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Highlights:  

● The effect of initial load and interface slip on the moment-curvature relationship of a 

retrofitted bridge pier was evaluated. 

● The capacity of the retrofitted bridge pier was evaluated by considering both 

parameters with a monolithic approach. 

● A plastic hinge model of the retrofitted bridge pier was made for pushover analysis.   

 

Abstract. In design practice, the assumptions that are used in retrofitting concrete 

structural elements often ignore the initial load and the interface slip on the contact 

surfaces between the old and the new concrete. The concrete structural elements 

that are loaded by the existing gravity load cause initial strain on the existing cross-

section before jacketing is applied, while the interface does not act in a fully 

composite manner. In this study, a seismic performance evaluation using pushover 

analysis was performed of a damaged reinforced concrete bridge pier retrofitted 

with concrete jacketing, where the plastic hinge of the retrofitted elements was 

modeled by considering both parameters. The results showed that concrete 

jacketing could increase the capacity of the bridge structure. It was also found 

from the numerical result that the performance level of the bridge considering the 

initial load compared to the monolithic approach gave the same result since the 

initial load did not significantly affect the cross-sectional ultimate capacity. The 

difference between the ultimate capacity values computed by the two models was 

less than 7%. It was also shown that the interface slip had a significant effect with 

a slip coefficient smaller than 0.5. 

Keywords: bridge pier; concrete jacketing; initial load; interface slip; moment-

curvature; plastic hinge model; pushover analysis; retrofit; seismic performance. 

1 Introduction 

At present, road transportation is the main mode of transportation in Indonesia 

compared to other available modes, i.e. 90% of all goods and more than 95% of 
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all passengers in Indonesia use road transportation [1]. Bridges as part of road 

networks play a very important role by connecting two points that are blocked by 

obstacles such as rivers, railroads, or highways. In the service life of a bridge, the 

piers as seismic-critical elements can suffer damage or decrease in strength 

caused by various factors, such as earthquakes, foundation shifts caused by soil 

movement, and material degradation over time. Also, during the service life of a 

bridge, new regulations (code) with stricter requirements may be enforced. Both 

damages and code changes may cause the structure to no longer meet the 

requirements and retrofitting is needed to be able to restore or increase its strength 

and ductility. 

There have been several incidents of damage to bridges in Indonesia, one of 

which concerned the Cisomang Bridge. The Cisomang Bridge is located in 

Cisomang Village, Purwakarta Regency, West Java Province. The bridge is part 

of the Purbaleunyi toll road, which connects Bandung and Jakarta, and is located 

at KM. 100+700. During around fifteen years of operation, the bridge has 

experienced a large foundation shift due to movements of the supporting clay 

shale soils. The accumulation of relatively slow movement of the clay shale soils 

caused deformations in several piers, with the largest deformation occurring in 

pier P2, measuring around 52.50 centimeters. 

Different techniques were considered to retrofit the damaged bridge pier element. 

The technique that was chosen was concrete jacketing. Jacketing of reinforced 

concrete (RC) sections is a technique widely adopted in current engineering 

practice to retrofit damaged/weak members and to increase their strength and 

ductility. The method consists of casting a new RC layer (jacket) around the 

existing section and reinforcing it with additional longitudinal and transverse 

reinforcements to increase the cross-sectional capacity and the confinement effect 

of the member [2]. Seismic retrofitting of an existing bridge is generally more 

difficult than the design of a new bridge because of the various restrictions in the 

retrofit. This is because the main structural elements cannot be changed or 

replaced in seismic retrofitting, which narrows down the design and construction 

options [3].  

Generally, two important things need to be considered in the application of 

concrete jacketing. Firstly, bridges often need to be retrofitted within a short time 

period without suspension of traffic, during which the retrofitting is applied to 

loaded structural elements under existing gravity load, causing initial strain to 

exist in it. Secondly, due to the nature of the jacketing, which results in two 

concrete layers being cast at different times, the occurrence of interface slip 

between the interconnected elements should be checked and considered in the 

section capacity of the cross-section. 
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Various researches have been carried out in the last twenty-five years to study the 

effect of initial load and interface slip on RC sections retrofitted with concrete 

jacketing. Ersoy, et al. [4] experimented with two series of jacketed columns 

under uniaxial and combined axial load and bending. The authors found that 

applying a strengthening jacket while the column was loaded functioned similarly 

under uniaxial loading compared to applying strengthening to columns that were 

unloaded. However, if the column is damaged to a level requiring repair, 

unloading may have more influence on the capacity of the column under uniaxial 

loading. Repaired columns under combined loading attain less rigidity than 

monolithic columns, while strengthened columns reach similar levels as 

monolithic columns. Strength is not influenced significantly by monotonic or 

cyclic loading history.  

Julio, et al. [5], Julio and Branco [6], and Vandoros and Dritsos [7] found that the 

initial load has a negligible impact on the capacity of a section retrofitted with 

concrete jacketing and the effect of slip between the old-new concrete interface 

plays a lesser role. If the old concrete surface is not roughened, the reduction of 

composite phenomena, in terms of the flexural capacity, is almost 10% [2]. In a 

more recent analytical study on beams, by Alhadid and Youssef [8], it was found 

that initially loaded beams experience more ductility when the additional jacket 

steel bars are unstressed at the moment the partial interaction between the core 

and the jacket commences. The influence of slip on reducing the flexural stiffness 

of the jacketed beams becomes less pronounced when jacketing takes place at 

higher initial load. 

The present study evaluated the effect of initial load and interface slip by non-

linear section analysis of an RC section retrofitted with concrete jacketing and 

investigated the seismic performance of the bridge. 

2 Bridge Description 

To evaluate the effect of concrete jacketing on the seismic performance of bridge 

structures, a case study was conducted on an existing bridge in a toll road in 

Indonesia that has suffered serious damage in a pier element to which retrofitting 

has already been applied by concrete jacketing. The bridge pier element was 

cracked because of foundation shift due to the accumulation of soil movement 

caused by an active river.  

The bridge has a total length of 252.127 meters, with a seven-span configuration 

supported by two abutments (A1 and A2) and six piers (P0, P1, P2, P3, P4, and 

P5), where P2 and P3 have the same height of 42.810 meters, and the highest pier, 

P4, is 46.451 meters high. The superstructure of the bridge consists of PCI beams 
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with a simple span (A1-P0, P0-P1, P4-P5, and P5-A2) and a continuous-integral 

span (P1-P2-P3-P4), as shown in Figure 1. 

 

Figure 1 The geometry of the bridge model: long section of the bridge. 

The bridge structure was completed in 2005 with seismic load demand according 

to the old Indonesian seismic design code [9]. The existing bridge piers have two 

different cross-section geometries, i.e. a solid rectangle for P0 and P5 and a 

rectangular hollow for P1-P4. The details of the cross-section geometries and the 

steel reinforcements of the bridge pier elements are tabulated in Table 1. 

Table 1 Details of geometry and reinforcement of bridge piers. 

Bridge 

Pier 

Section geometry Longitu

dinal 

Bars 

Transverse bars 

Type 
Width 

(mm) 

Height 

(mm) 

Thickne

ss (mm) 

End-

region 

Mid-

region 

P0 Solid 1000 1250 - 34 D32 D13-100 D13-250 

P1 Hollow 3100 3600 400 140 D22 D16-100 D13-150 

P2 Hollow 3100 3600 400 112 D22 D16-100 D13-250 

P3 Hollow 3100 3600 400 112 D22 D16-100 D13-250 

P4 Hollow 3100 3600 400 100 D22 D16-100 D13-250 

P5 Solid 1000 1250 - 36 D32 D13-100 D13-250 

Based on the results of field investigations conducted by LAPI ITB in 2016 [10] 

it was found that several bridge piers had been displaced and damage was caused 

to piers P0, P1, P2, and P5. The largest displacement occurred in pier P2, 

measuring around 52.50 cm. Table 2 shows the displacement of the bridge piers. 

Several retrofitting techniques have been applied to retrofit the damaged bridge 

piers, namely short-term (temporary) and long-term (permanent) retrofitting. To 

avoid further damage temporary retrofitting was carried out, such as grouting in 

the cracks of the RC sections, FRP jacketing, and steel foundation strutting to 

stop further movement of the base of the bridge piers. Furthermore, permanent 

retrofitting by RC jacketing was applied to restore and increase the capacity of 

the damaged elements and to withstand the external load on the bridge structure 

during the service life of the bridge.  
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The material properties used in RC jacketing were chosen to be the same as the 

existing material. An illustration of the cross-section geometry of the retrofitted 

pier P2 is shown in Figure 2 and a summary of the RC jacketing applied to the 

damaged bridge piers is tabulated in Table 3. 

Table 2 Displacement data of bridge piers. 

Bridge pier 

Longitudinal Transversal 

Relative 

displacement 

(m) 

Direction 

Relative 

displacement 

(m) 

Direction 

P0A 0.134 Purwakarta 0.103 B 

P0B 0.153 Purwakarta 0.073 B 

P0C 0.118 Purwakarta 0.040 A 

P0D 0.071 Purwakarta 0.089 A 

P1A 0.264 Purwakarta 0.124 A 

P1B 0.244 Purwakarta 0.264 A 

P2A 0.525 Purwakarta 0.274 A 

P2B 0.419 Purwakarta 0.143 A 

P3A 0.055 Bandung 0.056 B 

P3B 0.095 Purwakarta 0.057 B 

P4A 0.119 Bandung 0.033 A 

P4B 0.120 Bandung 0.069 A 

P5A 0.005 Purwakarta 0.075 Bandung 

P5B 0.003 Bandung 0.062 Bandung 

P5C 0.003 Bandung 0.035 Bandung 

P5D 0.001 Bandung 0.073 Bandung 
Note: A, B, C, and D indicate the number of columns of each bridge pier. 

 
(a) 

 
(b) 

Figure 2 Cross-section geometry: (a) existing, (b) retrofitted. 
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Table 3 RC jacketing application to damaged bridge piers. 

Bridge 

pier 

Pier 

type 

Retrofit 

Type 

Details of retrofitting 

Thickness 

(mm) 

Long. 

steel 

Trans. 

steel 

Shear 

connector 

P0 Solid RC jacketing 250 65 D25 D13-200 D13-300 

P1 Hollow RC jacketing 200 120 D22 D16-200 D13-300 

P2-Bottom Hollow RC jacketing 200 120 D22 D16-200 D13-300 

P2-Top Hollow 
Steel 

jacketing 
20 - - - 

P5 Solid RC jacketing 250 62 D25 D13-200 D13-300 

3 Non-Linear Section Analysis of RC Section with Jacketing 

The main purpose of the non-linear section analysis is to obtain the moment-

curvature (M-φ) relationship through a fiber section approach. The section is 

divided into three regions (cover, core, and steel), where all of them are 

discretized into a finite number of segments and each segment has an orientation 

towards a neutral axis. The initial load and interface slip in the non-linear analysis 

of the RC sections retrofitted with concrete jacketing was calculated in the section 

analysis by considering the discontinuous strain, as illustrated in Figure 3. 

 

Figure 3 Strain profile of retrofitted section with RC jacketing considering the 

initial load and interface slip. 

Theoretically, the relationship of moment-curvature at the level of load can be 

obtained by increasing the concrete strain, εcm, in the extreme compression fiber 

or by increasing the curvature, φ [11]. For each value of εcm or φ, there will be a 

neutral axis (zero strain position) that meets the force equilibrium requirements. 

3.1 Proposed Calculation Algorithm and Assumptions 

Basically, the calculation algorithms for the RC sections with and without 

jacketing for determining the moment-curvature relationship are the same. The 

fundamental difference is the constitutive model for confined concrete with 
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jacketing, where the total effective lateral pressure of the core is generated by 

both the existing and the jacketing stirrups/hoops [12]. Moreover, by taking into 

account the initial load due to the existing gravity load and the interface slip 

between two concrete elements cast at different times, the stress calculation for 

each segment in the RC section with jacketing can be calculated by modifying 

the strain [12]. Furthermore, it is assumed that the flexural stiffness of the 

damaged and the existing sections is the same due to the temporary repairs 

applied before jacketing. 

3.1.1 Confinement Effectiveness Coefficient for RC Section with 

Jacketing 

The method conducted by Ong, et al. [13] was adopted, which is based on the 

model proposed by Mander, et al. [14]. The effectively confined area of the core, 

the existing cover, and the jacket also have to be calculated. For the core, the 

effective lateral confining stress arising from the existing and jacketing 

confinement, '

,l coref , can be calculated as follows: 

 , , , , , , ,

' 1 1

2 2
l core e ex s ex yh ex e jac s jac yh jac

f k f k f    (1) 

where, 
,


s ex

 and 
,


s jac

 are the volumetric ratio of the existing and the jacketing 

transverse confining steel, respectively;  
,e ex

k  and 
,e jac

k  are the confinement 

effectiveness coefficient arising from the existing and the jacketing confinement, 

respectively; 
,yh ex

f  and 
,yh jac

f  are the yield strength of the existing and the 

jacketing transverse confining steel, respectively. 

For RC section with jacketing of a rectangular section, the area of the concrete 

core that is ineffectively confined is represented by the area of the parabolas that 

occur horizontally between ties of the longitudinal bars and vertically between 

the layers of the transverse hoop bars (Figure 4). The effectively confined 

concrete core area at the stirrup/hoop level (plan) can be obtained by subtracting 

the area of the parabolas containing ineffectively confined concrete. Figure 4(a) 

shows the two possible conditions of the parabolic arrangement at the 

stirrup/hoop level (plan), which is expressed as follows: 

1. The first condition happens when the position of the parabolas is far outside 

of the concrete core. The confining effect will be maximum and the ratio 

between the confined core area and the core may be taken as unity, i.e. 

 1   (2) 
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2. The second condition happens when the parabolas intersect the core. The 

ratio λ is given by: 

 

'

,

,

1

,

2

3

n
i jac

cc jac

i

cc jac

w m
A

A





 


 (3) 

where, '

,i jacw  is the base length of the parabola, m is the rise of the parabola inside 

the core, taken as 
'

,

1

4
i jacw , and ,cc jacA  is the area of the core minus the area of the 

longitudinal steel jacket. 

Similarly, two possible conditions of the parabolic arrangement vertically 

between the layers of the transverse hoop bars (elevation) are also assumed to 

occur, as shown in Figure 4(b), which are expressed as follows: 

1. The first condition occurs when the vertical parabola falls outside of the core. 

The effectively confined core area can be formulated by: 

 e c c
A b d   (4) 

2. The second condition occurs when the parabolas cross the core. The 

effectively confined core area can be formulated by: 

 

' '

1 2 1 2
2 2

j j

e

c c

s s
A m m

b d

      
              

         

 (5) 

where, 
c

b  and c
d   are the concrete core dimension to centerline perimeter hoop 

in the x-direction and y-direction, respectively; '

j
s  is the clear vertical spacing 

between the jacket stirrups or hoop bars. 

 

Based on the formulation that was derived above from Eqs. (2)-(5), the 

confinement effectiveness coefficient arising from jacketing confinement is 

formulated as follows: 

 

' '

,

,

1 2 1 2
2 2

(1

j j

c c
e

e jac

cc c cc j

s s
m m

b dA
k

A A

      
             

         
 

 
 (6) 

Eq. (6) is formulated for the second condition. If the first condition occurs, then 

the value of 
,e jac

k  will be maximum or taken as unity. 
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Figure 4 Effectively confined core with respect to the jacket stirrups/hoop: (a) at 

the level of the stirrups/hoop (plan), (b) between two adjacent levels of the 

stirrup/hoop (elevation) [13]. 

The ultimate compressive strain on the confined concrete of the RC section with 

jacketing follows the equation from Priestley, et al. [15], taking into account both 

the effects of the existing and the jacketing confinement, which can be calculated 

with the following formulations: 

 
, , , , , jac , jac

, , jac

1.4 1.4
0.004

   
   

s ex yh ex su ex s jac yh su

cu

cc ex cc

f f

f f
 (7) 

where, 
,


s ex

 and 
,


s jac

 are the volumetric ratio of the existing and the jacketing 

transverse confining steel, respectively; 
,yh ex

f  and 
, jacyh

f  are the yield strength of 

the existing and the jacketing transverse confining steel, respectively; 
,


su ex

 and 

, jac


su
  is the steel strain at maximum tensile stress of the existing and the 

jacketing transverse confining steel; 
,cc ex

f  and , jaccc
f  are the compressive strength 

of the confined concrete generated by the existing and the jacketing transverse 

confining steel, respectively. 

3.1.2 Initial Load 

The initial load in the M-φ calculation algorithm of the RC section with jacketing 

was calculated by modifying the strain value in the existing section, where the 

strain value in the existing section for each Δφ should be added with the initial 

strain of the existing section, whereas for the jacket section, the strain value for 
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each Δφ is added with zero (no initial strain in the jacket section). The 

mathematical formulations for this explanation are formulated as follows: 

For the existing section, 

 
       , c segment initialsegment ex i

y y i i        (8) 

For the jacket section, 

       ,
0

c segmentsegment jac i
y y i i       (9) 

where, ,segment ex and ,segment jac  are the strain at the existing and the jacket section, 

respectively; cy  is the neutral axis position from the top fiber of the section; 

segmenty  is the moment’s arm of the segment, and initial  is the initial strain of the 

existing section before the jacket was applied. 

3.1.3 Interface Slip 

When a concrete element is repaired by placing new concrete, full transfer of the 

interface shear forces must be provided at the contact surfaces of the 

interconnected elements, whereby the possibility of interface slip exists [16]. The 

mechanism for interface shear force transfer is known as shear friction. Figure 5 

illustrates the condition of the interface slip. Its formulation, adopted from ACI 

318M-14 (Sections 16.4.4 and 22.9), is as follows: 

 nh u
V V   (10) 

where, nhV  is the nominal interface shear strength, calculated according to ACI 

318M-14, Table 16.4.4.2; uV  is the shear force corresponding to the plasticity of 

the top and base pier sections, and   is the strength reduction factor. 

 

Figure 5 Shear friction and interface slip model. 
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To quantify the occurrence of slippage in the calculation for the RC section with 

jacketing, a simple method to estimate the reduction of the section’s capacity is 

by multiplying the strain of each segment in the jacket section in Eq. (9) with the 

slip coefficient.  

The slip coefficient is equal along the contact area with a variety of values > 0-1, 

where a value close to zero describes the bond at the interface being very minimal, 

while a value of one describes a perfect bond or full composite. The mathematical 

formulation for this is obtained by modifying Eq. (9) as follows: 

         ,
0 slip coefficient

c segmentsegment jac i
y y i i        (11) 

The requirements for the minimum area of shear transfer reinforcement are based 

on ACI 318M-14, Section 16.4.6.1, i.e. 
,minvA  must be the greater of Eq. (12a) 

and (12b): 

'0.062 w

c

y

b s
f

f
 (12a) 

0.35 w

y

b s

f
 (12b) 

where wb  is the width of the cross section, s  is the center-to-center spacing of 

the shear transfer reinforcement, '

cf  and yf  are the concrete compressive strength 

and the yield strength of reinforcing steel, respectively. 

3.2 Numerical Example 

To demonstrate the proposed calculation algorithm that was derived above, this 

section examines the damaged pier P2 element that has already been retrofitted 

by concrete jacketing as an example. The initial load, represented by the initial 

curvature, is assumed to be below or above the yield curvature of the existing 

section (without jacketing), respectively, while the interface slip is applied to the 

jacket section with a coefficient of 0.05, 0.1, 0.5, 0.7, and 0.9, which works 

linearly in the slip plane along the contact area. Figure 2 and Table 4 show the 

cross-section geometry and material properties of the pier.  

The capacity of the concrete components to resist all seismic demands except 

shear was assessed based on the expected material strength of unconfined and 

confined concrete as well as the reinforcing steel to provide a more realistic 

estimate of the earthquake load capacity [15,17,18]. 
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Table 4 Parameters of cross-sectional geometry and material properties. 

Parameter Description Dimension  Unit 

𝐵 Existing section width 3100 mm 

𝐻 Existing section height 3600 mm 

𝑡𝑐,𝑒𝑥  Existing concrete cover 50 mm 

𝑡𝑐,𝑗  Jacketing concrete cover 50 mm 

𝑡𝑤 Hollow thickness 400 mm 

𝑡𝑗 Jacket thickness 200 mm 

𝐷𝑏,𝑒𝑥 Diameter existing of longitudinal bars 22 mm 

𝐷𝑏,𝑗  Diameter jacketing of longitudinal bars 32 mm 

𝑑𝑡,𝑒𝑥  Diameter of existing stirrups/hoop 16 mm 

𝑠 Vertical spacing of existing stirrups/hoop bars 100 mm 

𝑑𝑡,𝑗 Diameter of jacketing stirrups/hoop 16 mm 

𝑠𝑗  Vertical spacing of jacketing stirrups/hoop bars 200 mm 

𝑓𝑐
′ Concrete compressive strength 30 MPa 

𝑓𝑐𝑒
′  Expected concrete compressive strength 1.3 × 𝑓𝑐

′ MPa 

𝑓𝑦 Yield strength of reinforcing steel 420 MPa 

𝑓𝑦𝑒  Expected yield strength 1.1 × 𝑓𝑦  MPa 

𝐸𝑐 Modulus of Elasticity of concrete 4700√𝑓𝑐
′ MPa 

𝐸𝑠 Modulus of Elasticity of reinforcing steel 200000 MPa 

3.2.1 Section Discretization 

The concrete section retrofitted with jacketing is discretized in four parts, i.e. the 

core, the existing outer cover, the inner jacket, and the cover (existing inner cover 

and jacket cover), as shown in Figure 6. The core, existing outer cover, and inner 

jacket are defined as confined material, while the existing inner cover and jacket 

cover are defined as unconfined material. Figure 6 illustrates the effectively 

confined core area of the section. 

 

Figure 6 Section discretization and effectively confined core of the section. 

The discretized concrete sections with jacketing are defined as follows: 

1. Core  : confined by existing and jacket confinement/stirrups 
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3. Existing outer cover : confined by jacket confinement/stirrups 
4. Inner jacket  : confined by jacket confinement/stirrups 
5. Existing inner cover : unconfined material 

6. Jacket cover : unconfined material 

3.2.2 Stress-Strain of RC Section with Jacketing 

As can be seen from Figure 7, there is an increase in the stress and strain of the 

core with jacketing reinforcement compared to the existing cross-section, which 

is due to the additional lateral stress contributed by the jacket stirrups.  

The stress does not increase significantly because the ineffective area of the core 

is quite large due to the absence of ties on the jacket transverse reinforcement. 

 
(a) 

 
(b) 

Figure 7 Stress-strain relationship of materials: (a) concrete, (b) steel bar. 
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3.2.3 Initial Load Effect 

This section discusses the effect of the initial load on the M-φ relationship of the 

RC section with jacketing. Also, the comparison of the M-φ relationship of the 

RC section with jacketing, considering the initial load with a monolithic 

approach, is discussed by reviewing several cases, as described in Table 5. Figure 

8 shows the comparison results for both scenarios, carried out in the strong-axis 

direction of the cross-section. Clearly, the jacketing strengthening could improve 

the capacity of the section by almost two times. For  i y pre jacket
M M


 , the yield 

point after the jacket was applied is determined by the yield of the existing 

longitudinal steel. Meanwhile, for  i y pre jacket
M M


 , the yield point is obtained 

by the jacket tension steel because the existing tension steel has already yielded. 

The definition of the ultimate point is determined by comparing the ultimate 

tensile strain of the steel with the ultimate concrete compressive strain of the core, 

whichever is reached first, in this case obtained from the ultimate tensile strain of 

jacket steel. 

Table 5 Comparison of cross-sectional discretization. 

Section discretization 
w/Initial load Monolithic approach 

Case-1 Case-2 Case-3 Case-4 

Core Confined-2 Confined-1 Confined-1 Confined-1 

Existing outer cover Confined-3 Unconfined Confined-3 Confined-1 

Inner jacket Confined-3 Unconfined Confined-3 Confined-1 

Existing inner cover Unconfined Unconfined Unconfined Unconfined 

Jacket cover Unconfined Unconfined Unconfined Unconfined 
Notes: 

a. P = 0.13Pu 

b. Confined-1: confined by existing stirrups 
c. Confined-2: confined by existing and jacket stirrups 

d. Confined-3: confined by jacket stirrups 

It can also be seen from Table 6 that the results of the M-φ relationship between 

case 1 and case 4 show an ultimate strength difference of ±7%. The monolithic 

approach of case 4 is not recommended, because it will overestimate the capacity 

of the section. The section capacity from the monolithic approach for case 2 and 

case 3 is broadly the same, which is due to the differences in the constitutive 

model used for discretization of the existing outer cover and the inner jacket, 

which have a stress difference of only ≤ 1%. Based on this, a recommendation 

that is safe and practical for engineering practice is to use the monolithic approach 

for case 2, where the jacket material is modeled as unconfined concrete.  

Figure 9 shows the stress-strain profile at the ultimate curvature, in which the 

comparison of stress in the four cases shows slight differences. This proves the 

hypothesis that the strain profile of case 1 does not have strain compatibility. 
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(a) 

 
(b) 

Figure 8 Comparison between M-φ relationship considering the initial load with 

a monolithic approach: (a)  i y pre jacket
M M


 , (b)  i y pre jacket

M M


 . 

Table 6 Comparison of M-φ parameter result from monolithic approach. 

Parameter Case 1 Case 2 Case 3 Case 4 

 
𝜑

𝑦
 (1/m) 0.000998 0.000808 0.000808 0.000812 

𝜑
𝑢

 (1/m) 0.035870 0.035630 0.035630 0.033790 

𝑀𝑦 (kN-m) 119890.32 117427.8484 117423.0510 117100.6825 

𝑀𝑢 (kN-m) 161598.79 161455.9109 161511.7650 173556.4952 

 
𝜑

𝑦
 (1/m) 0.002676 0.000808 0.000808 0.000812 

𝜑
𝑢

 (1/m) 0.037577 0.035630 0.035630 0.033790 

𝑀𝑦 (kN-m) 124966.46 117427.8484 117423.0510 117100.6825 

𝑀𝑢 (kN-m) 161650.75 161455.9109 161511.7650 173556.4952 
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(a) 

 
(b) 

 
(c) 

Figure 9 Stress-strain profile at ultimate curvature: (a) strain, (b) concrete stress, 

(c) steel stress. 

3.2.4 Interface Slip Effect 

Figure 10(a) shows that the section capacity drops when the interface slip is 

considered in the non-linear RC section analysis with jacketing. Basically, it 

shows that the stiffness as well as the section capacity will drop to become very 

close to the existing RC section values if the coefficient is close to zero (a very 

minimal bond). As can be seen from Figure 10(a), the neutral axis position for 
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each slip coefficient value (μ) changes when compared to the condition without 

slip (fully composite). 

 
(a) 

 
(b) 

Figure 10    Cross-section section capacity with interface slip effect: (a) M-φ 

relationship, (b) strain profile at ultimate curvature. 

Referring to Figure 10(a), it was also found that the section capacity decreases 

with a slip coefficient of 0.5-0.9, but it does not have a significant effect. It can 

be inferred that by only using one of the roughing methods on the interface 

surface area is sufficient and the use of shear connectors can be reduced, which 

is consistent with previous researches [2,5,7]. In the case of μ = 0, where jacket 

slip completely absent because the jacket encloses the existing pier, there must 

be some geometric compatibility between the jacket and the existing pier, since 

the jacket has to bend with the existing pier and is thus forced to follow the 

curvature of the existing section (at least partially). 

4 Seismic Performance of RC Bridges 

To get a better understanding of the seismic performance of retrofitted bridge 

piers with concrete jacketing considering the initial load and interface slip, 

pushover analysis was used to calculate the performance level of the bridge. The 



360 Made Suarjana, et al. 

  

seismic performance of RC bridge was conducted according to NCHRP Synthesis 

440 [19]. 

Figure 11 illustrates the research methodology used in this study, where the 

seismic performance was analyzed for three cases, i.e. the performance of the 

existing bridge with and without displacement load, respectively, and the 

performance of the retrofitted bridge. A comparison between the three cases was 

made, where for the retrofitted bridge also the difference in seismic performance 

level was assessed using the monolithic approach as input for the modeling of the 

plastic hinge of retrofitted bridge piers. The capacity of the concrete components 

to resist all seismic demands except shear was assessed based on the expected 

material strength for unconfined and confined concrete as well as the reinforcing 

steel to provide a more realistic estimate of the earthquake load capacity 

[15,17,18]. 

Start

Problem 

Definition

Literature Study

Non-linear Section Analysis 

of RC Jacketing Section

Modeling & Analyzing of 

Retrofitted Bridge Structure

Pushover 

Analysis

Seismic 

Performance

Conclusions

End

Non-linear Static 

Analysis (Initial 

load, Mi-φi)

Modeling & Analyzing of 

Existing Bridge Structure

Existing Load 

(gravity)

M-φ

(consider initial load & interface 

slip)

Non-linear Section Analysis 

of Existing RC Section

(Initial M-φ)

 Existing Bridge 
(Gravity+EQ)

 Existing Bridge 
(Gravity+Disp+EQ)

 Retrofit Bridge 
(Gravity+EQ)

 

Figure 11   Research methodology. 

4.1 Structural Modeling and Assumptions 

This section discusses the general structural modeling and assumptions that were 

used in evaluating the seismic performance of the retrofitted bridge. As has 

already been mentioned in Section 2, the structural system of the bridge contains 

two types of spans. For simplification of the structural modeling, only the 

continuous-integral spans were modeled (P1-P2-P3-P4), because the bridge’s 

response is determined by the continuous-integral spans. 

The structural modeling and analysis of the bridge structure were carried out with 

the Midas Civil software by using beam elements to create the piers, PCI beams, 
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and bent caps. An elastic link element and a linear spring were used to model the 

bearings and piles respectively, and shell finite elements were used to model the 

slab. A rigid connection between the column bent top and the superstructure was 

idealized to model the continuous-integral spans, a pinned connection was 

specified at the pile base through joint restraints for all translation degrees of 

freedom, and a pinned boundary condition was defined at each end of the 

superstructure. The dynamic behavior of the structural system was calculated 

with the effective stiffness value according to FEMA-273 Table 6-4 [20] and the 

seismic load demand was based on the new Indonesian Bridge Seismic Design 

Code (SNI) [21], in which this bridge structure is classified as Other Bridges with 

site class SD and a PGA of 0.448 g. 

4.2 Plastic Hinge Model 

The inelastic properties of the bridge structure elements were modeled using the 

moment-rotation hinge backbone curve. It can be seen from Table 7 that the 

retrofitted RC bridge pier section was modeled as uncoupled hinge without axial-

moment interaction to prevent the software (Midas Civil) from automatically 

interpolating the moment-rotation hinge backbone curve [12]. The plastic hinge 

model definition for all hinges was adopted from Aviram et al. [17]. The plastic 

hinge modeling of the bridge structure elements in Midas Civil software is 

illustrated in Figure 12. 

Table 7 Inelastic property of bridge structure elements. 

RC section 
Non-Linear Hinge Options 

Uncoupled hinge M3 Interaction PMM hinge 

PCI beam x  

Pierhead x  

Existing RC bridge pier  x 

Retrofitted RC bridge pier x  

 

Figure 12    Plastic hinge model of the bridge structure elements. 
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4.2.1 Retrofitted Elements 

The inelastic properties of the elements, retrofitted by concrete jacketing (pier P2 

bottom) were calculated considering the initial load and interface slip parameters, 

based on Section 3. The contribution of the FRP jacket to the non-linear section 

analysis of the retrofitted section was not considered because the confining effect 

can be assumed as negligible for rectangular sections with dimensions exceeding 

900 mm [22]. The initial load parameter was obtained by performing non-linear 

static analysis on the existing structure, using load control of gravity and pier 

displacement to obtain the initial moment value and use it to determine the 

condition of the existing bridge piers and also as the initial point for calculating 

the moment-curvature relationship of the RC section with jacketing [12]. It can 

be seen from Table 8, that bridge pier P2 has undergone plastic deformation as 

the longitudinal reinforcing steel has already exceeded the first yield point, while 

the other bridge piers (P3 and P4) are still in elastic condition.  

Table 8 Existing bridge pier conditions due to displacement load. 

Bridge Pier Location Condition Explanation 

P2 
Bottom 𝑀𝑖 > 𝑀𝑦(𝑝𝑟𝑒−𝑗𝑎𝑐𝑘𝑒𝑡) Yield 

Top 𝑀𝑖 > 𝑀𝑦(𝑝𝑟𝑒−𝑗𝑎𝑐𝑘𝑒𝑡) Yield 

P3 
Bottom 𝑀𝑖 < 𝑀𝑦(𝑝𝑟𝑒−𝑗𝑎𝑐𝑘𝑒𝑡) Elastic 

Top 𝑀𝑖 < 𝑀𝑦(𝑝𝑟𝑒−𝑗𝑎𝑐𝑘𝑒𝑡) Elastic 

P4 
Bottom 𝑀𝑖 < 𝑀𝑦(𝑝𝑟𝑒−𝑗𝑎𝑐𝑘𝑒𝑡) Elastic 

Top 𝑀𝑖 < 𝑀𝑦(𝑝𝑟𝑒−𝑗𝑎𝑐𝑘𝑒𝑡) Elastic 

Furthermore, the interface slip parameter was checked by comparing the nominal 

horizontal shear strength ( nhV ) and the factored shear force ( uV ) in the element. 

As can be seen in Table 9, by checking the calculations that were already 

performed, interface slip does not occur and the retrofit section is assumed to be 

fully composite. The results for the moment-curvature relationship of the 

retrofitted bridge pier elements by concrete jacketing are presented in Figure 13. 

It should be noted that due to limitations of the software that was used to 

determine the seismic performance of the bridge (i.e. the software cannot 

consider both birth and death time of the jacketing), the strategy used in the 

modeling of the plastic hinge of the retrofitted elements was normalized from the 

initial point of the moment-curvature of the RC section with jacketing. This was 

done because the existing bridge pier section P2 was already in plastic condition 

by the pushover initial load of gravity and displacement so that the Midas Civil 

software analyzed the pushover load with an assumption of residual value of the 

inelastic property of the RC section with jacketing, calculated from the initial 

point.  
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Table 9 Calculation check of interface slip parameter. 

 

 
(a) 

 
(b) 

Figure 13    Moment-curvature of retrofitted bridge pier P2: (a) major axis, (b) 

minor axis. 
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Table 10 presents a summary of the bridge pier plastic hinge parameters, where 

CJ and SJ are defined as bridge piers retrofitted with concrete jacketing and steel 

jacketing, respectively, while Ex is defined as an existing bridge pier. When the 

contact surfaces of the old concrete are not roughened and interface slip is likely 

to occur in the retrofitted section, the slip coefficient can be assumed to be 0.9 

[2]. 

Table 10 Summary of bridge pier plastic hinge parameters. 

 

Table 11 Summary of PCI beam and pierhead plastic hinge parameters. 

Element θy My θu Mu θy-eq My-eq L-beam 

PCI-P2 Left 0.00288 20210 0.03509 25660 0.00346 24320 36.350 

PCI-P2-P3-P4 

Left 

0.00235 18960 0.02943 26440 0.00321 25860 35.600 

PCI-P4 Right 0.00240 21090 0.03085 29140 0.00335 29090 35.600 

Pierhead 0.00141 62520 0.06495 10680

0 

0.00222 98550 40.100 

where, θy and θu are the yield and ultimate rotation in radians, respectively; My 

and Mu are the yield and ultimate moment in kN-m, respectively; θy-eq and My-eq 

are the equivalent yield rotation in radians and the equivalent yield moment in 

kN-m, respectively; and L-beam is the length of the PCI beam in meters. 
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4.3 Performance Level of RC Bridge 

Figure 14(a) shows the pushover analysis result in the longitudinal direction of 

the bridge. This curve shows the results for the retrofitted condition with the 

plastic hinge model that considers the initial load condition. 

 
(a) 

 
(b) 

Figure 14    Pushover analysis results: (a) pushover capacity curve, (b) plastic 

hinges mechanism at performance point. 

It was shown that the performance level of the retrofitted bridge structure was 

‘operational’. The node displacements and drift ratios are shown in Table 12. In 

the FEM model, as shown in Figure 14(b), each small circle denotes a plastic 

hinge model. Note that all members were assigned with two plastic hinge models 

at both ends, except for Pier P2. For Pier P2, plastic hinge models were inserted 

at both ends and at the section transition from original to jacketed section. In 

Figure 14(b), the plastic hinge models that remained elastic are indicated with 

blue color, while the plastic hinge models that reach plastic condition are 

indicated with cyan color. 
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Table 12 Performance level of retrofitted RC bridge. 

Pushover 

direction 

Node control 

displacement 

Drift ratio 

(%) 

Performance level 

Structure Element 

Longitudinal 0.4675 1,0013 Operational B - IO 

Transversal 0.2467 0,5279 Fully 

operational 

Elastic 

A comparison of the seismic performance of the bridge before and after 

retrofitting was conducted by reviewing several cases. The longitudinal pushover 

capacity curve results are shown in Figure 15 and Table 13. The explanation of 

these cases is as follows: 

1. TJ-1: Grav+EQ, un-retrofitted bridge structure with pushover initial loading 

only gravity; 
2. TJ-2: Grav+Disp+EQ, un-retrofitted bridge structure with pushover initial 

loading of gravity and pier displacement; 

3. J1-1: Grav+EQ, retrofitted bridge structure with pushover initial loading only 

gravity and plastic hinge model considering initial load; 
4. J0-1: Grav+EQ, retrofitted bridge structure with pushover initial loading only 

gravity, plastic hinge model using a monolithic approach, and inner jacket 

and cover jacket modeled as unconfined material; 
5. J0-2: Grav+EQ, retrofitted bridge structure with pushover initial loading only 

gravity, plastic hinge model using a monolithic approach, and inner jacket 

and cover jacket modeled as unconfined material. 

 
Note: The curves for models J1-1 and J0-1 coincide. 

Figure 15  Comparison of pushover capacity curves. 
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From Figure 15 it is clear that the application of jacketing to the existing bridge 

structure can increase the capacity of the bridge by almost 15% (J1-1 to TJ-1) and 

around 46% (J1-1 to TJ-2), respectively.  

It was also found that the pushover capacity curve of the plastic hinge model 

using initial load compared with the monolithic approach shows differences of 

only ±2.0%, not significantly affecting the bridge structure capacity. This is 

because the section capacity of the retrofitted section also shows only slight 

differences of ≤ 7%. Moreover, the bridge capacity response is not only 

determined by the retrofitted bridge pier P2 but also by the contribution of piers 

P3 and P4, which are still in elastic condition as the bridge structural system is 

continuous-integral type. To summarize, the seismic performance level of the 

bridge structure was the same, i.e. ‘operational’, using either the plastic hinge 

model of initial load or the monolithic approach. 

Table 13 Comparison of performance level of RC bridge. 

Pushover case 
Node control 

displacement 

Drift ratio 

(%) 

Performance level 

(structure) 

TJ-1:Grav+EQ 0.4606 0.99% Fully operational 

TJ-2:Grav+DISP+EQ 0.6983 1.49% Operational 

J1-1:Grav+EQ 0.4675 1.00% Operational 

J0-1:Grav+EQ 0.4702 1.01% Operational 

J0-2:Grav+EQ 0.4702 1.01% Operational 

5 Conclusions 

The following conclusions can be drawn from the results of the investigation of 

the seismic performance of RC hollow rectangular bridge piers retrofitted with 

concrete jacketing considering initial load and interface slip: 

1. The application of jacketing to the damaged bridge pier could increase the 

capacity of the bridge pier structure by almost 15% compared to the existing 

undamaged bridge pier structure and around 46% compared to the damaged 

bridge pier structure. 
2. The results of the pushover analyses using a plastic hinge model based on a 

monolithic approach and considering initial load showed the same 

performance level, i.e. ‘operational’. This can be expected considering that 

the maximum moment capacity only differs by less than 7%. 

3. Interface slip with a slip coefficient of < 0.5 will significantly reduce the 

section capacity of the retrofitted section. It can also be concluded that 

roughing the interface surfaces area is adequate to provide sufficient interface 

shear strength, so the use of shear connectors can be reduced. From a practical 

engineering perspective, the interface slip in retrofitted bridge piers can be 

neglected or fully composite condition can be assumed because the nominal 



368 Made Suarjana, et al. 

  

shear strength at the interface of the new and the old concrete is adequate to 

prevent slip, provided that the surface of the old concrete has been well 

roughened before jacketing. 
4. A conservative and practical recommendation for modeling the stress-strain 

relationship of the jacket material in engineering practice is to model it as 

unconfined concrete. 
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