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Abstract

Nickel, the main raw material for lithium-ion batteries (LIB), is currently the most in-demand metal. The rising need for nickel
and current environmental concerns have underscored the importance of recycling waste metal to recover its value.
Meanwhile, a significant secondary source with a high metal value is spent catalyst. In this context, the acid leaching method
was used to recover nickel from spent catalyst. This study aimed to synthesize Lithium Nickel Manganese Cobalt Oxide 622
(NMC622) from spent catalyst. To determine the optimal method, a comparative analysis was conducted between solid-
state and co-precipitation methods. Recycled spent nickel catalyst to be used for cathode material was examined by
analytical methods, i.e., XRD, FTIR, SEM-EDX, and electrochemical performance testing. The XRD, FTIR, and SEM-EDX tests
produced similar outcomes, consistent with previous reports. However, in the electrochemical test, the co-precipitation
method showed a specific capacity two times higher than the solid-state method. The NMC622 from the co-precipitation
method (NMC622-CP) yielded a specific discharge capacity of 132.82 mAh.g* at 0.1C, while the retention capacity was 70%
for 50 cycles at 0.5C.

Keywords: cathode material; co-precipitation method; leaching; NMC; recycle; solid-state method; spent catalyst.

Introduction

Nickel production has been reported to have experienced an annual growth of 3.1% over the last two decades
[1-2]. Despite the rising demand, nickel is not a crucial metal due to its availability and worldwide stockpiles,
although some potential future uses, including electric vehicles, have been identified [3]. Extracting the metal
from primary sources such as mines has significant environmental, social, and economic impacts [4]. In this
context, the energy required for nickel production is predicted to contribute substantially to global energy
consumption, while environmental implications may increase as production procedures and sites evolve[1, 5].

Spent catalyst can reduce the use of primary resources while providing significant economic benefits[6]. This
material results from the catalytic hydroprocessing of petroleum feed that is no longer active. Spent catalyst is
prohibited from being disposed of carelessly due to the high levels of harmful metals. Hence, recovery to prevent
waste accumulation is a crucial topic[7]. The acid leaching method is the most effective for recovering precious
metals in spent catalyst. While both organic and inorganic acids have been studied intensively for this purpose,
inorganic acids are not recommended due to the high corrosive potential and toxicity to humans despite their
high recovery efficiency. Organic acids, conversely, are considered lighter, have been proven effective in metal
recovery, have low corrosive potential, do not produce toxic gases, and can be operated at atmospheric
temperatures and pressures [8]. For example, citric acid is a frequently used organic acid for metal extraction
from spent catalyst. Each mole of the solution produces three moles of H*, which is sufficient for metal
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extraction. In addition, the tricarboxylic nature of citric acid leads to the supply of three carboxylic groups for
one mole of acid, resulting in a greater leaching yield [9].

The recovered nickel is mixed with lithium, manganese, and cobalt to form Lithium Nickel Manganese Cobalt
Oxide (NMC). This composition provides high specific capacity, great stability, and low internal resistance for
lithium-ion batteries[4]. Furthermore, the type of cathode suitable for this combination is NMC622, which has a
nickel-manganese-cobalt ratio of 6:2:2[10, 11]. Two methods, solid-state and co-precipitation, are often used
for NMC synthesis. The solid-state method is the simplest and can be adapted for large-scale production, but
the homogeneity is low and requires a long high-temperature heating time[12, 13]. The second method, co-
precipitation, has high homogeneity, tap density, and a spherical particle morphology but demands complex
parameter control and has large water requirements [13]. Therefore, this study investigated spent catalyst to
be used for lithium-ion battery cathode material, with nickel recovered through citric acid leaching and further
processing by comparing two different methods to produce NMC622, namely solid-state and co-precipitation.

Materials and Methods

Materials

The main raw materials used in this study were spent catalyst (PT. Petro Oxo Nusantara), manganese sulfate
monohydrate (technical grade), cobalt sulfate heptahydrate (Rubamin, India), and lithium carbonate (Sichuan
Brivo Lithium Material Co., Ltd.) as sources of Ni, Mn, Co, and Li. Furthermore, the supporting materials were
citric acid monohydrate (technical grade), hydrogen peroxide (50%, technical grade), oxalic acid dihydrate
(technical grade), and sodium hydroxide (technical grade). All raw materials, except the spent catalyst, were
used directly without treatment and purification.

Methods
Spent Catalyst Leaching

The spent catalyst was ground and sieved with a size of 100 mesh, then a 1 M citric acid solution was prepared
and heated to 80 °C. After reaching the desired temperature, the fine spent catalyst was added to the citric acid
solution at a ratio of 20 g/L. A reducing agent was further added to the mixture at 3%v/v. During the process,
the temperature was maintained at 80 °C for 3 hours. Subsequently, the leachate solution formed was filtered
to separate the solution and the residue.

Synthesis of NMC622 by Solid-state Method (NMC622-SS)

The leaching solution obtained in the previous step was precipitated using oxalic acid. Initially, sodium hydroxide
was added to the leaching solution to obtain a pH of 7. About 1 M oxalic acid solution was then added to the
mixture to reach a pH of 2, followed by heating to 60 °C for 2 hours. Manganese oxalate and cobalt oxalate were
also prepared as follows. Manganese sulfate monohydrate and cobalt sulfate heptahydrate were dissolved in 1
M distilled water, respectively. Following this, about 1 M oxalic acid solution was added to each solution and
heated at 60 °C for 2 hours. The three precipitates obtained were washed, filtered, and dried in an oven to form
nickel, manganese, and cobalt oxalate powders. The next process was solid-state lithiation carried out by adding
excess lithium carbonate to a mixture of the three oxalates (Ni-Mn-Co ratio = 6:2:2). The mixture was transferred
to a crucible, calcined at 500 °C for 6 hours and sintered at 850 °C for 12 hours. Subsequently, the formed
NMC622-SS product was ground and sieved with 200 mesh.

Synthesis of NMC622 by Co-precipitation Method (NMC622-CP)

The leaching solution produced in the previous stage was added with manganese sulfate monohydrate and
cobalt sulfate heptahydrate (Ni-Mn-Co ratio = 6:2:2). After the mixture was dissolved, sodium hydroxide solution
was added to reach a pH of 7. About 1 M oxalic acid solution was added to attain a pH of 2 while stirring, followed
by heating at 60 °C for 2 hours. The precipitate formed was washed, filtered, and dried in an oven to form
NMC622 precursor. The next process was lithiation carried out by adding excess lithium carbonate to the
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NMC622 precursor. The mixture was transferred to a crucible, calcined at 500 °C for 6 hours, and sintered at
850 °C for 12 hours. Finally, the formed NMC622-CP product was ground and sieved with 200 mesh.

Materials Characterization and Electrochemical Performance

Material characterizations in this study included atomic absorption spectrometry (AAS), X-ray diffraction (XRD),
Fourier transform infra-red (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron
microscope-energy dispersive X-ray (SEM-EDX) spectroscopy. AAS (AA-7000 series, Shimadzu, Japan) was used
to detect the elements in the liquid samples, specifically nickel. XRD (EQ-MD-10 precision mini XRD, MTI,
America) was used to determine the crystal structure and crystal size at 2e using CuKa radiation with A = 1.5406.
FTIR (Shimadzu FTIR Spectrometer, Japan) spectroscopy detected different functional groups in samples in the
4000 to 400 cm™ wavenumber range and TGA (DTG-60, Shimadzu, Japan) measured thermal stability as well as
volatile content. Meanwhile, SEM-EDX (Jeol JSM-6510LA, Japan) was used to determine the morphology and
composition of the elements in the material.

Electrochemical performance testing commenced with manufacturing NMC622-SS and NMC622-CP cathode
sheets. Both powders were added with carboxymethyl cellulose (CMC), acetylene black (AB), styrene-butadiene
rubber (SBR), and distilled water to form a slurry, respectively. The slurry was subsequently coated on aluminum
foil and dried in the oven, with the coating covering both sides to become cathode sheets. The cathode and
anode sheets, separated by a polypropylene separator, were assembled into cylindrical cells. LiPFs electrolyte
(EC-EMC = 3:7) was injected into the cylindrical cell and closed. Electrochemical testing was carried out with a
NEWARE Battery Analyzer and the BTS Software.

Result and Discussion

Spent catalyst that lost its catalytic function can be hydrometallurgically processed through acid leaching. The
material contains more than 50% Ni and previous studies have reported functional group and composition
analyses [14,15]. The nickel content is in the form of nickel oxide (NiO) [15], hence, the leaching process with
citric acid and reducing agent results in the following reaction:

3NiOgs) + 2CsHgO7(aq) + 2H202(aq) = C12H10Ni3014(aq) + 5H20) + Oz (1)

The reaction occurs under the mechanism of acidolysis and complexolysis. In acidolysis, the metal in spent
catalyst is protonated, leading to dissolution. Acids dissociate and release protons during acidolysis, causing the
removal of the metal from the surface of the spent catalyst according to Eq. (1). Protons (H*) protonates the
anions of insoluble metal compounds such as Oz in metal oxides (MO). Organic acids extract metals to form
soluble complexes through complexation (ligand formation) of previously leached metals [7]. Simultaneously,
reducing agents play a role in increasing the leaching rate and the recovery efficiency [16,17]. Nickel citrate
complex solution was analyzed using AAS and yielded 90% Ni recovery. This value was used to calculate the Mn
and Co requirements for the NMC622 mixture.

Material Characterization

Material characterization was carried out to determine the structure, functional groups, morphology, and
composition using XRD, FTIR, and SEM-EDX analysis. The XRD analysis of the nickel oxalate dihydrate and the
NMC622 precursor is presented in Fig. 1a. The crystal structure of the sample synthesized from the leaching
solution corresponded to the B-orthorhombic phase of NiC204.2H20 with space group Cccm. The lattice
parameter values included, a = 11.902, b = 5.418, and ¢ = 15.494, corresponded to Lopez et al. (2013), who
obtained values of a = 11.876, b = 5.339, and ¢ = 15.659 [18]. The NMC622 precursor showed the presence of a
NiMnCoC204.2H20 crystal structure, which also had an 8-orthorhombic phase with a lattice parameter of a =
11.909, b = 5.423, and ¢ = 15.474. Based on the diffraction pattern, the NMC622 precursor showed broad
diffraction peaks as co-effect of its Ni, Mn, and Co composition [19]. In addition, the interaction between X-rays
from the Cu and NMC samples caused a fluorescent effect, resulting in noisy XRD patterns [11]. Both samples
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were found to have metal-oxalate, which could be directly used as raw material for cathodes by simple heat
treatment.

Nickel Oxalate Dihydrate

NMC622-CP
NMC622 Precursor

Intensity {a.u)
Intensity (a.u)

(©18)/{110)

(003)
{101)
{006)/(102)
(113)

20 25 30 35 20 a5 50 20 25 30 35 40 45 50 55 60 65 70
2 theta (degree) 2 theta (degree)
(a) (b)

Figure 1 X-ray diffraction peaks (a) before, and (b) after calcination and sintering.

Figure 1b shows samples that have been lithiated and heated, both having a hexagonal a-NaFeOz2 structure with
an R3m space group. Li ions, transition metals, and oxygen ions were presumed to occupy the 3a, 3b, and 6¢
sites [21]. The structural stability and electrochemical performance of NMC material is known to be influenced
by Li*/Ni?* mixing [22]. Furthermore, a diffraction angle (28) of 20° to 35°, a potential surface impurity zone of
LiOH and Li2COs, is commonly encountered in high nickel material [23]. Based on the result, there were no
detectable surface impurities in any of the examined materials. Sharp and clear diffraction peaks were observed
in both samples, suggesting the cathode obtained was well-crystallized. In addition, the peaks in diffraction angle
20 were similar to those reported in the literature [21,24,25]. The splitting peaks (006)/(102) and (108)/(110) in
NMC622-CP were clearer than in NMC622-SS, further confirming that NMC622-CP had a higher layered
structure. The low homogeneity of NMC622-SS was largely responsible for the disordered layer structure. The
crystal structure of the material was determined using the least squares regression method; the lattice
parameters obtained are listed in Table 1. All of the discovered materials had high similarity in lattice
characteristics, showing a similar chemical composition. Furthermore, the calculated c/a ratio values for all
samples were greater than 4.899, confirming the presence of layered-structure cathode material [26]. NCM622-
CP had a lower peak angle (003) than NMC622-SS, showing a larger unit cell c-lattice, which may suggest a
broader plane distance for Li* mobility during charge and discharge [23].

Table1 Lattice parameter.

Sample a(A) c(A) c/a
NMC622-SS 2.8749 14.0859 4.8996
NMC622-CP 2.9748 14.6333 4.9190

The IR spectra analysis used to determine the absorbance band of the material is presented in Figure 2. The
analysis was carried out in the mid-region of 4000 to 400 cm™. The absorbance band between 600 and 400 cm
! showed the M-O vibration band (M = Ni, Mn, Co), which is characteristic of layered oxides [27,28]. In Fig. 2a,
Ni-O bonds were found in both samples at 486 cm™ [28]. C-O bonds were found in the band from 740 to 817 cm"
! for the NMC622 precursor, from 780 to 844 cm™ for the NiC204.2H:0, and from 1312 to 1357 cm™ for both
samples. In addition, O-H bonds were also found in the bands 1613 cm™ and 3367 cm for the NiC204.2H,0, and
1613 cm™ and 3380 cm™ for the NMC622 precursor. The carbonate and hydroxide bonds indicate that the
sample formed contained oxalate compound.
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In Figure 2b, the bands at 486 cm™, 519 cm™, and 571 cm™ represent Ni-O stretching mode, Mn-0 bending mode,
and Co-O, respectively [28]. The three peaks confirm that the material formed contained Ni, Mn, and Co.
Compared to Figure 2a, some O-H bond peaks were lost due to heating. However, the O-H peak was still found
in the NMC622-SS sample in the 3640 cm™ band, indicating that water compound was still trapped in the
material [29]. Furthermore, both samples had C-O peaks in the 870 cm™ and 1460 cm™ bands. The presence of
this carbonate bond is caused by Li2COs [30]. Water provides H*, generating OH™ that mixes with Li* to produce
LiOH. LiOH reacts with carbon dioxide in the atmosphere to generate Li.COs [31].
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Figure 2 The IR spectra (a) before, and (b) after calcination and sintering.

Thermal analysis was carried out to measure the thermal stability and volatile content of the material at a

temperature range of 30 to 900 °C. The loss on ignition was computed using the mass change before and after
the reaction [32]:

Ignition loss= 1 — productivity (2)

At 75 to 150 °C, Figure 3 shows a slight decrease in the curve attributed to the evaporation of organic matter.
As the temperature continued to rise, decomposition occurred and the rate increased with higher temperature.
A more significant decrease was observed in the curve at a temperature of 178 to 274 °C, showing the loss of
water adsorbed on the surface of the sample. This reduction of some water and alcohol molecules resulted in a
weight loss of 14.53%. At a temperature of 275 to 650 °C, another 38.59% of weight loss occurred due to the
internal reaction of lithium, nickel, manganese, and cobalt oxides, thereby confirming the formation of NMC
crystals [33]. Both samples had a total weight reduction of 53.12%, consistent with the computation equation
(2), which is based on the expected weight loss of 53.25%.
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Figure 3 Thermal analysis of NMC622-SS and NMC622-CP.
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The morphology of NMC622-SS and NMC622-CP at 500x and 5000x magnification is presented in Figure 4. All
samples had inhomogeneous particle shapes. The primary particles agglomerated to form secondary particles,
whereas NMC622-CP had smaller secondary particles than NMC622-SS. The primary particle size distribution is
shown in the histogram in Figure 5. Both samples had average submicron-sized primary particles of 0.581 um
and 0.761 um for NMC622-CP and NMC622-SS, respectively. It can be seen that the particle size of NMC622-CP
was more uniform compared to that of NMC622-SS. The tap density of NMC622-SS and NMC622-CP was not
much different at 0.858 g.cm™ and 0.872 g.cm™, respectively. Then, the surface areas of both were 2.978 m2.g!
and 3.868 m2g! for NMC622-SS and NMC622-CP, respectively. This particle size affects the electrochemical
performance of the material, which will be explained later. To study the elemental distribution, the EDX analysis
gave the results shown in Table 2. Both samples were close to the nominal ratio of Ni-Mn-Co = 6:2:2.

Figure 4 SEM image of (a) NMC622-SS and (b) NMC622-CP.
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Figure 5 Particle size histogram.
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Table2 EDX results of the samples.

Sample Ni (Atom%) Mn (Atom%) Co (Atom%)
NMC622-SS 59.6 21.0 194
NMC622-CP 59.7 22.9 17.4

Electrochemical Performance

An electrochemical test was conducted to examine the basic parameters and show the effectiveness of the
proposed methods in fabricating NMC622 cathode material from spent catalyst. For this purpose, galvanostatic
charge-discharge experiments were carried out with different C-rates to determine NMC cathode capacity, rate
capability, and cycling stability. All cells were assembled into cylindrical cells with graphite as anode, and a
charged-discharged range of 4.3 V to 2.5 V. Figure 6a showed that the first cycle-specific discharge capacities of
NMC622-SS and NMC622-CP were 68.22 mAh.g* and 132.82 mAh.g™* at a rate of 0.1C, respectively. NMC622-
CP provided a higher specific discharge capacity due to its smaller particle size compared to NMC622-SS. An
increase in the surface area to volume ratio resulted in shorter intraparticle diffusion routes and greater use of
each particle. Consequently, more active material was used because Li* diffused more easily across smaller
particles [34]. The curves of the first five and tenth cycles of NMC622-CP are shown in Figure 6b. Initial charge-
discharge curve instability is related to solid electrolyte interface (SEl) formation. Li was deposited on the anode
surface during discharge, thereby blocking the return to cathode [35]. After three cycles, the curve appeared to
be constant due to the relatively stable SEI formed [36]. SEI maintains cycle stability and prevents degradation
of cathode, acting as a protective film [37].
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Figure 6 Charge-discharge curves of (a) the 15t cycle of NMC622-SS and NMC622-CP at 0.1C and (b) the 15t to the 10t cycle
of NMC622-CP at 0.1C.

Given that NMC622-CP provided a specific capacity twice larger than NMC622-SS, it was tested for rate-ability
and cycle-ability as presented in Figure 7. In Figure 7a, NMC622-CP shows a specific discharge capacity of 108.23
mAh.g! at 0.5C, which decreased after 50 cycles to 75.72 mAh.g™. The retention capacity of the discharge was
70%, showing relatively lower stability caused by a substantial decline. The capacity increased slightly every few
cycles due to the SEI layer formed on the surface of the electrode during the initial cycle. As the SEI layer
expanded and stabilized during the first few cycles, a gradual capacity increase occurred [37]. This phenomenon
was also subject to the influence of poor surrounding temperature control [38,39]. As shown by real-time data
from charge-discharge tests, the discharge capacity decreased when the air temperature dropped at night.
Meanwhile, with increasing air temperatures during the day, the discharge capacity increased. Based on the
result, a discharge capacity of 64.02 mAh.g! at the highest level of 1C was obtained, showing effective
performance within such a discharge protocol. Subsequently, it regained a capacity of 96.93 mAh.g' at 0.1C, as
presented in Fig. 7b. The relatively low retention capacity of NMC622-CP was due to the use of water as solvent
for the cathode slurry. Water exposure decreases surface pollutants and leaches Li*, which presumably re-
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deposits upon drying. Minor surface differences may promote higher Li loss and transition metal dissolution
during the cycle, causing capacity fading [31].
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Figure 7 (a) Cycle-ability at 0.5C and (b) rate-ability of NMC622-CP
Conclusion

In conclusion, this study successfully synthesized NMC622 cathode material from spent catalyst prepared by
acid leaching to recover Ni. Leaching solution containing Ni was processed by two methods, namely solid-state
(NMC622-SS) and co-precipitation (NMC622-CP). The results of material characterization and electrochemical
performance were consistent with those from previous reports. Both samples had a layered hexagonal structure,
and no impurities were detected. NMC622-CP provided two times higher specific discharge capacity (132.82
mAh.g1) than NMC62-SS. Furthermore, NMC622-CP was measured at C-rates up to 1C with a specific discharge
capacity almost the same as NMC622-SS at 0.1C. Based on the results, the co-precipitation method was
considered the most suitable method in this study. NMC622-CP sample provided capacity retention of 70%,
which is still low for Li-ion battery applications. Therefore, further studies are needed to improve the
performance stability of the NMC622 cathode material.
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