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Abstract. Dust is a major hazard in underground coal mines that threatens the 

work health and safety of coal miners. The dust issue becomes increasingly 

significant with the development of highly mechanized coal mining. This issue is 

particularly serious at the high longwall faces of the Sihe colliery in China as the 

concentration of dust, in particular respirable dust, at these faces far exceeds the 

regulatory dust limits. Field testing and computational fluid dynamics (CFD) 

simulations were conducted to understand the sources of dust generation and its 

dynamic movement in the #5301 longwall face of high-cutting height at the 

colliery. The investigation results showed that shearer generated dust was 
minimal during the coal cutting operation; that face spalling and chock 

movement were the main dust generating sources, causing significant 

contamination to the walkway; and that the majority of dust particles from the 

face (regardless of source) eventually disperse into the main gate, where the dust 

concentration was greater than 500 mg/m3. These findings were used to develop 

an effective coal dust mitigation system involving the installation of dust 

scrubbers, curtains, and venture and crescent sprays. The results of CFD 

modeling indicate that the dust concentration could be significantly reduced by 

adopting the new dust mitigation system. 

Keywords: CFD modeling; dust mitigation; health and safety; longwall mining; 

respirable dust.  

1 Introduction 

Coal dust is commonly generated in a series of underground coal mining 
activities such as coal cutting, coal transportation, chock movement, etc., and 

more dust is being generated with the development of fully mechanized and 

highly productive longwall faces. It is well documented that increased dust 
concentrations in coal mines can cause both industrial and health problems, 

such as dust explosions and pneumoconiosis [1-2]. In China, there were 4648 

casualties caused by 105 coal dust explosion accidents (including methane-

linked and non methane-linked explosions) between the years 1970 and 2014 
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and more than 105 thousand coal miners were diagnosed with pneumoconiosis 

from the year 2009 to 2013 [3-4]. To mitigate these risks, maximum allowable 

limits have been set for dust concentrations in working places in underground 

coal mines by various governments. In China, the Safety Regulations in Coal 
Mines stipulate that the maximum allowable total dust concentration is between 

2 to 20 mg/m
3
 and the respirable dust concentration is in the range of 1 to 6 

mg/m
3
 depending on the silica content in the dust [5]. In New South Wales, 

Australia, for underground mines, the specified limit for quartz-containing dust 

is 0.12 mg/m
3
 for respirable quart and the specified limit for respirable dust, 

other than quartz-containing dust, is 2.5 mg/m
3
, while the specified limit 

concentration for inhalable dust is 10 mg/m
3
[6]. 

A number of dust control measures are used in underground coal mines. These 

can be categorized into five methods: prevention, removal, isolation, dilution, 

and suppression [7-8]. Water infusion has been used in coal mines to reduce 
dust generation during the coal cutting process, though its effectiveness on dust 

mitigation is highly dependent on the permeability, wettability and in-situ 

moisture content of the coal seam [9]. Various dust collectors or extractors or 
scrubbers have been developed to remove dust particles from the working 

environment in coal mines. Due to its low maintenance requirement and high 

respirable dust capture efficiency (greater than 90%), the dust scrubber has 

gained popularity in mining applications for effective dust control [10].  

The water spray is by far the most widely used medium for dust suppression in 

underground coal mines. Depending on the specific application, several types of 

water sprays are available for use at longwall faces, coal crushing and transfer 
points. For example, hollow-cone sprays are mostly located close to dust source 

for suppression, while full-cone sprays are more used further away from the 

dust source or can be used for wetting of coal at transfer points. Although air-

atomizing sprays are reported to be the most effective in airborne dust capture, 
their utilization is limited due to high maintenance requirements [7]. More 

recently, Wang, et al. [11-12] have stated that foam technology is more efficient 

than water spraying for dust control in coal mines because it distributes 
moisture much more evenly over a large contact area on dust particles, 

improving the wetting and adhesion ability. 

Despite the dust control measures available, field practice has demonstrated that 
the control of respirable dust in longwall faces is very difficult and often 

ineffective [13-14]. This is particularly true in the Shihe colliery, where the dust 

concentration, particularly respirable dust, at its high longwall faces often 

exceeds the maximum allowable dust limit. To address the dust issue, field 
testing and CFD modeling were conducted at the #5301 longwall face of the 
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colliery to identify the sources of dust generation, understand dust dynamic 

movement, and develop an effective dust mitigation system. 

2 Field Investigations 

The #5301 longwall face of Sihe colliery is 296 m wide (not including the width 

of the main gate/tail gate at the face’s end) and the cutting height of the face is 
6 m. The field investigation aimed to quantify respirable and inhalable dust 

loads at each independent source of dust generation at the face, and airflow rates 

at the intake and return roadways and several cross sections of the face. 

2.1 Dust Monitoring 

Dust load tests at the face were conducted three times in this study. Coal 
production for each test was 1619.86, 2014.95 and 1527.68 tons respectively. 

As displayed in Figure 1, five sets of dust samplers (pumps and monitors) 

labeled 1 to 5 were placed in the following positions: (1) at the last open cut 
through in the tail gate, (2) at the intake road in the tail gate, (3) at shield #173, 

or near the face end of the tail gate, (4) at the middle of the face, and (5) at 

shield #4, or near the face end of the main gate. 

A total of 15 samples were taken over three separate tests. The dust testing 
equipment was obtained from Envirocon company, Australia (Figure 1). Table 1 

shows the raw input data collected during the sampling period together with the 

calculated dust generation rates, which form the benchmark respirable dust 
production during the cutting cycle. It shows the test number, the positions of 

the dust samplers, the weight of the respirable size dust particles, the coal 

production during the testing period, and dust load. 

 

 
(Full arrow lines represent intake air flow, half arrow lines represent return air flow, TG is tail 
gate, MG is main gate) 

Figure 1 Placement of dust samplers at the #5301 longwall face. 

TG MG 



 Development of a Respirable Dust Mitigation System 441 
 

      
    

     

Figure 1 Continued. Placement of dust samplers at the #5301 longwall 

face. 

Table 1 Dust testing results at the #5301 longwall face. 

Test 

No. 
Position 

Respirable dust, 

mg 

Coal cut,  

tons 

Dust load, 

mg/ton 

1 Last cut-through tail gate 0.87 1619.86 0.000537 

1 Intake roadway, tail gate 0.96 1619.86 0.000593 

1 Shield #173 1.23 1619.86 0.000759 

1 Shield #85 7.04 1619.86 0.004346 

1 Shield #4 8.32 1619.86 0.005136 

2 Last cut-through tail gate 0.30 2014.95 0.000149 

2 Intake roadway, tail gate 0.58 2014.95 0.000288 

2 Shield #173 0.71 2014.95 0.000352 

2 Shield #85 5.93 2014.95 0.002943 

2 Shield #4 8.98 2014.95 0.004457 

3 Last cut-through tail gate 0.89 1527.68 0.000583 

3 Intake roadway, tail gate 0.54 1527.68 0.000353 

3 Shield #173 0.66 1527.68 0.000432 

3 Shield #85 3.79 1527.68 0.002481 

3 Shield #4 8.52 1527.68 0.005577 

Table 2 summarizes the dust load at each of the sampling points for each test. It 
can be seen that there was a difference in the dust production at each individual 
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point of dust generation at the longwall face and the intake ventilation. The face 

dust differential can be explained by the unpredictability of the face slabbing 

occurring during the cutting cycle. 

Table 2 Comparison of dust loads at each of the sampling points for each test. 

Test 

No. 

Last cut-through 

tail gate 

Intake roadway tail 

gate 

Shield 

#173 

Shield 

#85 
Shield #4 

1 0.000537 0.000593 0.000759 0.004346 0.005136 

2 0.000149 0.000288 0.000352 0.002943 0.004457 

3 0.000583 0.000353 0.000432 0.002481 0.005577 

 
Field observations made during the cutting cycle indicated that very little dust 

was produced from the shearer actually cutting in either direction. The majority 

of the dust produced during the cutting cycle can be attributed to slabbing due 
entirely to the height of the face. As shields were retracted, the face slumped 

and slabbed onto the armored face conveyor (AFC) and pan line, creating a 

significant amount of dust that was forced into the intake ventilation and swept 

down the face. 

2.2 Airflow Monitoring 

Understanding the airflow patterns and dust flow behavior at the longwall face 

are essential for the development of an effective dust mitigation system. In this 

study, a ventilation survey was conducted to obtain these necessary data. 

Measurements of air flow rates were carried out at the tail gate and the main 
gate of the longwall face; the results are shown in Figure 2. 

 

Figure 2 Layout of #5301 longwall face and ventilation system. 

In addition to the above measurements, airflow velocity (m/s) in several face 

cross sections (50 m, 150 m, 200 m and 250 m away from the main gate) was 
also measured using a kestrel hand-held anemometer; the measured results are 

shown in Figure 3. These measured data were later used for setting up the 

boundary conditions of a CFD model for the face and validation of the model. 
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(a) 50 m away from the main gate (b) 150 m away from the main gate 

  

(c) 200 m away from the main gate (d) 250 m away from the main gate 

Figure 3 Measured air flow velocities at selected cross sections along the 

longwall face. 

3 CFD Modeling 

3.1 Model Fundamentals 

The motion of fluid in a longwall face follows the principles of mass 
conservation, Newton’s second law, and the first law of thermodynamics. The 

differential forms of these three governing laws are known as the continuity 

equation, the Navier-Stokes equation, and the energy equation, respectively, as 

shown in Eqs. (1) to (3) below: 
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where   is fluid density, ( , , ) x y zV v v v  is the velocity vector of flow particles, 

p  is the pressure gradient,   is fluid viscosity, ( , , ) x y zF F F F  is the body 

force vector, E is flow media energy, K is the conductivity coefficient, Ws is the 

work done by the surface stresses, and ES  represents energy supplied by the 

source term. 

In this study, the finite volume method was used to discretize the flow domain 
into control volumes or grids through which the numerical difference equations 

representing the governing equations could be solved at these discrete volumes 

across the flow domain by the use of iterative numerical algorithms. 

Air flow at a longwall face is turbulent flow due to its high Reynolds number. 
The two two-equation k-ε model proposed by Launder and Spalding [15] has 

been demonstrated to be suitable to investigate the ventilation system [16-19] 

and was therefore employed in this study to determine the turbulent flow field. 

Corresponding to the calculated flow field, the dispersion of respirable dust 

particles can be determined by either the Euler-Lagrange method or the Euler-

Euler method. The movement of particles is described by tracking a large 

number of particles through the calculated flow field in the Euler-Lagrange 
method, where the interactions between particles are neglected. When the Euler-

Euler method is employed, the discrete dust particles are treated as 

interpenetrating continua [20]. A comparison of the two methods indicated that 
the Euler-Lagrange method was more suitable for this study. 

With the use of the Euler-Lagrange method, the trajectories of individual 

particles can be calculated by solving the momentum equation. By integrating 
the force balance on a particle, the momentum equation can be written in the 

following form: 

  (4) 

In Eq. (4), the left hand side stands for the inertial force per unit particle force, 

where 
p

u
�

 is the particle velocity vector; the first term on the right hand side 

stands for the drag force per unit particle mass; the second term stands for the 
gravity and the buoyancy, where ρ and ρp are the density of fluid and particles. 

The last term stands for additional forces, which includes forces such as the 

virtual mass force, the thermophoretic force caused by the temperature gradient, 
the pressure gradient force, the Brownian force, and Saffman’s lift force.  
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In this study, the dust particles were assumed to be spherical and the drag force 

was thus assumed to follow the spherical drag law, which can be expressed in 

Eq. (5) as follows: 
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where CD is the drag coefficient, which can be calculated by the equation
2

1 2 3/ /  D e eC a a R a R , and a1, a2, a3 are constants; Re is the relative 

Reynolds number, which is defined as . 

It is worth noting that the virtual mass force is important when the fluid density 

is larger than the particle density, which was not the case in this study and the 

virtual mass force was therefore neglected. Meanwhile, this study was 

conducted under isothermal conditions, so the thermophoretic force and the 

Brownian force were not considered either.  

Therefore, by substituting the additional force  
� � �

f SF F F  in Eq. (4), the 

particles can be tracked by solving the following Eq. (6): 
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where 
�

fF and 
�

SF
 
stand for the fluid pressure gradient force and Saffman’s lift 

force, respectively. 

3.2 Model Development 

Based on data collected during field investigation, a full-scale 3D model, 

including the shearer, longwall chocks, Beam Stage Loader (BSL) and belt 

system at the main gate, was developed using Design Modeller within ANSYS 

13 Workbench [20]. The geometrical characteristics of the CFD models are 

shown in Table 3 and a snapshot of the model is shown in Figure 4(a). 

It can be seen from Table 3 that the main gate/tail gate in the model was 50 m in 

length, allowing the full development of the airflow field in the roadway. The 

model was meshed using a tetrahedron method with 6.5 million elements due to 

the complex geometry (as shown in Figure 4(b)). 

Accurate specifications of boundary conditions are crucial in CFD modeling to 

accurately predict the physical phenomena. In this study, four kinds of boundary 

/  
� �

e p pR d u u
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conditions were involved: velocity inlet, assigned to the three intake ventilation 

roadways through which fresh air is provided to the face and the boundary of 

the back return; pressure outlet, assigned to the main gate cut-through, which is 

the outlet of the model allowing air flow back to the return system; the cutting 

drums of the shearer, treated as moving walls; the ribs, floor, roof and all the 

other surfaces of equipment, treated as standard walls. 

Table 3 CFD model geometry of the #5301 longwall face. 

Name Dimension, m 

Face width 296 

Cutting height 6 

Tail gate and tail gate ct width 5 

Tail gate and tail gate ct 

height 
3.8 

Main gate width 5.5 

Main gate height 3.8 

Main gate/tail gate length 50 

Goaf length behind chock 1.5 

 

  

(a) 3 D view of the longwall model (b) Computation grid in the vicinity of the 
shearer 

Figure 4 Overview of the CFD longwall model. 

Data obtained from the field test were used for validation of the base model. A 

comparison between measured and model-predicted flow velocities on the four 

cross sections along the face was made and it was found that the model-

predicted velocities agreed well with the field-measured data, demonstrating the 

validity of the model. 
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3.3 Airflow Patterns 

A good understanding of airflow patterns plays an important role in the 

development of an effective dust mitigation system. Figure 5 shows the velocity 

contour and vector distribution at 2 m above floor level along the face. It can be 

seen from Figure 5 that the velocity is not evenly distributed along the face, in 

particular at the tail gate/main gate and the intersection of the face and the tail 

gate/main gate. It is noted that significant flow circulation occurred at the 

intersection of roadways and face, where the flow direction changes.  

 

Figure 5 Velocity contour along the face and a closer view at the intersection of 

the tail gate and the face. 

3.4 Respirable Dust Flow and Distribution Patterns 

Table 4 shows the respirable dust sources and the corresponding dust generation 

rate used in the model. It can be seen that along the longwall face, dust was 

released from the travel road (tail gate), chock movement, face spalling and 

drum cutting. Dust particles generated at the AFC transfer point and BSL 

discharge at the main gate were also taken into account in the model. Field 

observation indicated that at the #5301 face, face spalling/slabbing was the 

major dust source, causing significant contamination to the face ventilation. 

Therefore, in the model 50% of longwall dust was released from face spalling. 

The dispersion of particles in the airflow was tracked using a stochastic tracking 

(random walk) model, which includes the effect of instantaneous turbulent 

velocity fluctuations on the particle trajectories through the use of stochastic 

methods.  

Figure 6 illustrates the tracked trajectories of dust particles released from the 

intake ventilation. It can be observed that the dispersion of respirable dust from 

the intake ventilation is highly dependent on the airflow patterns and will 

disperse widely in the entire working environment as the ventilation eventually 

leaves the face through the two returns if not captured along the face. Therefore, 
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effective dust mitigation measures should be carried out to minimize dust 

contamination at the intake ventilation, which is of great importance to reduce 

the overall dust level along the face. 

Table 4 Definition of respirable dust sources used in the model. 

Dust source 
Dust generation 

rate, mg/s 

Respirable dust sizes, μm 

Range Mean 

Travel road 2973 

1-10 4 

Chock movement 4163 

Face spalling ahead of 

leading drum 
5948 

Tail gate drum (leading 

drum) 
3568 

Main gate drum 1189 

Face spalling at face 
middle 

5948 

AFC transfer point 1000 

BSL discharge 1000 

Sum 25789 

 
Figure 6 Dispersion characteristics of dust particles from tail gate intake 

ventilation. 

Figure 7 shows the dust concentration distribution at 2.5 m above floor level. It 

can be seen that the dust concentration was generally less than 100 mg/m
3
 

upwind of the shearer and increased greatly downwind of the chock movement. 

The highest dust concentration was distributed in the zones above the AFC and 

at the main gate, where the dust concentration was greater than 500 mg/m
3
. In 

the vicinity of the shearer and in particular downwind of the chock movement, 

the dust concentration reached around 200 mg/m
3
 in the walkway. The dust 

concentration was also high at the intersection of the face and the main gate due 

to the use of the back return system, which allows a certain amount of dust from 

the face to flow towards the back of the face.  
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Figure 7 Dispersion characteristics of dust particles from the AFC transfer 

point. 

Figure 8 illustrates the dust concentration distribution along the center of 

walkway. It can be seen that the overall dust concentration was not stable along 

the walkway. Specifically, it was around 50 mg/m
3
 on average upwind of the 

chock movement and there was an increase of dust concentration at about 15 m 

away from the tail gate as a result of ventilation backflow from the goaf, 

bringing a certain amount of dust back to the face. The dust concentration 

remained gently stable at around 50 mg/m
3
 at more than 40 m away from the 

tail gate upwind of the chock movement.  

 

Figure 8 Dust concentration distribution along the walkway. 
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A significant increase in the dust concentration was also observed (up to 200 

mg/m
3
) immediately downwind of the chock movement, after which it dropped 

gradually to around 100 mg/m
3
 at 100 m away from the tail gate. Due to the 

occurrence of coal spalling at the face’s middle, there was a gradual increase of 

dust concentration starting at 150 m away from the tail gate. At the intersection 

of the face and the main gate, the dust concentration varied between 200 and 

400 mg/m
3
. 

4 Development of a Dust Mitigation System 

4.1 Design 

Based on the understandings obtained from Section 4, effective dust mitigation 

strategies are required to reduce the dust level in the vicinity of the shearer and 

the main gate, and therefore, in this section a new dust mitigation system is 

proposed aimed at reducing dust levels around the shearer and at the main gate.  

Figure 9 shows the design of the new dust mitigation system, which involves a 

shearer scrubber installed on the tail-gate (intake ventilation) side of the shearer 

(Figure 9(a)), a BSL scrubber on top of the crusher at the main gate (Figure 

9(b)), and a new curtain connecting the existing curtain to the BSL scrubber 

inlet, as indicated in Figure 9(c).  

It is worth noting that the capacity of the shearer scrubber used in the model is 

4.5 m
3
/s and the BSL scrubber capacity is 15 m

3
/s, considering the extremely 

high dust concentration at the main gate. 

4.2 Air Flow Patterns 

Figure 10 depicts the velocity contour and vector distribution at 3 m above floor 

level in the vicinity of the shearer. It can be observed that the operation of the 

scrubber has a significant impact on the local airflow patterns. With the 

scrubber inlet facing directly toward the intake ventilation, the majority of dust 

laden air can be sucked into the scrubber system and with the assistance of 

scrubber sprays, the influencing area of the scrubber can be enlarged by which 

more air is directed to the flow towards the scrubber inlet, as shown in the 

figures. It is also noticed that a low pressure zone can be generated downstream, 

where the air flows towards the face as well as the dust particles in the air, and 

this will help to some extent in reducing the dust level in the walkway.  
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(a) Shearer scrubber 

 
(b) BSL scrubber 

 
(c) Curtain at main gate 

Figure 9    Design of a new dust mitigation system. 

 

Figure 10    Velocity contour at 3 m above floor level (across from the scrubber 

inlet). 
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Figure 11    Velocity distribution at 2.5 m above floor level (in the vicinity of the 

BSL scrubber). 

Figure 11 illustrates the velocity distribution at 2.5 m above floor level in the 

vicinity of the BSL scrubber. It can be seen that the velocity is not evenly 

distributed in the main gate and the majority of the dust laden air from the face 

will be directed to the scrubber inlet with the assistance of the new curtain, 

making it possible to capture the majority of dust particles from the face. It is 

also noticed that flow circulation occurs due to the high velocity at the scrubber 

outlet; however, this will not affect the quality of the ventilation at the main 

gate as air from the scrubber outlet is generally clean.  

4.3 Respirable Dust Flow and Distribution Patterns 

The dispersion of dust particles from the face spalling and leading drum cutting 

is illustrated in Figure 11 to evaluate the performance of the shearer scrubber. 

The effectiveness of the scrubber can be clearly seen from Figure 12. It is 

observed that when the scrubber is operating, the majority of the dust particles 

can be captured by the scrubber system. The amount of particles dispersing into 

the walkway and further downstream of the shearer is thus minimized, 

contributing to the reduction of the dust concentration along the face. It is worth 

noting that the shearer scrubber will be very effective in capturing dust particles 

from upwind (e.g. intake ventilation, spalling ahead of it and tail gate drum 

cutting). 

 

Figure 12    Dispersion characteristics of dust particles from the face spalling 

and leading drum cutting. 
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Figure 13     Dust concentration distribution at 2.5 m above floor level. 

The dust concentration distribution in the vicinity of the shearer and the BSL is 

illustrated in Figure 13. It can be seen from Figure 13 that the dust 

concentration around the shearer scrubber and downstream from it can be 

reduced greatly from more than 500 mg/m
3
 to around 200 mg/m

3
. The dust 

concentration in the walkway is also reduced slightly.  

Figure 14 shows the impact of the new scrubber system on dust mitigation 

along the walkway. It can be seen from Figure 14 that the dust concentration 

can be reduced by 50 to 100 mg/m
3
 in the walkway downwind of the chock 

movement, while its effect is marginal in other areas along the walkway, i.e. 

upwind of the chock movement and at the intersection of the face and the main 

gate. 

 

Figure 14    Dust concentration distribution along the walkway. 
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5 Conclusions 

To address the issue of high dust concentration at the longwall faces of the 

Shihe colliery, field testing and CFD modeling were conducted to understand 

the exact sources of dust generation and its dynamic movement at the #5301 

high longwall face of the colliery. The investigation included dust testing, a 

ventilation survey, and CFD modeling. The results of this investigation were 

then used to develop an effective dust mitigation system for the face. When the 

control system was trialed on site, the dust control effect turned out to be 

excellent.  

The average dust load at both the last open cut through and the intake roadway 

was 0.0004 mg/t, and the dust loads at shields #173, #85 and #4 were 0.0005 

mg/t, 0.0033 mg/t and 0.0051 mg/t respectively.  

A CFD longwall model was developed based on information collected during 

field tests and the modeling results indicate that the air flow velocity is not 

evenly distributed over the cross sections along the face, with the highest 

velocity occurring above the spill plate and the AFC, and velocity dropping 

gradually from the face to the goaf side.  

The new dust mitigation design involves the installation of a shearer scrubber of 

4.5 m
3
/s capacity on the tail gate side of the shearer, the installation of crescent 

sprays on the main gate side of shearer, the installation of flat venture sprays on 

the flipper of each chock, the installation of a BSL scrubber of 8 m
3
/s capacity 

on top of the crusher at the main gate, the installation of a new curtain 

connecting the existing curtain to the BSL scrubber inlet, and the installation of 

sprays in the crusher, BSL and BSL discharge. 

The modeled results with the new dust mitigation design indicate that the 

operation of the shearer scrubber will have a significant impact on the local air 

flow patterns, maximizing the influencing area of the scrubber and allowing 

more dust particles from upwind ventilation to be captured. Airflows towards 

the face immediately downstream of the shearer scrubber will help to some 

extent in reducing the dust level in the walkway and the majority of dust laden 

air will be directed towards the BSL scrubber inlet with the assistance of a new 

curtain at the main gate. 
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