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Abstract. As an advanced application of soft computation in the oil and gas 

industry, genetic algorithms (GA) can contribute to geophysical inversion 

problems in order to achieve better results and efficiency in the computational 

process. Time-lapse gravity responses to pore-fluid density changes can be 

modeled to provide the density distribution in the subsurface. This paper 

discusses the progress of work in inverse modeling of time-lapse gravity data 

using value encoding with alphabet formulation. The alphabet formulation was 

designed to provide the solution for positive and negative density change with 

respect to a reference value (0 gr/cc). The inversion was computed using a 

genetic algorithm as the optimization method. Working with genetic algorithms, 

time-intensive computational processes are a challenge, so the algorithm was 

designed in steps through the evaluation of a GA operator performance test. The 

performances of several combinations of GA operators (selection, crossover, 

mutation, and replacement) were tested with a synthetic model of a single-layer 

reservoir. Sharp boundaries of density changes in the reservoir layer were 

derived from interpretation of the averaged calculation of several model samples. 

Analysis showed that the combination of stochastic universal sample–multipoint 

crossover–quenched simulated annealing per generation–no duplicity achieved 

the most promising results.  

Keywords: genetic algorithm; inverse modeling; optimization; reservoir monitoring; 

time-lapse gravity. 

1 Introduction 

In recent years, the development of gravity inversion has been dominated by 

two methodologies: interface inversion and generalized density inversion. In 

time-lapse gravity inverse problems, computation of the interface inversion 

seeks a solution for the boundaries that separate the discrete density contrast 

layers in the subsurface (such as ground water lowering [1,2] or the flow front 

of injected water in enhanced oil recovery (EOR)), while computation of the 

generalized density inversion can provide the distribution of the density 

anomalies as a space function [3]. 
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A benefit of the interface inversion method is that it allows the user to input the 

density change from pore-fluid replacement directly. For example, the bulk 

density change from fluid replacement in the reservoir’s porosity caused by 

water injection can be estimated with a simple calculation using available/ 

assumed reservoir data. In the interface inversion, a well-defined input density 

is directly utilized to seek a solution for the water-hydrocarbon boundary in 

certain time steps as injected water sweeps into the reservoir. The generalized 

density inversion, on the other hand, has the flexibility to handle complex 

anomalies. The solution for the generalized density inversion is relatively easy 

to compute because of the linear relationship between observation data and 

density contrast. 

A limitation of the interface inversion method is the assumption of a simple 

topology that will show an effect if non-target anomalies from shallow sources 

are not succesfully removed during data processing. A miss-match between the 

assumed model and the data can lead to large errors and even failure of the 

inversion. In addition, the problem is not linear and can be more difficult to 

compute. A difficulty that arises from the generalized density inversion method 

is that calculation with continuous values of model parameters will produce 

intermediate density. Even implementation of density bounds does not 

succesfully produce strong constraints in the inversion solution. The data are 

satisfied with an intermediate density distribution and only recover a portion of 

the causative body.  

To overcome the difficulties associated with both methods, several authors have 

used a binary formulation [4-7]. For wide implementation of a binary inversion, 

the model parameters used in the calculation are set to discrete terms. For time-

lapse gravity problems, the values of the discrete density changes are defined by 

involving consideration of dynamic processes in the reservoir (for example fluid 

contact movements). The binary method accommodates subsurface conditions 

by setting suitable model parameter values and the solution is expected to gain 

sharp boundaries between the discrete density values. Implementation of a 

binary formulation with a discrete nature makes the derivative-based 

minimization technique no longer applicable. This is because a highly 

constrained inversion has limited options in solution variables and therefore this 

kind of inversion needs an optimization algorithm. 

Krahenbuhl & Li [4-7] utilized the genetic algorithm (GA) approach to solve 

the optimization of their binary gravity inversion. The appeal of applying a GA 

to optimization problems is that one can expect to gain wider results in a 

geophysical inversion. The main obstacle when using a GA is the computational 

cost. A GA alone as optimization algorithm usually needs ample execution time 

(ET) to explore the best solution. The necessity of more efficient computation 
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can be met with by using a hybrid optimization method. Krahenbuhl & Li [5] 

combined a GA with quenched simulated annealing (QSA). They demonstrated 

a time-lapse gravity inversion to characterize two values of discrete density, for 

example: 0.00 and 0.35 gr/cc. This kind of binary formulation has the limitation 

that it can only characterize one single density change with respect to the 

reference value (0.00 gr/cc), whereas several studies in time-lapse gravity 

anomalies [8-12] show at least two types of density change characterization in 

reservoir layers. You need a sufficient formulation to elaborate real conditions 

with a time-lapse gravity inversion. Two types of density change 

characterization with respect to the reference value are: positive density change 

(+Δρ) and negative density change (-Δρ).  

In this work, we have developed a time-lapse gravity inverse modeling method 

using three density change values (+Δρ, 0, and -Δρ). The inversion calculation 

utilizes alphabet formulation as constraint for the model parameters. Previous 

studies by Wahyudi [13,14] and Wahyudi, et al. [15]-[17] have shown that 

time-lapse gravity inversion to characterize positive and negative density 

change with a 2-bit binary GA formulation is still inefficient because of the 

redundant number of discrete model parameters. In this paper, the design of a 

GA through the evaluation of a GA operator performance test is discussed. The 

performances of several combinations of GA operators were tested with a 

synthetic model of a single-layer reservoir to seek the most efficient 

combination of GA operators for the time-lapse gravity problem. 

2 Inversion Methodology 

In this section, we describe the inversion of time-lapse gravity data from a 

single-layer reservoir using alphabet formulation. The solution results are 

restricted to three values of the discrete model parameters (positive density 

change, zero, and negative density change). The algorithm in this study was 

designed to accommodate constrained density values derived from pore-fluid 

replacement occurring in the reservoir caused by injection and production 

activities. This kind of formulation reduces the interpreter’s subjectivity, 

especially in the stage of density change characterization.  

Compared with a binary formulation, value encoding with alphabet formulation 

[A, B, C] elaborates more options for the discrete model parameters. Each cell 

in the reservoir grid has only three possible model parameters. The alphabet 

formulation in the time-lapse gravity inversion was implemented as follows: 

1. The zone of positive density change was defined as group A, 

2. The zone of reference (zero density change) was defined as group B, and 

3. The zone of negative density change was defined as group C. 
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The optimization algorithm seeks the minimum objective function (υ), which 

consists of the total model objective function (υm) with a trade-off parameter (λ) 

and a data misfit function (υd). The objective function was defined as: 

 φ = φd ρ + λφm τ , with ρ ∈  A, B, C .  (1) 

The data misfit function (υd) is defined by Krahenbuhl [18] as: 

    φd =   
d i

obs −d i
pre

σ i
 

2
N
i=1 , (2) 

where di
obs

, di
pre

, and σi are observation data, calculated data, and standard 

deviation from each datum, respectively. The model objective function (υm) is 

defined by Krahenbuhl [18] as: 
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where αs, αx, αy, αz, V, τ, and τ0 are, respectively: overall model relative weight, 

X-axis relative weight, Y-axis relative weight, Z-axis relative weight, zone of 

reservoir model in the subsurface, alphabet model parameter, and reference 

model. In this paper, we set the values αs = αx = αy = αz = 1. Distance weighting 

(w(z)) was defined as: 

w zj  =
1

 ∆zj

    
dv

 R+R0 β∆Vj
 

2
N
i=1  

1

4

, with j = 1, … , M 
(4) 

where ΔV is volume of the j
th
 cell, R0 is a small constant, R is distance between 

a point in ΔVj and the i
th
 observation point. Exponent β = 2, which is 

theoretically consistent with the fact that gravity fields decay as inverse distance 

squared. The general form of this weighting function is advantageous when 

applied to the inversion of data sets acquired in areas with a high topographic 

relief. 

The objective function υ, as shown in Eq. (1), gives limitations to the possibility 

number of the model. Although the inverse problem is still non-unique, the 

possibility number is no longer ‘infinite’. The need to achieve fitted or over-

fitted data can be reduced by minimization of the objective function. The model 

objective function (υm) narrows down ‘infinite’ models by considering what is 

geologically reasonable. Minimization of υm produces small size and minimum-
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structure complexity. Trade-off parameter λ is assigned to control the balance 

between υd and υm. As a final result, we expect the model to not be over-fitting 

with respect to noisy data acquisition. 

 

Figure 1 Flow-chart of GA (modified from [18]). 

We chose the GA method as the optimization strategy to seek the inverse 

solution of this alphabet formulation. A guided random search technique such 

as a GA is derivative minimization free. A GA flowchart is shown in Figure 1. 

Generally, a GA works with an initial population consisting of random 

individuals. First, random individuals are generated as the initialization stage. 

Each individual represents a possible solution in the form of a set of 

chromosomes. A set of chromosomes is a combination of discrete model 

parameters A, B, and C. A perturbation model in GA terms involves artificial 

genetic operators (selection, recombination, mutation, and replacement). During 

the process of model exploration, the magnitude of the model parameters does 

not necessarily change in relation to the calculation. When a model parameter is 

selected for modification or recombination, the GA only changes that parameter 

into limited options of possible discrete values. In this study, the options of 

possible discrete values were A, B, or C. Forward calculation decided whether 

A, B, or C was most suitable as spatial model of the subsurface. The best 

solution was expected after calculating the last GA generation. 
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3 Synthetic Data 

The forward calculation of synthetic data uses an equation of gravitation caused 

by a 3-D polygonal prism body. The vertical component of gravitation in point 

O (0, 0, 0) caused by a body as shown in Figure 2, mathematically expressed 

with the following equation:  

gz = Gρ    
z

 x2 + y2 + z2 3/2
dx dy dz

x2

x1

y2

y1

z2

z1

. (5) 

Next, by integral Eq. (5) we get Eq. (6): 

gz =    Gρ  
x ln y + r +

y ln x + r − z tan−1  
xy

zr
 
  

x1

x2

 

y1

y2

 

z1

z2

. (6) 

Eq. (6) is the gravitation effect of one prism body, while for the overall model, 

consisting of several prism bodies, the calculation is conducted cumulatively. 

Eq. (6) is described by Pluoff [19] numerically as Eq. (7): 

gz = Gρ   μijk  zk tan−1
xiyi

zk Rijk

− xi log Rijk + xi 

2

i=1

2

i=1

2

i=1

− yi log Rijk + yi  , 
(7) 

where: r =  x2 + y2 + z2, Rijk =  xi
2 + yj

2 + zk
2, and μijk =  −1 i −1 j −1 k. 

 

Figure 2 Illustration of 3-D prism with homogenous density (ρ) and 

dimensions: x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2. 
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3.1 Model A1 

Synthetic data were utilized for a single-inversion performance test calculated 

from model A1 (Figure 3). We show a single inversion using the GA for 

illustrative purposes. The time-lapse density values were distributed in a 

discrete-sized single reservoir with (40×40×1) cells with uniform dimensions 

(25×25×25 m
3
). Positive and negative density changes were located in the NW 

and SE area respectively. As a numeric example, the model parameters (Δρ) to 

be reconstructed were -0.15, 0, and 0.15 g/cc. The reservoir depth and 

topographic surface are shown in Figure 3(a).  

 

(a) 

 

(b) 

Figure 3 Model A1: (a) grid station positions on topographic surface over 

single-layer reservoir and (b) forward calculation with random noise [normal, 0, 

0.3] (contour in μGal).  

The forward calculation of synthetic data was conducted over 100 stations 

distributed on the surface with a station grid interval of 100 meters in the X-axis 

and Y-axis direction. Random noise was added in the calculation with a normal 

distribution, zero mean, and standard deviation 0.3 (Figure 3(b)). Model A1 was 

used for illustrative purposes only, so we considered a relatively small level of 

noise, close to noise-free. 

3.2 Model A2 

Synthetic data were utilized for a GA operator performance test calculated from 

model A2 (Figure 4). This model is the same as the previous one, with a top 

reservoir depth of 200 m from a flat surface. Random noise was added in the 

calculation with normal distribution, zero mean, and standard deviation 5 µGal 

(Figure 5). 
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(a) 

 

(b) 

Figure 4 Model A2: (a) grid station positions on flat surface (z = 0 m) and (b) 

X-Y view density distribution for model A2. 

 

(a) 

 

(b) 

Figure 5 Forward calculation from model A2 (contour in μGal): (a) noise-free 

and (b) synthetic data with random-noise [normal, 0, 5]. 

3.3 Model B 

Model B illustrates the activities in an oil field with 4 injection wells and 9 

production wells. Pore-fluid density changes for model B utilized the 

assumption of several parameter values (0.8 g/cc for oil density, 1.0 g/cc for 

water density and 30% for porosity). Bulk densities, before (i = 1) and after (i = 

2) the time-lapse period, could be calculated using Eq. (8) from Schön [20]: 

ρi =  1 − ϕ ρm + ϕρf , with i = 1,2 (8) 
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where ρ, ρm, ρf, ρm, and ϕ are bulk density, solid matrix material density, pore-

fluid density, and total porosity, respectively. After the density change (Δρ) was 

calculated by Eq. (9), we got 0.06 g/cc and -0.24 g/cc for the injection and 

production scenario, respectively. 

Δρ = ρ2 − ρ1 . (9) 

 

Figure 6 Model B. 

 

(a) 

 

(b) 

Figure 7 Illustration of (a) grid station positions on topographic surface on top 

of model B, and (b) zoom in on topographic variation on top of model B. 

Compared to the previous models (A1 and A2), model B (Figure 6) has a larger 

matrix size. We present the performance of the GA inversion for a larger 

matrix, because when dealing with real data the matrix will be at least this size. 

Time-lapse density values were distributed in a discrete-sized single-layer 

reservoir with (50×50×1) cells of uniform dimensions (100×100×30 m
3
). The 

reservoir was located at a depth of 800 m below zero MSL (Figure 7(a)). The 
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distributed on the topographic surface, as shown in Figure 7(b). Random noise 

was added in the forward calculation with normal distribution, zero mean, and 

standard deviation 5 (Figure 8). 

 

Figure 8 Synthetic data B with random-noise [normal, 0, 5] (contours in μGal). 

4 Inversion Performance 

4.1 Single-Inversion Performance Model A1 

In this section, we describe the single inversion using the GA in order to show 

the simple steps of the algorithm, for illustrative purposes. GA inversion of 

synthetic data from model A1 was conducted to resolve the density distribution 

in (40×40×1) cells of the reservoir model. During the initialization stage, the 

program generates 5 individuals. The chromosomes for each individual are 

arranged from random discrete model parameters (A, B, and C). The 

termination criterion used for this performance test was 30 generations for every 

performance sample.  

The data misfit of the single inversion shown in Figure 9(a) resulted with a 

specification of 2.00 GB RAM and 3.30 GHz CPU. The elapsed time after 

calculating an entire generation number (30) was 5.814 seconds. In the last 

generation, the best individual produced the minimum value of the objective 

function (472.654, as shown in Figure 9(b)).  

The best-individual model resulted from the single-inversion GA (as shown in 

Figure 10) gave a sharp characterization. The algorithm was capable of 

identifying positive and negative density changes in the NW and SE part of the 

reservoir model respectively. Although the true cell recovery (TCR) of the 
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inversion model was relatively high (97.750%), this numerical example still 

shows disturbing features near the reference zone boundaries. 

 
(a) 

 
(b) 

Figure 9 Single-inversion performance of synthetic data A1: (a) data misfit and 

(b) objective function vs generation number. 

 

Figure 10   Best individual resulted from single-inversion GA with synthetic 

data model A1 (thick black lines indicate boundaries of density changes from 

synthetic model). 
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4.2 GA Operator Performance Test Model A2 

Based on the flowchart shown in Figure 1, the GA operators had significant 

impact, proving their effectiveness in model parameter exploration. Because of 

the rapid growth of GA adaptations for optimization tools, there are several 

variations of GA operators that can be combined in inversion program designs. 

Several variations of the GA operators tested in this study can be found in the 

literature [21-27]. The performance test combined only certain/selected GA 

operators, because not all GA operators (as mentioned in the references) are 

suitable to be applied in our formulation. Some of the described floating-point 

operator mechanisms are difficult to adapt to our formulation. 

Every sample resulted from the same treatment (inversion set-up 10, individuals 

and last generation both 5000). In order to draw conclusions from this test, 

considering that the GA works with random numbers, every GA operator 

combination tested was summarized by the average value of the 50 performance 

samples (as shown in Table 1).  

Table 1 Comparison of GA operator combinations on the basis of average 

value of 50 performance samples. 

Design GA Operator 
5000 Gen 

ET (s) 
Best 
Phi 

TCR 
Conv 

(#Gen) 
Conv 
ET (s) 

1 RWS-MPCO-HOF-ESR 29.930 1238.79 95.91 4549.74 27.234 

2 TS-MPCO-HOF-ESR 30.120 1238.87 95.89 4487.22 27.031 

3 SUS-MPCO-HOF-ESR 29.468 1238.39 95.95 4441.66 26.177 

4 SUS-DPCO-HOF-ESR 27.078 1239.08 95.94 4729.36 25.613 

5 SUS-SPCO-HOF-ESR 26.144 1241.58 95.83 4915.78 25.703 

6 
SUS-MPCO-
QSA/100G-ESR 

35.805 1239.16 95.97 2976.72 21.316 

7 
SUS-MPCO-QSA/G-
ESR 

965.596 1237.70 96.02 129.80 25.067 

8 
SUS-MPCO-QSA/G-
SSR 

905.214 1237.61 96.03 129.18 23.387 

9 SUS-MPCO-QSA/G-ND 868.999 1237.09 96.04 121.78 21.165 

4.2.1 Selection Operator Test 

The individual selection stage in the GA decides parent pairs based on a fitness 

value. Potential solution models with less data misfit have a higher probability 

to be selected. The characteristics of the individuals with a higher fitness have a 

higher probability to survive in the next generation.  

The three selection operators tested were: SUS (stochastic universal sampling), 

RWS (roullete wheel selection with fitness-proportional probability), and TS 
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(tournament selection). In order to make a comparison, each selection operator 

was combined with the same GA operators (recombination, mutation, and 

replacement, i.e. MPCO (multi-point crossover), HOF (half offspring flips), and 

ESR (evolution strategy replacement) respectively). Based on the comparison of 

the selection operator tests (design #1, #2, and #3) as shown in Table 1 and 

Figure 11, we chose SUS as the most promising selection operator mechanism 

for this inversion. The average values of the 50 SUS performance samples can 

be summarized as follows: 26.177 seconds ET and 4441.66 as generation 

number of convergence. SUS performance showed the smallest Phi (objective 

function) and the highest TCR compared to RWS and TS.  

4.2.2 Recombination Operator Test 

Recombination in the GA combines the chromosomes of selected parent pairs. 

The recombination process introduces offspring (hopefully as fresh candidates) 

for new potential solutions. In terms of model parameter exploration, 

recombination represents teamwork to reach optimization without the slow 

process of perturbation. 

The three recombination operators tested were: MPCO (multi-point crossover), 

SPCO (single-point crossover), and DBCO (double-point crossover). In order to 

make a comparison, each recombination operator was combined with the same 

GA operators (selection, mutation, and replacement, i.e. SUS, HOF, and ESR 

respectively). Based on the comparison of the recombination operator tests 

(design #3, #4, and #5) as shown in Table 1 and Figure 11, MPCO (with 10-

point crossover) was a promising recombination operator mechanism for this 

inversion. The average values of the 50 MPCO performance samples can be 

summarized as follows: 26.177 seconds ET and 4441.66 as generation number 

of convergence. MPCO performance showed the smallest Phi (objective 

function) and the highest TCR compared to DPCO and SPCO.  

4.2.3 Mutation Operator Test 

Mutation in the GA provides an important rule to introduce new characteristics 

of chromosomes in order to prevent premature convergence. The three mutation 

operators tested were: HOF (half offspring flips), QSA/100G (quenched 

simulated annealing per 100
th
 generation), and QSA/G (quenched simulated 

annealing per generation). In order to make a comparison, each mutation 

operator was combined with the same GA operators (selection, recombination, 

and replacement, i.e. SUS, MPCO, and ESR, respectively).  

HOF in the mutation stage works in half the number of offspring for every 

generation. The mechanism of HOF is as follows: the algorithm will randomly 

choose a single chromosome and then flip it into another discrete model 
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parameter. For example, when the randomly selected single chromosome is A, 

then HOF will flip it into B or C. An analog mechanism is applied to the other 

two possibilities for B or C. In this study, HOF was applied continuously in 

every generation. 

QSA/100G is an adaptation of the hybrid optimization of Krahenbuhl [18], but 

in this study it was used in the mutation stage. Krahenbuhl [18] describes QSA 

as a simple form of simulated annealing without temperature cooling criterion. 

Here, we describe the mechanism to adapt the alphabet formulation. The 

flipping mechanism is similar to that of HOF, but this operator functions as a 

local search in the top individuals of the population. After the flipping process, 

the objective function of the new model is evaluated directly. QSA only accepts 

lateral and downhill movement of the objective function. The term ‘/100G’ 

indicates that QSA performs every 100 generations. As shown in Figure 11, the 

performance test showed significant efficiency, especially for every QSA 

performed the ladder-shaped curve has a downward slope.  

Most GA designs use a probabilistic method to perform mutation, but we chose 

to apply significant QSA continuously in every generation (QSA/G). Such kind 

of mechanism is needed in this GA inversion in order to speed up model 

parameter exploration and reduce the number of generations.  

Based on the comparison of the mutation operator tests (#3, #6, and #7) as 

shown in Table 1 and Figure 11, QSA/G is the most promising mutation 

operator mechanism for this inversion. The average values of the 50 QSA/G 

performance samples can be summarized as follows: 25.067 seconds ET and 

129.80 as generation number of convergence. QSA/G performance showed the 

smallest Phi (objective function) and the highest TCR compared to QSA/100G 

and HOF.   

4.2.4 Replacement Operator Test 

The replacement stage in GA decides about continuity from generation to 

generation. The three replacement operators tested were: ESR (evolution 

strategy replacement), SSR (steady state replacement), and ND (no duplicity). 

In order to make a comparison, each replacement operator was combined with 

the same GA operators (selection, recombination, and mutation, i.e. SUS, 

MPCO, and QSA/G, respectively).  

ESR is replacement with evolution schematics involving parents and offspring 

competing for existence in the next generation. SSR is replacement by replacing 

all parents with offspring. These kinds of ESR and SSR have the possibility to 

produce duplicate/uniform individuals as a monopoly of the best individual. ND 



72 Eko Januari Wahyudi, et al. 

as replacement operator proposes an alternative schematic filter tool for next-

generation members. ND does not allow any duplication of individuals into the 

next generation. This kind of schematic maintains the heterogeneity of the 

chromosomes among the population members. 

Based on the comparison of the replacement operator tests (#7, #8, and #9) as 

shown in Table 1 and Figure 11, we chose ND as the most promising 

replacement operator mechanism for this inversion. The average values of the 

50 ND samples can be summarized as follows: 21.165 seconds ET and 121.78 

as generation number of convergence. ND performance showed the smallest Phi 

(objective function) and the highest TCR compared to ESR and SSR.  

 

Figure 11 Comparison of 9 combinations of GA operator performance. 

 
(a) 

 
(b) 

Figure 12 Comparison of: (a) average best Phi with average generation number 

for model convergence, and (b) average percentage of true cell recovery with 

average elapsed time for each single inversion. 
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We looked for the most efficient mechanism regarding computational time, but 

we also looked for inverse results that were close to the synthetic model (TCR 

close to 100%) and followed the mechanism’s performance in minimizing the 

objective function (smallest Phi). Comparison of average best Phi with average 

generation number (Figure 12(a)) shows that design # 9 had minimum value. 

The average percentage of true cell recovery for design #9 was the highest with 

the shortest average ET for each single inversion (Figure 12(b)). The complete 

performance test, as shown in Table 1 and the curve comparison (Figure 11) 

with 50 samples, shows that the combination of SUS-MPCO-QSA/G-ND 

delivered the most promising results. 

 

Figure 13 Best individuals from 50 GA multiple-inversion samples. 

 
(a) 

 
(b) 

Figure 14 GA inversion results of model A2: (a) averaged model from 50 

samples and (b) clustering model with interpretation of A > 0.075 g/cc and C < -

0.075 g/cc (thick black lines indicate boundaries of density changes from 

synthetic model). 
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As an example, we used 50 samples of the GA multiple-inversion (Figure 13) 

that resulted after 913.270 seconds ET using the same PC. We applied the 

clustering interpretation of the averaged model as shown in Figure 14(a). The 

clustering interpretation produced 98.625% TCR, as shown in Figure 14(b). 

GA generally defines the best individual at the end of a generation as the final 

solution, although every time the GA was performed, it ‘never’ seemed to 

provide a unique best individual. As shown in Figure 13, the best individuals 

from the 50 GA samples always differed from one another. Qualitatively, every 

best solution resulted from the 50 GA samples showed the capability to locate 

positive and negative density changes, respectively in the NW and SE part of 

the reservoir model. The solution for sharp characterization of the density 

change boundaries can be optimized by calculating the averaged model as 

Krahenbuhl, et al. [28]. A clustering interpretation of the average model set 

needs to be carried out. Multiple-inversion conducted this way was considered 

in order to push down disturbing features near the reference zone boundaries. 

Hopefully, this would lead to a quantitative improvement regarding the density 

change boundaries. 

4.3 Multiple-Inversion Performance Model B 

 
(a) 

 
(b) 

Figure 15 GA inversion results for model B: (a) average model from 50 

samples and (b) clustering model with interpretation of A > 0.0003 g/cc and C < 

-0.0012 g/cc (thick black lines indicate density change boundaries from synthetic 

model). 
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the individuals and the last generation. We took 50 GA multiple-inversion 

samples that resulted after 10407.849 seconds ET. We applied a clustering 

interpretation of the averaged model as shown in Figure 15(a). The clustering 

interpretation produced 88.160% TCR, as shown in Figure 15(b). 

5 Conclusion 

We have developed an alphabet formulation for inverting time-lapse 

microgravity data for single-layer reservoirs. Inverse modeling with alphabet 

formulation is capable of providing solutions for characterizing positive density 

change (+Δρ) and negative density change (-Δρ) with respect to a reference 

value (0 gr/cc). Our initial tests with synthetic data showed that the alphabet 

formulation provided an effective means to incorporate interpreted density 

changes while maintaining the flexibility of the density inversion. 

We have explored combinations of GA operators to inverse time-lapse 

microgravity using a synthetic single-reservoir model. Analysis of several 

samples showed that the combination of SUS-MPCO-QSA/G-ND had the most 

promising results. Practical application to larger and deeper reservoir models 

was shown with Model B. A quantitative solution with a higher confidence 

level and sharp boundaries of density change conducted by a clustering 

interpretation of the averaged model set resulted from multiple inversion. 

Currently, we are using real data to explore multiple QSA inversion alone as 

optimization strategy to seek the inverse solution. Hopefully, calculations 

involving more complex reservoir parameters (such as: reservoir thickness and 

porosity variation) can be useful to support reservoir simulation research. 
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