimization. For a multi component system under a block replacement policy,
Sarker and Haque [14] also reached the same conclusion.

In this study, we modified a simulation model for the (s,S,7) policy as proposed
by Sarker and Haque [14]. We propose (s,S,7) with separate part ordering for
block and corrective replacements. For the (s,S,7) policy [14] we can give an
illustration with a simple hypothetical system, as shown in Figure 1. We place
an order only when the stock level is less than or equal to reorder level s. The
stock is for both failure and block replacement demands. There will be a stock
out possibility when we need a spare to replace a failure component or when we
need to replace all components in every block replacement time. Otherwise, we
have to stock more spares but this will imply a high inventory cost.

In a block replacement policy we know in advance that every block replacement
time we have to replace all operating components (N). Therefore, every block
replacement time we need N spares, hence the block replacement demand is
deterministic. For deterministic lead time (L) we can place an order with a
quantity of N units of a spare part one lead time before the block replacement
time. This will guarantee that there will be no shortage every block replacement
time and hence the shortage cost will decrease.

In this policy, there are two types of demand: stochastic demand for failure
replacement and deterministic demand for block replacement. There are also 2
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types of inventory evaluations. The first is based on (s,S) continuous review for
failure replacement demand and the second is a periodic review one lead time
(L) before every block replacement time. In the proposed (s,S,7) policy with
separate part ordering for block and corrective replacements, every one regular
lead time (L) before block replacement time (7) we place a regular order. The
order quantity is as much as number of demand for next block replacement.
Figure 2 shows a simple hypothetical system for this proposed policy.

The hypothetical system has N =4, s =1, S =4, T = 12, a deterministic lead
time L = 3, and the threshold is 4 time units before the block replacement time.
Initial inventory level (ILy) = 0 and initial inventory position (IP) = 0 (no
outstanding order). Table 1 shows the description for the policies to be
compared.

Table 1 Description of several policies.

Policy Description
e No block replacement, replacement only at failure, there
(s, S), T infinite is only failure replacement (stochastic) demand
e Place an order if inventory position is less than or equal
tos

e Separate optimization. First, optimize block replacement
interval (T), and then optimize stocking policy (s,S)
(5 9). (T) e
Barlow-Proschan ased on
e Joint order for failure replacement (stochastic) demand
and block replacement (deterministic) demand
e Joint optimization. Optimize block replacement interval
(s,S,T) (T), and stocking policy (s,S) simultaneously
Haque-Sarker [14] Joint order for failure replacement (stochastic) demand
and block replacement (deterministic) demand
Joint optimization. Optimize block replacement interval
(T) and stocking policy (s,S) simultaneously
Separate order for failure replacement (stochastic)

(s,S,T) separate spare
part ordering for

block and failure demand and block replacement (deterministic) demand
replacements .
e Block replacement order quantity is N
(s,8.T) age e Replacement individual components upon failure or
when age reaches T
replacement

[12] e Place an order if inventory position is less than or equal
to s, order quantity is up to level S
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4 Simulation Model

In this section the simulation model is described. This section consists of system
description, cost formulation, algorithm of the simulation model, and
verification of the simulation model.

4.1 System Description

The system comprises of N identical components. All components are
statistically identical and independent. All components have the same failure
distribution. For such a system, a block replacement policy is most suitable. All
N components will be replaced after a certain interval of time (block
replacement interval — BRI), regardless of the age of all components. This block
replacement incurs a block replacement cost (BRC) per component.

If the individual unit fails before the block replacement time, it will be replaced
with a new component if there is stock available. This replacement incurs a
failure replacement cost (FRC) per component. If the spare is not available, the
unit will be replaced as soon as a spare is available, incurring a shortage cost
(SC) per component per time unit. In general, FRC is higher than BRC.

The inventory policy is a (s,S) policy where s is the reorder point and S is the
maximum stock level. In this policy, an order for (S-s) spares units is placed
when the inventory position (/P) drops to s and this order will incur an ordering
cost (OC). The order lead time is deterministic. There are two types of ordering:
emergency ordering and regular ordering. Emergency ordering takes place when
the inventory level is less than or equal to zero, while a regular order is placed
when the inventory level is larger than zero. The emergency ordering cost is
higher than the regular ordering cost, and the emergency lead time is shorter
than the regular lead time. Spares kept in stock incur a holding cost (HC) per
unit per time unit.

In this system, the total cost comprises of cost of block replacement (BRC) per
unit component, cost of individual failure replacement (FRC), shortage cost
(SC), ordering cost (OC), and holding cost (HC). This total cost can be
minimized by determining the optimal values of block replacement interval BR/
maximum stock level S, and reorder level s.
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4.2
1.

Cost Formulation

Ordering costs (OC) are incurred if at time ¢ the inventory position (IP)
drops to or below reorder level s. There are two types of ordering costs:
emergency ordering cost, if inventory level < 0, and regular ordering cost, if
IL > 0. The emergency delivery time is shorter than the regular delivery
time.

TCu=TCp+ OCo if IP,<sand IL,> 0

TCu=TCp+ OCeif IP,<0and IL, <=0

OCo: Regular ordering cost

OCe: Emergency ordering cost

Order quantity (OQ) is S-IL,, S = maximum stock level

Holding costs (HC) are computed for the inventory level between any two
events (both failure time and block replacement time) for /L > 0
TCu=TCp+HC(t-t,). 1L,

Shortage cost (SC) is accrued for each spare unit remaining not available
for each time unit (/L <0)

TCu=TCp+SC(t-t,). 1L,

Failure replacement cost (FRC) is incurred if an individual unit fails before
the block replacement time (BRT) and the spare required is available.

TCu = TCp + FRC gives the spares available.

Otherwise, the replacement will be delayed until spares are available;
shortage cost will be incurred.

Block replacement cost (BRC) is incurred every block replacement time
(BRT) interval, regardless of the previous failure replacement time for each
unit. If the available number of spares is larger than or equal to the number
of units to be replaced, V, the block replacement cost is

TCu=TCp+ BRCxN

IfO<IL <N,

TCu =TCp + BRC x IL If 0 < IL < N, and the rest of the components will
remain inoperative until the spares required are available; shortage cost and
block replacement cost are incurred.

If IL <= 0, all units will remain inoperative until the spares required are
available; shortage cost and block replacement cost are incurred.

TCu: Total updated cost

TCp: Total previous updated cost
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Simulation Program Algorithm

Set the number of components (N), unit life time distribution f{?), unit
holding cost (HC), unit shortage cost (SC), emergency ordering cost (EOC),
regular ordering cost (ROC), failure replacement cost (FRC),block
replacement cost (BRC), block replacement interval (BRI), regular lead time
(RLT), emergency lead time (ELT), simulation length, number of
replication, set initial inventory level /L, and initial inventory position /P.
Generate unit life time. If unit life time > block replacement time then the
component will be replaced preventively (block replacement) at the block
replacement time. Else, go to step 14.

Check inventory level. If inventory level > N, go to step 4. Else go to step 5
Replace all components.All components will start as good as new. Update
inventory position. If inventory position < reorder level, and inventory
position < 0, place an emergency order. If inventory position < reorder
level, and inventory position > 0, place a regular order. If inventory position
< reorder level, and inventory position < 0, place a regular order. Set the
next block replacement time. Go to step 2.

If 0 < inventory level <N, go to step 6. Else go to step 8

Replace component as much as the inventory level. Go to step 2. The rest of
the components will be replaced as soon as the order arrives. Current
inventory position = previous inventory position - N. Current inventory
level = previous inventory level - N. If inventory position < reorder level,
go to step 7. Else go to step 8.

Place an emergency order. The order quantity is the maximum stock level
(S) - inventory position (/P). If the spares arrive before the unit fails, do a
block replacement (block replacement cost) at order arrival time. If the unit
fails before thespare arrives then do a failure replacement and failure
replacement cost is incurred. Since there is a shortage between failure time
and order arrival time, shortage cost is incurred.

Update total block replacement cost, total failure replacement cost, total
shortage cost, total holding cost, total emergency ordering cost, inventory
position, and inventory level. Set the next block replacement time. If
inventory position < reorder level, place an order. Go to step 2.

If shortage cost due to waiting for outstanding order > emergency ordering
cost plus shortage cost due to waiting for emergency order, place an
emergency order. Update total emergency ordering cost. Else, go to step 9.
Wait until the order arrives and replace all components. If the spare arrives
before the unit fails do a block replacement when the order arrives, block
replacement cost is incurred. If the unit fails before thespare arrives do a
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11.

12.
13.

14.

15.

16.

17.

18.

19.

failure replacement, failure replacement cost is incurred. Since there is a
shortage between failure time and order arrival time (spares available),
shortage cost is incurred.

Update total block replacement cost, total failure replacement cost, total
shortage cost, total holding cost, inventory position, and inventory level. If
inventory position < reorder level, place an order. Set the next block
replacement time. Go to step 2.

If inventory position > N, go to step 11. Else go to 13.

If shortage cost due to waiting for outstanding order > emergency ordering
cost plus shortage cost due to waiting for emergency order, place an
emergency order. Update the total emergency ordering cost. Else go to step
0.

Wait until the order arrives and replace all components. If the spare arrives
before the unit fails do a block replacement when the order arrives, block
replacement cost is incurred. If the unit fails before thespare arrives do a
failure replacement, failure replacement cost is incurred. Since there is a
shortage between failure time and order arrival time (spares available),
shortage cost is incurred.

Update total block replacement cost, total failure replacement cost, total
shortage cost, total holding cost, total emergency ordering cost, inventory
position, and inventory level. If inventory position < reorder level place an
order. Set the next block replacement time. Go to step 2.

If inventory position < N, place an emergency order. The order quantity is
N - inventory position. Wait until the order arrives and replace all
components. If the spare arrives before the unit fails do a block replacement
(block replacement cost) at order arrival time. If the unit fails before the
spare arrives then do a failure replacement, failure replacement cost is
incurred. Since there is a difference between failure time and order arrival
time, shortage cost is incurred.

Update total block replacement cost, total failure replacement cost, total
shortage cost, total holding cost, total emergency ordering cost, inventory
position, and inventory level. If inventory position < reorder level, place an
order. Set the next block replacement time. Go to step 2.

Check inventory level. If inventory level > 0 go to step 15. Else go to step
16.

Replace the component. The component will start as good as new and only
individual failure replacement cost is incurred. Set the next block
replacement time. Current inventory position = inventory position - 1.
Current inventory level = inventory level - 1. If current inventory position <
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reorder level and current inventory level > 0 place a regular order. If current
inventory position < reorder level and current inventory level < 0 place an
emergency order. Go to step 2.

20. If inventory position > reorder level go to step 17. Else go to step 19.

21. If shortage cost due to waiting for outstanding order > emergency ordering
cost plus shortage cost due to waiting for emergency order place an
emergency order. Update total emergency ordering cost. Else go to step 18.

22. Replace the component as soon as the order arrives. Shortage cost and
individual failure replacement cost are incurred. Update total failure
replacement cost, total shortage cost, total holding cost, inventory position,
and inventory level. Set the next block replacement time. Go to step 2.

23. Place an emergency order. Replace the component as soon as the order
arrives. Shortage cost and individual failure replacement cost are incurred.
Update total emergency ordering cost, total failure replacement cost, total
shortage cost, inventory position, and inventory level. Set the next block
replacement time. Go to step 2.

24. End.

This algorithm is for the (s,S,7) policy. For the (5,5,7) separate order policy,
every one regular lead time before the block replacement time, we order N units
of spare parts.

4.4 Simulation Program

The simulation program was developed using simulation package ARENA. We
used ARENA since it combines the ease of use found in high-level simulators
with the flexibility of a simulation language, all the way down to the general-
purpose procedural languages [16]. The modules in ARENA are composed of
simulation language SIMAN components so we could create our own module.

ARENA also has an OpQuest package that is designed to find the decision
variables (input-control) that give the best solution to an objective function.
OptQuest automates or controls ARENA to set variable values, start and
continue simulation runs, and retrieve the simulation results.

When an optimization runs, OptQuest starts the simulation by issuing a start
over command. It then changes the values of the control variables and resource
capacities to those identified by OptQuest for the simulation scenario. Next,
OptQuest instructs ARENA to perform the first replication.
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OptQuest combine the metaheuristics procedures of tabu search, neural
networks and scatter search into a single composite method [17]. The exact
procedure, however, is kept secret. For more information we refer to Glover, et
al. [18].

5 Numerical Experiments and Discussion

In this section, we describe our numerical experiments and analyze the
differences between the policies. First, a base case is used and then various
parameters will be tested in order to gain some insight into the effects of
changing the parameters values.

Also, the saving cost from our proposed policy (policy 4) and policy 5 [13] to
policy 3 [14] were compared.

5.1 Numerical Experiments with Base Case Parameters

The simulation was run for all policies with base case parameters. The
parameters for this base case numerical experiment were:

1. A Weibull distribution was used to represent the unit failure time. The
probability density function f{#) of this distribution is given by

2. f()=af"t“ " expi— (%J for ¢ > 0, otherwise and f(z) =0

Where & is the shape parameter and £ is the scale parameter.
In this base case simulation, the values of f =50and & =3.

Number of identical components (N) =5

Regular lead time: 5

Emergency lead time: 1

Regular ordering cost: 5 per order

9. Emergency ordering cost: 30 per order

10. Shortage cost: 20 /unit/time unit

11. Holding cost: 1 /unit/time unit

12. Block replacement cost: 20 per unit/replacement
13. Failure replacement cost: 100 per unit/replacement
14. Threshold = T/2

PN AW

We ran the simulation to find the optimum value for the (s,S,7) combination.
The range of block replacement interval (T) was set from 10 to 50 (scale
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parameter of failure distribution) with a step increment of 1. We chose this
range since it is economical to replace the components before its average life
time (in this case, scale parameter, which is 50). Reorder level (s) was set from
0 to 5 with step increment 1. Maximum stock level (S) was set from 1 to 7
with a step increment of 1. We chose this value since there are 5 identical
components in the system. With this setting there are 41 x 6 x 7 combinations of

(s,S,7).

Every simulation ran for 100 replications with a replication length of 10.000
time units (200 time units is the life time scale parameter). A 95% confidence
interval was constructed for the results of each experiment. ARENA gives the
mean of each result over the replication with the half width of a (nominal) 95%
confidence interval on the expected value of the output result. Table 2 shows the
output of the simulation. The differences between policy 3 [14] and our
proposed policy (policy 4) are significant.

The results for the holding cost can be verified using the following reasoning.
The upper bound for the holding cost per time unit is equal to 1 since the
holding cost is equal to 1 and in general we keep the maximum stock level
equal to 1. However, sometimes the inventory level is equal to zero or below
zero, therefore the average holding cost per time unit is less than 1. However,
for policy 1 the maximum stock level is equal to 2, so the upper bound for the
holding cost per time unit is equal to 2 and the lower bound for the holding cost
per time unit is equal to 1, since the reorder point is equal to 1. Next, we will
discuss the results of each policy in detail.

1. (s,S), T Infinite Policy (Policy 1)

Since there is only failure demand, only one demand at one time, and there is
not a routine demand for block replacement, the optimum stock policy is (0,2).
This policy gives the highest average total cost. This result is in line with
theory, which states that for a system consisting of components with an
increasing failure rate, the failure replacement policy is costly. It is more
economical to do block replacement.

2. (5,8),(T) Policy (Policy 2)

In this case the maximum stock level is 1, so that in any instance the maximum
inventory position is equal to 1 and the maximum inventory level is equal to 1.
This stock is only for failure demand between two successive block replacement
times. In every block replacement time the stock is always less than the demand
(N =5). Hence, in every block replacement time we place an emergency order.
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The lower bound for emergency ordering cost per time unit is equal to the
emergency ordering cost (30) divided by the block replacement interval (24),
which is equal to 1.25. It is also possible that an emergency order is triggered by
failure demand. This explains why the average emergency ordering cost is
1.309 per time unit (higher than 1.25).

Regular orders are only triggered by failure demand. On average, one failure
occurs in about every 46 time units and will trigger a regular order or an
emergency order. The upper bound for the average regular ordering cost per
time unit is equal to the regular ordering cost (5) divided by 45 = 0.110 per time
unit. The average regular ordering cost is 0.089, which is less than 0.110
because sometimes failure of a component triggers an emergency order instead
of a regular order.

This result is in line with theory, for a system consisting of components with an
increasing failure rate, a block replacement policy gives lower costs compared
to a failure replacement policy (Policy 1).

3. (5,5, T) Policy (Policy 3)

In this case the maximum stock level is 1, so that in any instance the maximum
inventory position is equal to 1 and the maximum inventory level is equal to 1.
This stock is only for failure demand between two successive block replacement
times. In every block replacement time, the stock is always less than the
demand (N = 5). Hence, in every block replacement time, we place an
emergency order.

The lower bound for the emergency ordering cost per time unit is equal to the
emergency ordering cost (30) divided by the block replacement interval (25),
which is equal to 1.20. It is also possible that an emergency order is triggered by
failure demand.This explains why the average emergency ordering cost is 1.274
per time unit (higher than 1.20).

Regular orders are only triggered by failure demand. On average, one failure
occurs in about every 43 time units and will trigger a regular order or an
emergency order. The upper bound for the average regular ordering cost per
time unit is equal to the regular ordering cost (5) divided by 43 = 0.118 per time
unit. The average regular ordering cost is 0.095, which is less than 0.118
because sometimes failure demand triggers an emergency order instead of a
regular order.
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As concluded in [13] and [14], a joint optimization (s,S,T) policy (Policy 3) has
better performance than a separate optimization (s,S),(T) policy (Policy 2) for
both age replacement and block replacement policies. The total average cost is
lower.

4. (5,8,T) Separate Part Ordering for Block and Corrective Replacement Policy
(Policy 4)

In this policy, since we place regular orders for block replacement demand in
advance with regular ordering cost, which is cheaper, the total ordering cost
becomes cheaper. There are no emergency order in every block replacement
time.

On average, the lower bound for the average regular ordering cost per time unit
is equal to the regular ordering cost (5) divided by the block replacement
interval (24), which is 0.208. Regular orders are also triggered by failure
demand, hence the average regular ordering cost is more than 0.208, which is
lower than 0.304. The difference comes from the regular ordering cost triggered
by failure demand.

Emergency orders are only triggered by failure demand and occur less
frequently (0.070 per time unit). The regular ordering cost triggered by failure
demand is 0.304 - 0.028, which is equal to 0.096. This shows that the regular
ordering cost triggered by block replacement demand (0.208) is higher than the
regular cost triggered by failure demand (0.096).

It also shows that, in case of failure demand the average regular ordering cost
(0.096) is higher than the average emergency ordering cost (0.070). The average
holding cost in this policy is higher since stock on hand will not be used in
every block replacement time. In every block replacement time, we only use N
spares, which we order separately. If there is stock on hand, this stock is only
used to fulfill failure replacement demand. If there is no failure between the
replacement time and the block replacement time (T - L), this stock will be left
over after the block replacement time and will be used for the next failure
replacement.

As a comparison between the block replacement policy and the age replacement
policy, we simulate the same case for (s,S, 7) age replacement policy (Policy 5).
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Table 2 Optimum solution for base case parameters.

Average
. Average Inventory Cost
Maintenance Cost g y =
5]
> e S
13 e - ' - o 9
o= o 2z 2 9 o - o0 on @ @ —
5T & g O |§Egzffz £z £¢ S 2%
A~ = o — g s 88 =8 = & = < ©
= 2> ] T O T O T 9 S o - o
= 2 S |E5 &5 = 7 °
[-w = = 2 =

1 0 2 o 11.110 0.000 11.110 0.365 0.245 1.079 0.503 2.192 13,302

2 0 1 24 2.184 4112 6.296 1.309 0.089 0.876 0.057 2.331 8.627

30 1 25 2.354 3939  6.293 1.274 0.095 0.872 0.065 2.303 8.596

4 0 1 24 2.182 4.151 6.333 0.070 0.304 0.925 0.040 1.338 7.671

5 0 2 24 2.337 3.666  6.003 0.299 0.477 0.615 0.255 1.646 7.650
+0.034

These results are in line with theory. The proposed policy (Policy 4) gives a
better solution compared to Policy 1, Policy 2, and Policy 3. The separate spare
part order schedule gives a better result due to inventory cost reduction. The
cost reduction is gained from the emergency ordering cost and the shortage cost.
Since the block spare parts are ordered at one lead time before the planned
schedule of block replacement, the shortage probability for block replacement is
very low and hence emergency order probability is very low as well.

The regular ordering cost for Policy 4 is relatively high compared to Policy no 3
since there are two regular-order components, one for failure replacement and
one for block replacement. However, the increase in the regular ordering cost is
very low compared to the decrease in the emergency ordering cost.

The holding cost for Policy 4 is slightly higher compared to Policy 3, since the
expected amount of spare part inventory in Policy 4 is higher due to the
possibility of excess inventory for failure replacement at the time of block
replacement. Overall, in terms of total cost, Policy 4 outperforms Policy 3.

The age replacement policy (Policy 5) performs slightly better compared to our
proposed policy. This result is in line with Archibald and Dekker [19].
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However, block replacement has an economic of scale advantage compared to
age replacement, especially when the number of identical items is relatively
high.

5.2 Numerical Experiments with Various Parameters

In order to gain some insight into the effects of various parameters on all
policies, a number of case problems were constructed. It was proved that for a
system consisting of components with an increasing failure rate, block
replacement (Policy 2) is always better than failure replacement (replacement
only at failure, Policy 1).

For a system under age based replacement, Kabir and Olayan [13] proved that
Policy 3 yields better results than Policy 2. Meanwhile, Sarker and Haque [14]
indicate the same result for a system under a block replacement policy.
Therefore, in our numerical experiments we only compared between our
proposed policy (Policy 4) and Policy 3 [13]. As a benchmark, we compared
block replacement policy (Policy 3) to age replacement (Policy 5).

The parameter values selected for these numerical experiments were:

1. Unit life time distribution follows a Weibull distribution with scale
parameter £ = 50 and shape parameter & =1.5,2 and 3

2. Number of components (N) =5

3. Regular lead time: 5, 10 and 15

4. Emergency lead time: 0, 1 and 2

5. Regular ordering cost: 1,5 and 10

6. Emergency ordering cost: 10, 30 and 100

7. Unit shortage cost: 10, 20 and 100

8. Unit holding cost: 0.1, 0.5, and 1

9. Block replacement cost /unit: 10, 20 and 50
10. Threshold time = T/2

In these numerical experiments, the value of one of the parameters was changed
while the values of the other parameters were kept the same as the base case
values. The number of replications was 100 and the simulation length was
10000 time units. A 95% confidence interval was constructed for the results for
each experiment.
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5.2.1 Effect of Unit Life Time Distribution Shape Parameter

The unit life time distribution shape parameter affects the optimum block
replacement interval. The higher this parameter, the shorter the block
replacement interval. These results are in line with Kabir and Olayan [13] and
Dekker and Dijkstra [20]. It can also be seen from the results that the higher the
distribution shape parameter, the higher the cost saving from these policies. For
Policy 4, the cost saving ranges from 5.70% to 10.76%. Table 3 shows the
effect of the distribution shape parameter on the total average cost for the
different policies.

Table 3 Effect of unit life time distribution shape parameter on average total
cost, s, S, & T.

Shape Average Total Cost Comparison (%)
Parameter . . . Policy 4 to Policy 5 to
Policy 3 Policy 4 Policy 5 Policy 3 Policy 3
1.5 13.116+0.059  12.369+0.062 12.011+0.055 94.30 91.58
2 11.106+0.044  10.202+0.042 10.077+0.045 91.86 90.73
3 8.596+0.034 7.671+0.034 7.650+0.034 89.24 88.99

5.2.2 Effect of Regular Lead Time

The regular lead time does not significantly affect the optimum s, S, and T for
Policy 4 but significantly affects Policy 5.The cost saving for Policy 4 ranges
from 10.63% to 10.76 %, while the cost saving for Policy 5 ranges from 1.88 to
11.01 %. Table 4 shows the effect of the regular lead time on the total average
cost for the different policies.

Table 4 Effect of regular lead time on average total cost, s, S, & T.

Average Total Cost Comparison (%)
Regular Policy 4to  Policy 5 to
Lead Time Policy 3 Policy 4 Policy 5 Policy 3 Policy 3
5 8.596+0.034  7.671+0.034 7.650+0.034 89.24 88.99
10 8.568+0.034  7.648+0.034 8.0364+0.033 89.26 93.79
15 8.525+0.034  7.619+0.034 8.365+0.044 89.37 98.12

5.2.3 Effect of Emergency Lead Time

Emergency lead time significantly affects optimum T for Policy 3, since in this
policy we have to place an emergency order in every block replacement time. In
order to decrease the emergency ordering cost, 7 must increase. For all policies,
as the emergency lead time increases, the cost saving decreases. For Policy 4,
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the cost saving ranges from 10.28% to 11.68%. For Policy 5, the cost saving
ranges from 1.60% to 2.90%, and for Policy 5, the cost saving ranges from
10.05% to 12.61%. Table 5 shows the effect of the emergency lead time on the
total average cost for the different policies.

Table 5 Effect of emergency lead time on average total cost, s, S, & T.

Average Total Cost Comparison (%)
IIEJme(;'gre.ncy . Policy 4 Poli Policy 4to  Policy 5 to
ead Time Policy 3 olicy olicy 5 Policy 3 Policy 3
0 8.629+0.033 7.621+£0.031  7.541+0.032 88.32 87.39
1 8.596+0.034 7.671+£0.034  7.650+0.034 89.24 88.99
8.588+0.034 7.705+£0.033  7.725+0.036 89.72 89.95

5.2.4 Effect of Regular Ordering Cost

The regular ordering cost affects cost saving significantly for Policy 4. As the
regular ordering cost increases, the cost saving decreases. For Policy 4, the cost
saving ranges from 8.25% to 12.82 %, while for Policy 7, the cost saving ranges
from 7.86% to 14.71%. Table 6 shows the effect of the regular ordering cost on
the total average cost for the different policies. The expected number of regular
orders for Policy 4 is higher than for Policy 3 since it separates the order
schedules for failure replacement and block replacement. Therefore, if the
regular ordering cost increases the cost saving of Policy 4 decreases.

Table 6 Effect of regular ordering cost on average total cost, s, S, & T.

Average Total Cost Comparison (%)
0 (lllegulaé " icv 3 Policy 4 Poli Policy4to  Policy 5 to
rdering Cos Policy olicy olicy 5 Policy 3 Policy 3
1 8.520+0.033 7.428+0.033  7.267+0.034 87.18 85.29
5 8.596+0.034 7.671+£0.034  7.650+0.034 89.24 88.99
10 8.691+0.035 7.97440.035  8.008+0.031 91.75 92.14

5.2.5 Effect of Emergency Ordering Cost

For Policy 3, the higher the emergency ordering cost, the higher the maximum
stock level (S). Since the emergency ordering cost is higher, one avoids placing
an emergency order in every block replacement time. Therefore, S must be high
enough so that it can fulfill all block replacement demand (shortage will not
trigger an emergency order). The emergency ordering cost affects the cost
saving significantly for Policy 4. As the emergency ordering cost increases, the
cost saving also increases.
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The cost saving ranges from 1.68% to 29.45% for policy, while for Policy 5 the
cost saving ranges from 4.13% to 30.26%. Table 7 shows the effect of the
emergency ordering cost on the total average cost for the different policies. The
expected number of emergency orders for Policy 4 is lower than for Policy 3
since the expected shortage for block replacements for Policy 4 is lower than for
Policy 3. Therefore, if the emergency ordering cost increases, the cost saving of
Policy 4 increases.

Table 7 Effect of emergency ordering cost on average total cost, s, S, & T.

Average Total Cost Comparison (%)
OE(llnngencc:y " . Policy 4 Poli Policy4to  Policy 5 to
rdering Cos Policy 3 olicy olicy § Policy 3 Policy 3
10 7.754+0.030  7.624+0.032  7.434+0.031 98.32 95.87
30 8.596+0.034  7.671+£0.034  7.650+0.034 89.24 88.99
100 11.104+0.040  7.83440.039  7.744+0.034 70.55 69.74

5.2.6 Effect of Unit Shortage Cost

As unit shortage cost increases, optimum T decreases for Policy 3. But for
Policies 4 and 5, varying unit shortage cost does not affect optimum T. Varying
this parameter does not significantly affect cost saving for all policies except for
Policy 5. Cost saving ranges from 5.40% to 12.27% for Policy 5. Table 8 shows
the effect of the unit shortage cost on the total average cost for the different
policies. The expected block replacement shortage for Policy 4 is lower than
that of Policy 3. Therefore, if the unit shortage cost increases, the cost saving of
Policy 4 decreases.

Table 8 Effect of unit shortage cost on average total cost, s, S, & T.

Unit Shortage Average Total Cost .Comparison (.%)
Cost Policy 3 Policy 4 Policy 5 Policy4to  Policy 5 to
Policy 3 Policy 3
10 8.560+0.033 7.651+0.033 7.510+0.032 89.38 87.73
20 8.596+0.034 7.671+0.034 7.650+0.034 89.24 88.99
100 8.856+0.036 7.829+0.039 8.378+0.046 88.40 94.60

5.2.7 Effect of Unit Holding Cost

The lower the unit holding cost, the higher maximum stock level S and the
longer optimum 7 for policy 3. On the other hand, for proposed Policy 4 and
Policy 5, varying the unit holding cost does not affect optimum 7.
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In Policies 3, 4 and 5, the lower the unit holding cost, the higher the maximum
stock level (S). With a higher stock level, the emergency ordering cost
decreases, since we don’t have to place an emergency ordering in every block
replacement time (for block replacement demand). There is a trade-off between
holding cost and emergency order cost. The higher the emergency ordering cost
and the lower the unit holding cost, the higher the maximum stock level ().

For Policy 4, the cost saving ranges from 4.81% to 11.67 %, while for Policy 5
the cost saving ranges from 8.05% to 12.23 %. Table 9 shows the effect of the
unit holding cost on the total average cost for the different policies.

If the unit holding cost is relatively low it is more beneficial to reduce the
number of orders. For Policy 4, the expected number of orders is higher
compared to Policy 3 since it separates the block replacement and the failure
replacement. Hence, the lower the unit holding cost, the lower the cost saving of
Policy 4.

Table 9 Effect of unit holding cost on average total cost, s, S, & T’

Unit Holding Average Total Cost .Comparison (%)
Cost Policy 3 Policy 4 Policy 5 Policy4to  Policy 5 to
Policy 3 Policy 3
0.1 7.1324+0.032 6.789+0.031 6.558+0.027 95.19 91.95
0.5 8.160+0.035 7.208+0.034 7.162+0.031 88.33 87.77
1 8.596:+0.034 7.671+£0.034 7.650+0.034 89.24 88.99

5.2.8 Effect of The Block Replacement Cost

The block replacement cost affects the optimum 7 significantly. If the block
replacement cost increases, the block replacement interval 7 increases in order
to reduce the average block replacement cost.

Table 10  Effect of block replacement cost on average total cost, s, S, & T.

Block Average Total Cost Comparison (%)
Replacement . . . Policy 4 to  Policy 5 to
Cost Policy 3 Policy 4 Policy 5 Policy 3 Policy 3
10 6.514+0.030 5.368+0.028 5.493+0.030 82.41 84.33
20 8.596+0.034 7.671+0.034 7.650+0.034 89.24 88.99
50 13.664+0.036  12.978+0.038  12.038+0.033 94.98 88.10

For Policy 4, as the block replacement cost increases, the cost saving decreases
ranging from 17.59% to 5.02%. Cost saving for Policy 5 ranges from 11.01% to
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15.67%. Table 10 shows the effect of the block replacement cost on the total
average cost for different policies.

6 Conclusion and Future Research

Our experiments showed, that for a system consisting of components with an
increasing failure rate, a block replacement policy gives lower costs compared
to a failure replacement policy (replacement only at failure), as is already well-
accepted in maintenance theory. Our experiment also confirmed the result from
previous experiments [13,14] that joint optimization of maintenance and
inventory policy produces better results than the combination of separate and
sequential optimization policies.

The most important result of our experiments, for a system under block
replacement, is that our proposed policy (Policy 4) yielded better and more cost
effective solutions. In Policy 4, ordering cost was optimized with a separate
order policy. This policy produced the lowest inventory cost, while the
maintenance cost was about the same as for Policy 3 [14].

For the age replacement policy (ARP) we also tried to separate the ordering for
block replacement demand and failure replacement demand. However, in ARP
the effect of separate ordering on the average total cost is insignificant. In
contrast, in the block replacement policy (BRP), the effect of separate ordering
on the average total cost is significant.

In this study, we used a simulation model in our experiment. The direction of
future research is to develop an analytical model for all our three proposed
policies, in order to find the exact solution for these problems. The main
problem for a multiple component system is to calculate the cycle time. For a
single component system, the time between two successive block replacements
can be treated as a cycle. Unlike in a one-unit system, in a multiple-unit system
it is difficult to define the time cycle since there is an overlap in the replacement
time units.
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