## Index

# **AUTHOR**

#### Α

Silvya Yusnica Agnesty, 137 Fico Agrensa, 207 Muhammad I. Akbar, 406 Akhmad F. Alhikami, 549 Sivakumar Anandan, 320 Nuri Andarwulan, 92 Peter Antony, 536 Anna Antonyová, 536 Tetsu Aoki, 160 Dedi Apriadi, 57 Gde V.I. Arimbawa, 335 Alit Ascaria, 640 Seyed Hesam Asgari, 36 Nyoman Puspa Asri, 353 Haris Nu'man Aulia, 374 Mohd Junaidi Abdul Aziz, 36

# В

Ridho Bayuaji, 549 Totok R. Biyanto, 549 Damir Brdjanovic, 201 Kusno Budikarjono, 353

# С

Elanchezhian Chinnavan, 389

# D

Driejana, 306 Dryvendra, 389 Frank Agyen Dwomoh, 296

# F

Agus Jatnika Effendi, 201

# F

R. Fajar, 508 You Hua Fan, 568 Warman Fatra, 498 Widya Fatriasari, 149 Hudiyo Firmanto, 549

## G

Yandong Gao, 463 Huanhuan Gao, 447 Calvin L. Gaol, 335 Jaharah A. Ghani, 266 Deva Prasad Ghosh, 20 Leksananto Gondodiwiryo, 406 Rajesri Govindaraju, 406 Melia Laniwati Gunawan, 633 Setiyo Gunawan, 137, 612

#### Н

Hadiyanto, 374, 487
Farizal Hakiki, 706
Ridho Hantoro, 549
Aldiano F. Hardama, 335
Che Hassan Che Haron, 266
Fumihiko Hasumi, 170
Man He, 522
Zuchra Helwani, 498
Sadikin Hendriatiningsih, 1
Hendriyawan, 57
A.W. Hidayat, 508
Li Hong, 296
Li Hongbo, 688
Xiaodan Huang, 104
Junkwon Hwangbo, 674

#### ı

Nik Rumzi Nik Idris, 36 Iswandi Imran, 231 Takanobu Inoue, 179 Rizki Insyani, 364 Muhammad Iqbal, 76 Koji Ishiguro, 92 A.N. Istyami, 477 Apri Heri Iswanto, 149

#### J

Mohammad Jannati, 36 Januragadi, 1 Joelianingsih, 508 Endra Joelianto, 536 Sri Julia, 76 Wang Juxia, 688

#### K

Idris Maxdoni Kamil, 126 Narimah Kasim, 218 Mujizat Kawaroe, 674 Khoiruddin, 426 Junaidy Kristian, 137

#### Т

Hyung Woo Lee, 364, 477 Kehui Lei,447

#### M

Aiyang Ma, 623
Shuaishuai Ma, 522
Dara Ayuda Maharsi, 706
Sounthararajan Vallarasu
Manoharan, 320
Yachun Mao, 463
Bonar Tua Halomoan Marbun, 335
Taufan Marhaendrajana, 250
Taufan Marhaendrajana, 706
Yoshitaka Matsumoto, 179
Masatsugu Mayanagi, 170
Akio Mizutani, 160
Leksono Mucharam, 250
R. Muhtadi, 477
Asalil Mustain, 612

#### N

Eryk Bone Pratama Nabu, 426 Lula Nadia, 92 Genki Nakanishi, 179 Takahiro Noda, 92 Dardji Noeradi, 640 Anas Mohd Noor, 658 Nugraha, 76 Ananto Nugroho, 279 Gunawan Nugroho, 549 M.M. Azimatun Nur, 487

#### O

Adrianto Oktavianus, 189

#### Р

Aristya P. Pamungkas, 335 Renfang Pan, 447 Ivindra Pane, 231 Thye Yoke Pean, 201 Gadjah E. Pireno, 640 Hermawan Prajitno, 364 Daniel Prasetyo, 364 Eko Widi Purnomo, 20 Eko Hari Purnomo, 92 Mubiar Purwasasmita, 426 P. Putra, 508 Puviarasi, 389

# Q

Cui Qingliang, 688

## R

Raguraman, 389
Endang Sri Rahayu, 633
Sukma Rahma, 137
H. Rahman, 477
Irna Rahmaniar, 126
Muhammad F. Ramadhani, 76
Mritha Ramalingam, 389
Hari Rionaldo, 498
Muhammad Rizal, 266
Ricko Rizkiaputra, 335
Achmad Roesyadi, 353

# S

Shiro Sagawa, 179
Tjokorde Walmiki Samadhi, 633
Hanny F. Sangian, 137
Randi Sanjaya, 498
Joko Santoso, 674
Dahlia Wulan Sari, 674
Setia Budi Sasongko, 374
Masaaki Satou, 170
Iman Satyarno, 279
Ni Luh Wulan Septiani, 76
Tjandra Setiadi, 201
Faisol Shahab, 189
Yanguang Shen, 104

Yuan Shouqi, 296 Partogi H. Simatupang, 231 Tota Simatupang, 406 Samuel Z. Sinaga, 335 Ali Nurrakhmad Siregar, 266 H.P. Septoratno Siregar, 250 Johnner Sitompul, 364, 477 Prayatni Soewondo, 201 Agus Imam Sonhaji, 549 Subagjo, 633 Subyakto, 279 Saptahari Sugiri, 601 Sumarno, 612 Shuang Sun, 463 Bing Sun, 623 Bambang Sunendar, 231 Emmy Suparka, 640 Suprapto, 353 Supriyanto, 149 Adang Surahman, 117 Endra Susila, 207 Deni Suwardhi, 1 Boni Swadesi, 250

#### Τ

Masayuki Takeguchi, 170 Puti F. Tamin, 189 Rizal Z. Tamin, 189

#### U

Arie Putra Usman, 601

#### W

Joko Waluyo, 549
Hai Feng Wang, 568
Ping Wang, 46
Shuren Wang, 46
Wei Wang, 104
I Gede Wenten, 426
Gede Wibawa, 612
Widayat, 374
Irika Widiasanti, 189
Arief Widjaja, 137
M. Aman Wirakartakusumah, 92
Xin Wu, 522

#### Χ

Maolin Xu, 463 Jinjuan Xue, 522

#### Υ

Fengyun Yang, 463 Liu Yaping, 688 Kuriko Yokota, 179 Tao Yu, 46 Adyati Pradini Yudison, 306 Brian Yuliarto, 76 Halida Yunita, 57

## Ζ

Haiqing Zhang, 46 Jing Zhang, 623 Sheng Zeng, 623 Jijun Zhao, 104 Yuming Zhou, 522 Zhengping Zhu, 447 Zhengsheng Zou, 46 Zulfansyah, 498

# **SUBJECT**

#### 1

1,3-methylmethylimidazolium dimethyl phosphate, 137, 138, 141, 142

#### 3

3D surface model, 1, 8, 9, 13, 17

#### Α

acceleration, 568, 569, 582, 584, 586, 587
acid hidrolysis, 674
acoustical properties, 658
activity coefficients, 477, 483, 485
alkali activated fly ash material, 231, 232, 235
alkali and sulfidity loading, 149, 153, 154
alkaline neutralization, 426, 427, 428, 435, 443
alkaline treatment, 498, 499, 507
anaerobic, 674, 677

analytical model, 296, 303 anthocyanin, 92, 93, 94, 98, 99, 101 anti-reflection, 522, 523, 526, 528, 530, 531, 532, 534 apple, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703 appropriate decomposition level, 463 arteriovenous access, 658 assistance kit, 389, 390, 392, 400, 405 attribute-combination, 20

#### В

bacteria, 279, 280, 281, 282, 283, 284, 285, 287, 290, 291, 292, 293, 294, 295 ball mill, 320, 322, 323, 333 Bandung, 306, 307, 308, 309, 319, 320 bending deformation, 117 best wavelet basis function, 463, 474 biodegradable PLA, 364 bioethanol, 674, 675, 677, 680, 685 biofuel feedstock, 487, 495 blending surfactant-polymer, 706 boundary beam, 117, 118 broadband, 522, 523, 529, 531, 532, 533 building insulation, 536, 537

#### C

calcined kaolin phases, 633, 634, 635, 636
calcite, 279, 282, 284, 285, 287, 288, 289, 290, 291, 292, 293, 294, 295
Calophyllum inophyllum methyl esters, 508, 510, 511, 512, 514, 516, 519, 520
capillary number, 706, 707, 708, 716
carbonate debris, 640, 641
carotene, 92, 93, 99, 100

catalyst, 364, 365, 366, 367, 368, 369, 371, 373 channel, 20, 28, 29, 30, 31, 32 chemical bath deposition ethanol, chemical deacidification, 426, 427, 428, 445 chiller, 549, 551, 552, 553, 554, 555, 558, 559, 560, 561, 562, 563, 565, 566 Chlorella vulgaris, 487, 489, 496 CO2 removal, 612, 613, 621 coal-seam gas, 447 Coconut coir dust, 137 coconut cream, 477, 478, 481, 485 coconut oil, 477, 478, 479, 481, 482, 484 competitiveness, 189, 190, 191, 193, 196, 198, 199 composite, 498, 499, 500, 502, 503, 505, 506, 507 compressive strength, 320, 321, 326, 327, 332, 333 construction industry, 189, 190, 193 construction projects, 218, 219, 220, 222, 228 consulting services, 189, 190, 191, 192, 199 controlled freeze out area, 612, 613, 621 coordinates transformation, 1 coreflood matching, 706, 715, 716 coreflood simulation, 706, 713, 714, 716, 717, 726, 727 corrosion, 335, 336, 337, 338, 339, 340, 341, 344, 345, 346, 347, 348, 349, 350 crack, 279, 282, 283, 286, 287, 288, 289, 290, 291, 293, 295 crude palm oil, 426, 427 cryogenic technology, 612 Cu, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136

# D

day dependence, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115

decision making, 104 deep burial, 640 de-watering, 640 differential batch vacuum distillation, 477, 479, 486 distance, 1, 2, 5, 16, 17 distribution pattern, 296, 297, 301, 302, 303 double promoter, 353 droplet drift, 296, 297 dynamic response, 536, 538 dynamic waveform, 623, 624

# Ε

earthquake, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 201, 202, 203, 205, 206 emergency, 201, 202, 204, 205 empty fruit bunch ash, 498, 499, 507 energy saving, 549 enrichment coefficient, 126 Enzymatic hydrolysis, 137, 139 EOR history matching, 706 equation of state, 612, 613, 615, 617 Equisetum debile, 126, 127, 128, 129, 131, 134 equivalent frame, 117, 118, 119, 120 ethoxy carboxylate, 250, 262 excreta disposal, 201, 202, 203, 205, 206 experiment, 688

#### F

fatty acid methyl ester, 477 feed, 170, 172, 176, 177 fermentation, 674, 675, 677, 680, 684, 685, 686 field-oriented control, 36, 37 flour, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 fluid-dynamic analysis, 266 fly ash, 320, 321, 322, 323, 325, 326, 327, 329, 330, 332, 333 force, 568, 569, 571, 576, 579, 582, 586, 587 fractionation, 477, 478, 479, 482, 485 free fatty acids, 426, 427 free-standing shear wall, 117, 118, 119, 120 frequency characteristics, 658 FT-IR, 364, 365, 366, 369 fuzzy ANP, 406, 407, 408, 411, 419, 420, 421

#### G

gas content, 447, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460 gas sensor, 76, 78 gas well, 335, 336, 350 glulam wood, 601, 602, 604, 606, 610 GNSS deformation monitoring data, 463, 464, 473 gridded matrass, 207, 209, 211 group decision-making (GDM), 406, 411

## Н

health management, 104 hemodialysis, 658, 659, 662, 663, 668 hexa-diagram, 179 hollow fiber membrane contactor, 426, 428, 429 hydrophilic lipophilic balance (HLB), 250 hydrothermal, 633, 634, 635, 638 hyperaccumulator, 126, 127, 133, 134

#### ı

IDW, 306, 311, 314, 315, 316, 317, 318 improved threshold de-noising method, 463, 464, 467, 471, 472, 473, 474 integrated analysis, 335

integration, 218, 219, 220, 221, 222, 223, 224, 228 interfacial tension (IFT), 250, 251 lonic liquid, 137, 138 ions, 179, 180, 182, 185, 186 isoelectric precipitation, 170, 172, 174, 175, 176, 177 isopropyl alcohol, 76, 78, 81, 82, 83, 85, 86, 89

#### J

Jatropha curcas, 266, 277, 278

# Κ

kaolin, 633, 634, 635, 636, 637, 638 kinetic model, 374, 375, 376, 377, 379, 380, 381, 382, 383, 384, 386 kinetic study, 353, 354 kraft pulping, 149, 150, 155, 156 Kriging, 306, 309, 311, 314, 315, 316, 317, 318, 320

## L

laser scanner, 1, 5, 6, 9 layer-by-layer, 522, 523, 526, 528, 533 LDH nanosheets, 522, 523, 524, 526, 527, 528, 533 lexural strengthening, 601 light oil, 250, 261 linear equivalent, 57 liquid-solid coupling, 46, 47, 52, 56 long-wave radiation, 160, 164

#### M

material of terrace, 160
materials management, 218, 219, 220, 221, 222, 223, 224, 228
materials tracking, 218, 219, 220, 221, 222, 223, 224, 227, 228
matress, 207
measuring device, 160, 162, 169
mechanical properties, 688, 689, 690, 691, 692, 696, 697, 702, 703
microcontroller, 389, 390, 391, 392, 393, 394, 397, 398, 402
mini pile, 207

Mixotrophic cultivation, 487 molecular weight, 364, 365, 366, 367, 368, 369, 371, 372, 373 Monteiro-Helene's nomogram, 231, 232, 233, 241, 243, 248 mortar phase, 231, 234, 236, 237, 248 mortar, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295 mullock heap, 46, 48, 53, 55, 56 multi-criteria decision-making (MCDM), 406 multiple linear regression, 447, 448, 457, 458, 460

#### Ν

nanosheets, 76, 77, 80, 86
NaOH, 137, 138, 142, 143, 144, 145, 146
natural gas, 612, 613, 621
NaY zeolite, 633, 634, 635, 638
new play, 640
nitrogen dioxide, 306
nomogram, 231, 232, 233, 234, 241, 243, 248
nondestructive testing, 623, 631
nonlinear, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76

## 0

obstacle detection, 389, 391, 394, 400, 402, 405 offshore wind turbine, 568, 569 oil extraction, 266, 272, 277 oil palm frond, 498, 501, 507 oil palm, 498, 499, 501, 502, 507 oil press, 266, 267 open-phase fault, 36, 37 optimization, 549, 551, 560, 562, 563, 566 oxidation, 508, 509, 510, 511, 512, 513, 516, 518, 519, 521

#### Ρ

partial hydrogenation, 508, 510, 511, 512, 513, 514, 516, 518, 519, particle size, 92, 93, 94, 95, 96, 101 partner selection, 406, 407 paste phase, 231, 235, 236 paternoster platform, 640 peel, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703 performance improvement, 189 phenolics, 92, 98 phonoangiography, 658, 661, 668, physiological signal, 104, 108, 109, 113, 114 phytoremediation, 126, 127 polycondensation, 364, 365, 366, 367, 368, 371, 372, 373 POME, 487, 488, 489, 491, 494, 495, potato fruit juice, 170, 171 potato protein, 170, 171, 176, 177 potato starch factory, 170, 171, 172, 175, 176, 177 pozzolanic activity, 320, 321, 326 pre-stack inversion, 447, 453, 458, 459, 460 processing, 320, 321, 322 production tubing, 335 professional engineers, 189, 190, 192, 195, 196, 197, 199 psychology, 104, 113 pulp and paper properties, 149, 150

# R

RAOs, 568, 572, 573, 574, 575, 586 recovery, 250, 251, 252, 255, 262, 263, 264 red macroalgae, 674, 675 reflected solar radiation, 160, 161, 169 reflection signal, 623, 627, 631 refluxed methanol, 353, 358, 360

reinforcement, 601, 602, 605, 606, 607, 608, 609, 610 relative permeability, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 719, 722, 726, 727 relative value attribute, 20 research, 688, 697 RFID, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231

#### S

safety factor, 46, 55 sanitation, 201, 202, 203 saponification value, 477, 478, 483 seismic attribute, 20, 22, 27, 34 seismic multi-attribute, 447 self-healing, 279, 280 sensor, 389, 390, 392, 393, 394, 395, 397, 401, 402, 405 sentiment classification, 104, 105 shear deformation, 117, 118 shear distribution, 117 shopping center building, 549, 555, 562, 563, 565, 567 silica nanoparticles, 522, 523, 525, 526, 528, 531, 533 simple technology, 207 simulation, 296, 297, 301 single screw extruder, 266, 267, 268, 277 soft soil, 207, 212, 215, 217 soil anchor, 623, 624, 631 soil improvement, 207 soil model, 57, 58, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75 soil reinforcement, 207 solid wood, 601, 602, 604, 605, 606, 607, 610 speed and torque oscillations, 36, sprinkler droplets, 296, 297, 303 stability, 508, 509, 510, 511, 512, 513, 516, 518, 519, 521 stable isotope, 179, 180, 182, 186, 187, 188 statistical analysis, 536, 537, 545

stenosis, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668 strategic supplier selection, 406, strength gain, 320, 321, 326, 327, 329, 331, 333 strength reduction method, 46, 47, 55 stress wave velocity, 623, 624, 626, 629, 630, 631 structure stress, 568, 575, 586 surfactant flooding, 250, 251 sweet sorghum bagasse, 149, 150, synthesis, 633, 634, 635, 637, 638, 639 Τ tailings dam, 46, 47, 48, 49, 52, 53, 54, 55, 56 tension leg platform, 568, 569 testing, 536, 537, 538, 542, 546 textile wastewater, 126 thermal energy storage, 549, 550, 552 thin films, 76, 77, 78, 80, 82, 83, 87, 88, 89 thin-bed, 20, 21, 23, 24, 25, 28, 35 three-phase induction motors, 36 threshold de-noising, 463, 464, 465, 466, 467, 471, 472, 473, 474 thrombosis, 658, 659, 660, 661, 663, 664,668 tin, 76 TLS, 1, 2, 5, 6, 8, 17 TOPSIS, 406, 407, 408, 411, 416, 420, 421, 423, 425, 426 transesterification, 353, 354, 356, 357, 358, 359, 360, 361, 374, 375, 377, 379, 381, 382, 383, 384, 385, 386 traveled distance, 296 trilinear diagram, 179, 183, 184, 186, 187 tubing material selection, 335, 338, 339, 341, 342, 350 tuning, 20, 24, 25, 27, 28, 29, 30, 34

**U** ultrasound, 374, 377, 378, 380, 381, 382, 383, 385, 386 urban air quality, 306

#### ۱/

validation, 374 vector control, 36, 37, 40, 44 velocity, 568, 569, 586 vertical distribution, 160, 161, 168 visualization, 1, 2, 5, 9, 12, 17

#### ۱۸/

wando and tamari, 179, 180, 181, 182, 183, 187 wave propagation, 57, 58, 61 wavelet analysis, 463, 470, 473, 475 wheelchair, 389, 390, 391, 392, 393, 395, 396, 397, 400, 402, 403, 404, 405 wind influence, 296, 297 WWFC, 508, 509, 518, 519, 521

#### Υ

yam, 92, 93, 94, 95, 96, 97, 98, 100, 101 Yogyakarta, 201, 202, 203, 204, 207

# **Z** zinc oxide, 76, 77, 87

#### List of Reviewers

- Akhmad Zainal Abidin (Design and Development Chemical Engineering Product Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 2. Mohammad Ali Ahmadi (Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Islamic Republic of Iran)
- 3. Chintan Amrit (Industrial Engineering and Business Information Systems Department, Twente University, Netherlands)
- 4. Sivakumar Anandan (King Khalid University, Kingdom of Saudi Arabia)
- 5. Rizki Armanto (Engineering Physics Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- I Made Astina (Energy Conversion Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia)
- 7. Mohamed Azab (Dept. of Electrical Engineering Technology, High Institute of Technology, Benha University, Egypt)
- 8. Tsvetanka Babeva (Institute of Optical Materials and Technologies, Acad. J. Malinowski, Bulgarian Academy of Sciences,, Bulgaria)
- 9. Raúl Baños (Dpt. Computer Architecture and Technology, CITIC-UGR (Research Centre on Information and Communications Technology), University of Granada, Spain)
- Arif Basuki (Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 11. Yazid Bindar (Energy and Chemical Engineering Processing System Expertise Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 12. Robert Bucki (The College of Informatics and Management in Bielsko-Biala, Poland)
- 13. Fabíola D S Curbelo (Chemical Engineering Department, Federal University of Paraiba, Brazil)
- 14. Urmil V. Dave (Nirma University of Science and Technology, Department of Civil Engineering, India)
- 15. Nurhan Ecemis (Civil Engineering Department, Izmir Institute of Technology, Turkey)
- 16. Elizabeth Elias (Department of Electronics and Communication Engineering, National Institute of Technology, India)
- 17. Werner Fuch (University of Natural Resources and Applied Life Sciences Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Austria)
- 18. Mayank Goswami (University Of California Davis, United States)

- 19. David Greiner (Institute of Intelligent Systems and Numerical Applications in Engineering (SIANI), Universidad de Las Palmas de Gran Canaria, Spain)
- 20. Naohiro Goto (Department of Environmental and Life Science, Toyohashi University of Technology, Japan)
- 21. Rajesri Govindaraju (Industrial System and Techno-Economics Research Division, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 22. Bambang Kismono Hadi (Light Weight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 23. Hiroshi Hashimoto (Advanced Institute of Industrial Technology, Shinagawa-ku, Tokyo, Japan)
- 24. Maogang He (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'An Jiaotong University, China)
- 25. Martin A. Hubbe (Department of Forest Biomaterials, North Carolina State University, United States)
- Iswandi Imran (Structural Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 27. Antonius Indarto (Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 28. Yuli Setyo Indartono (Energy Conversion Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia)
- 29. Idawati Ismail (Faculty of Engineering, Universiti Malaysia Sarawak, Malaysia)
- 30. Abdul Jayaputra (Geotechnical Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 31. Endra Joelianto (Instrumentation and Control Research Group, Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 32. Zhu Jun (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China)
- 33. Chungdann Kan (Department of Surgery, National Cheng Kung University Hospital, Taiwan)
- 34. Sutha Khaodhiar (Chulalongkorn University, Department of Environmental Engineering, Thailand)
- 35. Byeongyong Kong (Korea Advanced Institute of Science and Technology, Republic of Korea)
- 36. Adit Kurniawan (Telecommunication Engineering Research Group, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia)

- 37. M. Syahril Badri Kusuma (Water Resources Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia)
- 38. Dianika Lestari (Chemical Engineering Product Design and Development Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 39. Chao Li (Harbin Institute of Technology Shenzhen Graduate School, China)
- 40. Huafeng Li (College of Automation, Chongqing University, China)
- 41. Zeyu Li (School of Electric Power, South China University of Technology, China)
- 42. Bonar Tua Halomoan Marbun (Drilling, Production, and Management of Oil and Gas Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Indonesia)
- 43. Hongbin Ma (College of Resources and Civil Engineering, Northeastern University Liaoning)
- 44. Ajay K. Mandal (Indian School of Mines University, Department of Petroleum Engineering,India)
- 45. Anne Mandy (Clinical Research Centre, University of Brighton, United Kingdom)
- 46. Moch Agoes Moelyadi (Flight Physics Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia)
- 47. Veronica S. Moertini (Informatics Department. Faculty of Information Technology and Science. Parahyangan Catholic University, Indonesia)
- 48. Ehsan Najafi (Department of Energy Conversion, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Malaysia)
- 49. Suprihanto Notodarmojo (Research Group of Water and Wastewater Engineering, Faculty of Civil Engineering and Environment, Institut Teknologi Bandung, Indonesia)
- 50. Nuryono (Department of Chemistry, Gadjah Mada University, Indonesia)
- 51. Poerbandono (Geodesy Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Indonesia)
- 52. Theodor Dan Popescu (National Institute for Research and Development in Informatics, Romania)
- 53. Awali Priyono (Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Indonesia)
- 54. Sri Raharno (Mechanical Production Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia)
- 55. Syahrir Ridha (Petroleum Engineering, Universiti Teknologi PETRONAS, Malaysia)

- 56. José Álvarez Saiz ((Department of Chemical and Environmental Engineering, Universidad de Oviedo, Spain)
- 57. Jean Louis Salager (Universidad De Los Andes, Venezuela)
- 58. R. Sugeng Joko Sarwono (Engineering Physics Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 59. Chengman Sha (Institute of Remote Sensing and Digital Mine, College of Resources and Civil Engineering, Northeastern University Liaoning, China)
- 60. Maryam Shirmohammadi (Faculty of Science and Engineering, Queensland University of Technology, Australia)
- 61. Togar M. Simatupang (School of Business and Management, Institut Teknologi Bandung, Indonesia)
- 62. Ngapuli Irmea Sinisuka (Electrical Power Engineering Research Group, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia)
- 63. Johnner Sitompul (Chemical Engineering Process Design and Development Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 64. Bambang Sugeng Subagio (Transportation Engineering Research Group, Faculty of Civil Engineering and Environment, Institut Teknologi Bandung, Indonesia)
- 65. Agus Sujono ((Department of Electrical Engineering, Sebelas Maret University, Indonesia)
- 66. Wayan Suparta (Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia, Malaysia)
- 67. Adang Surahman (Structural Engineering Research Group, Civil and Environmental Engineering Faculty, Institut Teknologi Bandung, Indonesia)
- 68. N. Suriyamurthy (Radiological Safety Division, Indira Gandhi Centre for Atomic Research, India)
- 69. Herri Susanto (Energy and Chemical Engineering Processing System Expertise Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 70. Bambang Riyanto Trilaksono (Control & Computer System, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia)
- 71. Dileep Kumar Upadhyay (Department of Electronics and Communication Engineering, Birla Institute of Technology (BIT), India)
- 72. Karupanna Velusamy (Indira Gandhi Centre for Atomic Research, India)
- 73. Bharat Vyakaranam (Department of Electrical and Computer Engineering, Cleveland State University, United States)
- 74. Shuren Wang (School of Civil Engineering and Mechanics, Yanshan University, China)

- 75. Zheng Wei Wang (State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, China)
- 76. Zhi Wang (National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, China)
- 77. Ketut Wikantika (Remote Sensing and Geographical Information Systems Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Indonesia)
- 78. Hakan Yalciner (Civil Engineering Department, Eastern Mediterranean University, Cyprus)
- 79. Chao Yang (ARC Centre of Excellence for Geotechnical Science and Engineering, The University of Newcastle, Australia)
- 80. Yassierli (Ergonomics, Occupational and Safety Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia)
- 81. Tao Yin (School of Civil and Architectural Engineering, Wuhan University, China)
- 82. Debao Yuan (College of Geoscience and Surveying Engineering, China University Of Mining & Technology, China)
- 83. Jahdi Zaim (Geology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Indonesia)
- 84. Feng-Liang Zhang (Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, China)
- 85. Zhousuo Zhang (State Key Laboratory for Manufacturing Systems Engineering, Xi'An Jiaotong University, China)

## Journal of Engineering and Technological Sciences Guidelines for Author

#### 1. Standard of reporting

Authors should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. A paper should contain sufficient detail and references to permit others to replicate the work. Fraudulent or knowingly inaccurate statements constitute unethical behavior are unacceptable. Professional publication articles should also be accurate and objective, and editorial 'opinion' works should be clearly identified.

#### 2. Exclusivity of work

The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others this should be appropriately cited or quoted. Plagiarism takes many forms, from 'passing off' another's paper as the author's own paper to copying or paraphrasing substantial parts of another's paper (without attribution), to claiming results from research conducted by others. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behaviour and is unacceptable. In general, an author should not submit for consideration in another journal a previously published paper. We consider for publication from conference paper if it is only an extended version of conference paper with at least 30% of new material.

## 3. Hazards and Human or Animal Subjects

If the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. If the work involves the use of animal or human subjects, the author should ensure that the manuscript contains a statement that all procedures were performed in compliance with relevant laws and institutional guidelines and that the appropriate institutional committee(s) has approved them. Authors should include a statement in the manuscript that the informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

# 4. Authorship of the Paper and Copyright

Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported work. All those who have made significant contributions should be listed as co-authors. Whilst those who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. The corresponding author should ensure that all appropriate and inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. No manuscript can be published unless accompanied by a signed publication agreement, which serves as a transfer of copyright from author to publisher. A copy of that agreement is required after the paper is accepted.

# 5. Acknowledgement

Proper acknowledgment of the work of others must always be given. Authors should cite publications that have been influential in determining the nature of the reported work. Information obtained privately, as in conversation, correspondence or discussion with third parties, must not be used or reported without explicit, written permission from the source. Information obtained in the course of confidential services, such as refereeing manuscripts or grant applications, must not be used without the explicit written permission of the author of the work involved in these services.

#### 6. Disclosure Requirements

Author when submitting a manuscript, must disclose any meaningful affiliation or involvement, either direct or indirect, with any organization or entity with a direct financial interest in the subject matter or materials discussed (for example, employment, consultancies, stock ownership, grants, patents received or pending, royalties, honoraria, expert testimony). These kinds of financial involvement are fairly common, unavoidable, and generally do not constitute a basis for rejecting a manuscript. Specifics of the disclosure will remain confidential. If deemed appropriate by the Scientific Editor, a general statement regarding disclosure will be included in the Acknowledgment section of the manuscript.

#### 7. Errors in Published Works

When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. If the editor or the publisher learns from a third party that a published work contains a significant error, it is the obligation of the author to promptly retract or correct the paper or provide evidence to the editor of the correctness of the original paper.

#### 8. Disclaimer

Opinions expressed in articles published in the *Journal of Engineering and Technological Sciences* are those of the author(s) and do not necessarily represent opinions of the Bandung Institute of Technology (ITB). The *Journal of Engineering and Technological Sciences* does not guarantee the appropriateness for any purpose of any method, product, process, or device described or identified in an article. Trade names, when used, are only for identification and do not constitute endorsement by *Journal of Engineering and Technological Sciences*.

# 9. Manuscript preparation

Use the English language and the SI system (Système International d'Unités, often referred as "International Units") for measurements and units. Manuscript in MS Word or PDF format (generated from MS Word) is to be submitted online through http://journals.itb.ac.id/index.php/jets. The length of manuscript is expected not to exceed 20 printed pages (single space) including abstract, figures, tables and references. An abstract between 100 and 200 words describes the significance of manuscript should be included. The authors should supply 5-10 keyword or phrases that characterizes their manuscript. Use 11 pt Times New Roman fonts for body of the text with 1.0 line spacing between lines. The references should be numbered consecutively in the order of their appearance and should be complete, including authors' initials, the title of the paper, the date, page numbers, and the name of the sponsoring society. Please compiles references as shown in the examples below. Figures are printed in black & white, while color figures are only available online. Adjust the size of figures and tables as they will be appeared. All figure captions should be legible, minimum 8 point type. For all equations, use either Microsoft Equation Editor or MathType add-on. Equations are numbered consecutively in parenthesis, e.g. (1), and set at the right margin.

#### Reference examples:

- [1] Sutasurya, L.A. & Riyanto, B., Title of Paper, Name of Journal, 8(1), pp. 20-25, Dec. 2005. (Journal)
- [2] Sutasurya, L.A., Handojo, A. & Riyanto, B., Title of book, ed. 2, Publisher, 2007. (Book)
- [3] Williams, J., *Name of Paper*, Name of Book, Name of the editor(s), eds., Publisher, pp. 67-69, 2006. (Book with paper title and editor)
- [4] Suharto (ed), Title of Paper, Name of Proc., pp. 5-10, 2008. (Conference Proceedings)
- [5] Name of the author(s), Title of paper (if available), Organization, URL Link, (1 April 2011). (URL Link)
- [6] Nicole, R., Title of Paper, Name of Journal, submitted for publication. (Pending publication)
- [7] John, K., *Title of Paper*, unpublished. (Unpublished manuscript)
- [8] Rashid, L., Title of Dissertation, PhD dissertation, Name of Dept., Name of Univ., City, 2010. (Thesis or Dissertation)
- [9] Jenny, P., Name of Institution, City, personal communication, 2010. (Personal communication)
- [10] Name of the author(s), *Title of Technical Report*, Technical Report TR-0334 (34-56), Name of Institution, City, Dec. 2009. (Technical report with report number)