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Abstract. Most of existing adaptive control schemes are designed to minimize 

error between plant state and goal state despite the fact that executing actions 

that are predicted to result in smaller errors only can mislead to non-goal states. 

We develop an adaptive control scheme that involves manipulating a controller 

of a general type to improve its performance as measured by an evaluation 

function. The developed method is closely related to a theory of Reinforcement 

Learning (RL) but imposes a practical assumption made for faster learning. We 

assume that a value function of RL can be approximated by a function of 

Euclidean distance from a goal state and an action executed at the state. And, we 

propose to use it for the gradient search as an evaluation function. Simulation 

results provided through application of the proposed scheme to a pole-balancing 

problem using a linear state feedback controller and fuzzy controller verify the 

scheme’s efficacy. 

Keywords: adaptive control; evaluation function; policy search approach; 

reinforcement learning; value function. 

1 Introduction 

Every control method involves manipulating a controller to achieve prespecified 

control objective. In many control designs, the control objective is defined as to 

minimize output error (i.e., the error between a goal and an actual plant state), 

assuming that smaller error implies always better instantaneous control 

performance or immediate reward. However, in many control problems, 

executing actions that are predicted to result in smaller errors only can mislead 

to non-goal states. This is because smaller error does not always mean better 

control performance. In general, the error is more instructional than evaluative, 

and therefore, not universally suitable as a control performance measure.  

In Reinforcement Learning (RL) [1], evaluative information about an action 

performance (i.e., an action value) is not readily available and not simply 

equivalent to the error. In contrast with a customary in control designs where 

the actions are rewarded based on the control performance measure defined a 
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priori by an engineer, RL views that the actions must be rewarded by the 

environment, not by the engineer. The reward is usually a weak evaluative 

feedback such as simply a failure or success signal. Using the received rewards, 

RL learns on-line a value function, i.e., a function that represents ”goodness” of 

a state or a state-action. Applied to the control problems, the objective of RL is 

then defined as to improve the control performance, as evaluated by the value 

function, by generating appropriate actions. A certain defect of RL is that many 

time-consuming trials-and-errors are often required to learn the precise value 

function.  

This paper addresses control design that involves manipulating the controller 

using a gradient method to improve its performance as measured by an 

evaluation function. In reality, many control problems can be modeled as a 

combination of simple sub-problems. Given a relatively simple problem, an 

engineer can make an easy guess about ”goodness” of problem state using its 

distance to the goal state. And, the action must be close to zero in the steady 

states near the goal state. For such a problem, instead of using RL, we assume 

that we can use the distance of the problem states to the goal state and actions as 

an approximate evaluation function for tuning the controller. The controller is 

tuned with the gradient method in its parameter space. Since the value function 

of the problem states does not need to be learned, this method can be readily 

applied to a problem with the changing goal. 

Various kinds of adaptive method proposed in many literatures [2–11] might 

work as well as the method proposed in this paper. However, those methods 

require the plant model or its assumed structure to be available. This makes the 

control design inflexible for certain plants which are difficult to be represented 

by the assumed structure of the plant model. A preliminary research on adaptive 

control based on approximate evaluation function has been reported in [12–14]. 

But, it only focuses on solving adaptive control problem using a fuzzy 

controller. Using the same adaptive control design as reported in those 

preliminary research, this paper shows that the proposed adaptive control design 

can actually work using more general controller including the fuzzy controller. 

The remainder of this paper is organized as follows: Section 2 briefly discusses 

the theories of RL. Section 3 presents the proposed scheme for tuning controller 

of a general type. Section 4 presents and discusses an application of the 

proposed scheme to a benchmark cart-pole balancing problem. Finally, Section 

5 concludes the paper. 
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2 Reinforcement Learning 

A model of RL is depicted in Figure 1. It represents a basic structure of RL for 

solving control problems using two components: a controller and a plant. In the 

theory of RL, the controller corresponds to an agent and the plant corresponds 

to an environment. Note that the ”controller” in Figure 1 includes the critic by 

which it can also evaluate the actions it executes. The ”plant” not only produces 

outputs but also rewards for the actions applied to it. 

 

Figure 1 Model of reinforcement learning control problem. 

At a discrete time step t , given a state ( )ts , the controller applies an action u(t) 

to the plant and in the next time step t + 1 receives a reward ( 1)r t  . The goal 

of the controller is to find an optimal policy that determines a sequence of 

actions  ( ) ( ), ( 1), ( 2),u t u t u t u t    maximizing the total amount of the 

discounted reward received in the long run: 

 
0

( ( )) max ( 1 )
k

u
k

V t r t k




  s ,  (1) 

which is referred to as a value function.  0,1   denotes a discount factor 

against a future reward. 

Comprehensive description of the terms ”policy”, ”reward”, ”value” can be 

found in [1]. The value function tells what is good in the long run, in contrast 

with the reward that tells what is good in an immediate consequence. That is, 

the reward represents the immediate, intrinsic desirability of plant states, and 

the value represents the long-term desirability of states after taking into account 

the states that are likely to follow, and the rewards available in those states. For 

example, a state might be always of a low immediate reward but still of a high 

value if it is regularly followed by other states that yield high rewards. Or, the 

opposite could be true. 

We can say that the rewards are primaries, whereas the values, as predictions of 

the rewards, are secondaries. There could be no values without rewards, and the 

only purpose of estimating the values is to achieve more reward. Nevertheless, 
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the controllers are most concerned only with the values when deciding and 

evaluating the actions. Actions must be chosen so that the states are of highest 

values, not highest rewards, because these actions result in the greatest amount 

of rewards over the long run. 

In this paper, we are concerned with the approaches the controller can use to 

learn the optimal policy, i.e., value function approach and policy search 

approach. 

2.1 Value Function Approach 

The equation (1) defines a state-value function measuring the maximum 

possible sum of rewards the controller could receive when it starts from ( )ts  

and performs a sequence of actions ( )u t . This function is the solution of the 

following Bellman equation: 

   ( ( )) max ( 1) ( ( ), ( ) )
u

V t r t V t u t   s s , (2) 

where ( ( ), ( )) ( 1)t u t t  s s is a plant dynamics function. 

From (2), one can deduce the optimal policy: 

  *( ( )) arg max ( 1) ( ( ( 1), ( 1)))
u

u s t r t V s t u t      . (3) 

When the controller is not given the plant dynamics function, the value function 

can be incrementally computed by using a state-action-value function (a.k.a. Q-

function), 

 ( ( ), ( )) ( 1) ( ( 1), *( ( 1)))Q t u t r t Q t u t    s s s , (4) 

where *( ( 1))u t s is the optimal policy deduced by  

 *( ( 1)) arg max ( ( 1), ( 1))u s t Q t u t   s . 

Initially, the optimal policy is not available when the Q-function is not learned 

yet. As the controller interacts with the plant, the Q-function is updated using 

the Temporal Difference (TD) method [1]. To improve the Q-values during 

learning, the action cannot always be picked up from the current optimal policy. 

Random actions of a small fraction, , of the time have to be chosen as well for 

exploration. Such action selection method is known as an -greedy action 

selection. Figure 2 describes how all these processes take place in the controller. 
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Figure 2 Value function approach. 

Using the TD method, an update formula for the Q-function is as follows: 

 ( ( ), ( )) ( ( ), ( )) ( )Q t u t Q t u t t s s , (5) 

where  is a learning rate, and ( )t is a TD error: 

 ( ) ( 1) ( ( 1), *(( 1))) ( ( ), ( ))t r t Q t u t Q t u t      s s . (6) 

The above formulas only hold for a discrete representation of states and actions. 

The Q-function can be simply represented by a look-up table that maps a state-

action pair to its value. If states and actions are represented continuously, a 

function approximator such as neural network or fuzzy system must be used as 

the Q-function. In such a case, the TD method is used to update the weights (not 

a Q-value) of the Q-function approximator. 

Let Q  be a function approximator of the Q-function with a weight vector 

   . The TD method updates  of the Q-function Q  as follows: 

 

( ) ( ) ( ) ( )

( ( ), ( ))
( ) ( )

( )

t t t t

Q t u t
G t G t

t

  




 


 



G

s  

where   is a learning rate and 0 1  . 

2.2 Policy Search Approach 

Figure 3 describes how the controller works based on the policy search 

approach. In the value function approach, the action-selection policy is 

implicitly represented by the estimated value function. But, in the policy search 

approach, the policy is directly approximated with its own parameters and can 
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be represented by any function approximator such as a neural network or a 

fuzzy system, whose input is a state of the plant and whose output is an action 

to the plant. 

Like in the value function approach, the controller using the policy search 

approach must first estimate the value function. But, the value function is not 

directly used to decide an action. Instead, it is used as an evaluation function for 

tuning the parameters of the policy. 

 

Figure 3 Policy search approach. 

Let ( )u 
w

s  be a policy with a parameter vector  ww  and  be the 

performance measure that may be represented as a function of the TD-error 

(i.e., ( )  ) or the Q-function (i.e., ( )Q ). Using ( )   as the evaluation 

function to be minimized, the policy search approach updates w by a gradient 

descent method as follows [15]: 

 
( ( ))

( ) ( )
( )

t
w t w t

w t

 



 


.      

Similarly, using ( )Q as the evaluation function to be maximized, the policy 

search approach updates w by a gradient ascent method as follows: 

 
( ( ( ), ( )))

( ) ( )
( )

Q t u t
w t w t

w t





 


s
 

(see [16] for an example of the exact solution of ( ) /Q w  ). 
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Alternatively, using ( )Q  as the evaluation function under the assumptions that 

both ( ) /Q u   and /u w   exist, the policy search approach can update w  as 

follows: 

 
( ( ( ), ( ))) ( )

( ) ( )
( ) ( )

Q t u t u t
w t w t

u t w t



 

 
 

s
. (7) 

Several researchers [17,18] have proposed an update rule similar to (7). They 

used V  as the evaluation function to be maximized to tune the weights of the 

policy using the following update rule: 

 
( ( )) ( )

( ) ( )
( ) ( )

V t u t
w t w t

u t w t

 

 
 

s
. (8) 

Based on the update rule (8), the goal of executing action ( )u t  is to maximize 

( ( ))V ts . Since the partial derivative ( ( )) / ( )V t u t s  does not exist, it is unclear 

how to compute ( ( )) / ( )V t u t s  in (8). Nevertheless, in [17], under the 

assumption that ( ( ))V ts is quite indirectly dependent on u(t), ( ( )) / ( )V t u t s  is 

approximated as follows: 

( ( )) ( ( )) ( ( )) ( ( 1))

( ) ( ) ( ) ( 1)

V t V t V t V t

u t u t u t u t

   
 

   

s s s s
. 

It seems that the update rule (8) is not efficient to improve the weights of the 

policy. In (8), while the accuracy of ( ( ))V ts  is not guaranteed during the 

learning process, the computation of ( ( )) / ( )V t u t s  requires accurate value of 

( ( ))V ts . On the other hand, ( ( ))V ts only represents the value of the state ( )ts , 

whatever the action ( )u t  is. Hence, there might be situations where we cannot 

assume that ( ( ))V ts  is dependent on ( )u t  either directly or indirectly. When 

such situations occur, we can no longer use even the approximation of 

( ( )) / ( )V t u t s . 

2.3 Disadvantages of Reinforcement Learning 

Despite many successful applications of reinforcement learning using the above 

approaches [1,19,20], reinforcement learning has several difficulties when 

applied to the control problem, which are as follows. (i) The value function is 

not readily available. To obtain the best approximation of the value function, 

many trial-and-error interactions are required. (ii) When the value function 

approach is used, action selection can be very sensitive to an arbitrarily small 

change in the estimated value function. (iii) When the goal state is changed, the 
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learned value function may be no longer useful for the controller to determine 

the optimal actions. 

3 Control with Approximated Policy Search Approach 

To solve the aforementioned control problems, we develop CAPS (Control with 

Approximated Policy Search) as depicted in Figure 4. CAPS tunes parameters 

of the controller based on an evaluation function. But, it does not use the Q-

function as the evaluation function because considerable efforts required for 

learning the Q-function even for a simple control problem. Instead, it represents 

an approximated evaluation function as a function of a Euclidean distance from 

a goal state and a weighted action, which is assumed readily available. In 

general, the architecture of CAPS is similar to the policy search approach 

described in Figure 3. The difference is that CAPS does not necessarily learn 

the evaluation function. The evaluation function in CAPS is fixed and directly 

used to derive an update rule for tuning controller weights. The resulting update 

rule is of a form that follows one of forms of the update rules used in the policy 

search approach, i.e., the update rule (7), where the performance measure ( )Q  

is replaced by the proposed evaluation function that will be discussed later 

within this section. 

 

Figure 4 Control with approximated policy search approach. 

CAPS is not limited to work with a controller of a certain type, rather a general 

type. In this paper, we focus on implementing CAPS using two types of 

controller: a linear state feedback controller [21] and a fuzzy controller [8]. 

3.1 Linear State Feedback Controller 

In this paper, by the linear state feedback controller we mean a controller that 
computes its output simply as a total sum of all weighted state variables of the 
state feedback. This definition implies that for the controller to produce its 
outputs, all state variables must be measurable. Let ( )tw denote a weight 

column vector of the linear state feedback controller at time t . Similarly, let 
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( )ts  denote a column state vector of the plant. Using the above definition, the 

linear state feedback controller can be written as follows 

 ( ) ( ) ( )
T

u t t t w s . (9) 

3.2 Fuzzy Controller 

There are two alternatives for tuning the fuzzy controller. The first is structural 

learning in which only the number of rules, which is dependent of the number 

of fuzzy sets per state variable, is tuned. The second is parametric learning in 

which only the parameters of the fuzzy controller are tuned. In this paper, the 

parameters of the fuzzy controller mean the fuzzy set positions of both the input 

parts (or, IF-parts) and the output parts (THEN-parts) of the fuzzy rule.  

Simultaneous application of both learning methods are possible only at the 

expense of a very large search space and a complex performance evaluation 

surface. Parametric learning alone has a difficult problem to be solved: when 

the output of the fuzzy controller is incorrect, it can be corrected by tuning the 

parameters in either input or output parts of the rules. It is difficult to tell which 

part contributes the incorrect output and should be updated. To avoid this 

problem, only the parameters of the output part are tuned in this research and 

the structure of the fuzzy controller is given as follows. 

The input of the fuzzy controller is a state s of the plant. Let n  be a size of the 

state s . For the i-th state variable ( 1,2,3, , )
i

s i n , we define 
i

p  fuzzy sets or 

membership functions, each of which is denoted by ( 1, 2,3, , )il

i i i
A l p . The 

fuzzy controller is constructed with all possible combinations of the predefined 

membership functions, i.e., we will have 
n

i i
p  rules, each of which is: 

 IF 
1

s  is 1

1

l
A  and ... and 

n
s  is nl

n
A  THEN ( )f s  is 1 nl l

W  (10) 

where 1 nl l
W denotes a fuzzy set label of the output part. In this research, a 

membership function il

i
A of the state variable 

i
s  is represented by a Gaussian 

function ( )
A i

s , and the parameters of the output part are represented by an 

adjustable column vector  
1 nl l

ww . 

Using a product inference system, singleton fuzzifier, and center of average 

defuzzifier [8], the fuzzy controller can be written in the following form: 
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 

 

1

11

1

1

11 1

11 1

( )
( )

( )

n

li
nn i

n

li
n i

p p n

l l i il l A

p p n

i il l A

w s
u

s





 

 






 

 
s . (11) 

3.3 Approximate Evaluation Function 

Let us use ( )u f
w

s  to denote a controller where w is a parameter column 

vector. In CAPS, all the elements of w of f
w

are set to zero initially which 

makes f
w

 far from the optimum at the beginning. The gradient method is used 

to adjust the values of w , and to make f
w

 the optimal policy by tuning w , 

a ”good” evaluation function is needed. 

In many adaptive control designs [2–11], the ”good” evaluation function is 

defined a priori. The common assumption made is that the plant output errors 

(i.e., between actual and desired plant state) getting smaller are direct 

indications that the actions taken are ”correct”, i.e., they will lead to the goal 

state eventually. Otherwise, the actions are to be ”blamed”. In other words, 

those adaptive control designs assume a priori that smaller plant output errors 

mean better instantaneous control performances or immediate rewards, and vice 

versa. 

In general, we think that typical evaluative information feedback that will be 

received after executing an action should depend on at least the action itself, a 

state at which the action is executed, and the result of executing the action (i.e., 

the next state). Beside the plant output error cannot be considered as universally 

evaluative, it also obviously does not meet such philosophy. This is exactly the 

same issue addressed in RL. Several researchers [19,17,15] have proposed 

different forms of the evaluation function for solving control problems using RL. 

However, in their research, the evaluation functions are the value functions to 

be learned online which we think are unsuitable for solving the control 

problems. 

For CAPS, rather than using a learned value function as an evaluation function, 

we propose an approximated value function of the form: 

  2 21
( ( ), ( )) ( ) ( )

2
P t u t e t t u t   s , (12) 

where ( )e t t  denotes a Euclidean distance between a next state ( )t t s  and 

a goal state. Without loss of generality, the goal state is assumed at s 0 , and 
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2
( ) ( ) ( )

T
e t t t s s . t  denotes continuous time. t  is elapsed time between time 

steps.  is a weighting factor for an action ( )u t  executed at the state ( )ts . 

Motivated by the aforementioned philosophy of the typical evaluative 

information, we suppose that ( ( ), ( ))P t u ts  is of a role similar to that of the 

state-action-value function ( ( ), ( ))Q t u ts . Given ( )ts , CAPS produces and 

executes the action ( )u t  and its performance is represented as ( ( ), ( ))P t u ts . But, 

CAPS does not know the performance ))(),(( tutP s  until it obtains the result of 

applying ( )u t  to the plant, i.e., the next state ( )t t s . CAPS uses ( ( ), ( ))P t u ts  

as the evaluation function at the next time step t t   to evaluate the action 

( )u t  executed at ( )ts  and then updates the weights of its controller. CAPS 

assumes that smaller ( ( ), ( ))P t u ts  implies better performance. And, in the 

steady states near the goal state the actions ( )u t  must be close to zero.  

As the plant model is assumed unknown, the next state ( )t t s  is unknown. 

From that fact, it does not mean that CAPS is useless. In real application CAPS 

does not necessarily predict the next state to follow the aforementioned scenario. 

Rather, at current time t  CAPS can position itself as if at t t , i.e., 

considering t t  as if the ”current” time, and the current time t  as if 

the ”next” time step. Hence, the previous state and action are then considered as 

if the ”current” state and action, respectively, and oppositely, the current state 

and action are considered as if the ”next” state and action, respectively. Given 

those ”next” state and action, ( ( ), ( ))P t t u t t s  can be computed and 

considered as the performance measure for the ”current” action ( )u t t . 

Based on ( ( ), ( ))P t t u t t s , CAPS then updates the controller weights used 

to generate the ”current” action ( )u t t  that leads to the ”next” state ( )ts . 

Thus, in this way CAPS can still be implemented in real application without 

violating the scenario proposed above. 

Of course, availability of the evaluation function P  appropriate for solving 

wide range of the control problems cannot be assured, and therefore, it restricts 

applicability of CAPS. CAPS is supposed to be applicable when the control 

problem is simple where the closer state to the goal state implies that the smaller 

actions are required. Nevertheless, a certain advantage of the evaluation 

function P  is its simplicity. When an appropriate definition of the Euclidean 

distance of the problem states could be determined, it could be readily used to 

optimize the policy by the gradient method. But, of course, it is not a ”true” 

value function and may not be a ”good” evaluation function. 



28 Agus Naba 

Given a precise value function, an optimal action is the action that leads to the 

next state with the highest value of the state or the state-action. This means that 

we can directly go to the goal state along the shortest trajectory on the value 

function. But this is not true if we use P  instead of the correct value function. 

Sometimes, even if a current state is close enough to the goal state, the shortest 

trajectory on P  may be not the best path to follow. And, this is most likely true 

in the complicated control problems with the twisted value function surface. 

Nevertheless, many realistic control problems can be thought of having a 

smooth value function, especially in the neighborhood of the goal states. Hence, 

a simple approximated value function P  still has a chance of being used as an 

approximated evaluation function to tune an action-selection policy. 

CAPS learns to produce appropriate actions by adjusting ( )tw  using the 

evaluation function ( ( ), ( ))P t u ts . This adjusment of ( )tw  takes effect on both 

the action ( )u t and the evaluation function ( ( ), ( ))P t u ts . In the following 

explanation, for clarity, we use the notation 
( )t

P
w

 in place of ( ( ), ( ))P t u ts  to 

represent how good ( )tw  at the state ( )ts , and rewrite (12) as follows: 

2

( )

1
( )

2
t

P D t
w

, 
2 2
( ) ( )D e t t u t    . 

CAPS in Figure 4 adjusts ( )tw  by 

 
( )

( )
( )

t
P

t t
t




   


w
w

w
, (13) 

where   is a positive-definite step size. This is a gradient descent method that 

requires the partial derivative of 
( )t

P
w

 with respect to ( )tw  to exist. In such a 

case, ( )tw  can usually be assured to converge to a local optimal point of the 

evaluation function 
( )t

P
w

. Unfortunately, it is impossible to get this derivative. 

To solve this problem, we apply the following chain rule: 

 
( ) ( ) ( )

( )
( ) ( ) ( )

t
P D t u t

D t
t u t t

  


  

w

w w
. (14) 

The partial derivative ( ) / ( )D t u t   remains difficult to compute because the 

plant dynamics function is not given. Hence, the partial derivative is 

approximated as, 



 Adaptive Control with Approx. Policy Search Approach 29 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

D t D t D t D t t

u t u t u t u t t

   
 

   
. 

Substituting this approximation into (14), and using (13), we obtain the 

following update rule: 

 
( ) ( )

( ) ( )
( ) ( )

D t u t
t D t t

u t t


 
   

 
w

w
. (15) 

In this paper, the method of tuning based on the update rule (15) is referred to as 

the Approximated Gradient Descent Method (AGDM). 

3.4 Coping with Approximation Errors 

Equation (15) is a crude approximation because any state change between 

consecutive time steps is missed and ignored. Hence, the update rule (15) 

requires modifications to cope with the approximation errors. 

In Equation (15), when ( ) ( )u t u t t   becomes very small as the plant state 

approaches to the goal state, the approximated gradient might become 

unacceptable. To avoid such deleterious influences of possible errors in 

Equation (3.3) when tuning the values of ( )tw , we modify the update rule (15) 

as follows: 

( ) ( )
( ) ( )sign

( ) ( )

D t u t
t D t t

u t t


 
   

 

 
 
 

w
w

. 

In this update rule, only slight changes are made to the values of ( )t t w , no 

matter how big the value of ( ) / ( )D t u t   is. And, Figure 5 depicts the 

modified CAPS where a failure detector is introduced to tune ( )tw  only when 

necessary and appropriate. The failure detector outputs 1 whenever the 

evaluation function 
( )t

P
w

 is getting worse, and outputs 0 otherwise. Let ( )f t  be 

a symbol for such outputs, then we can define ( )f t  as follows: 

( ) ( )
1, if

( )
0, otherwise.

t t t
P P

f t








w w
 

After incorporating the failure detector, the AGDM updates ( )tw  by 

 
( ) ( )

( ) ( ) ( )sign
( ) ( )

D t u t
t f t D t t

u t t


 
   

 

 
 
 

w
w

. (16) 
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The role of ( )f t  can be intuitively explaned as follows: If a current state is 

getting closer to the goal state, then the value 
( )t

P
w

 must be decreasing and it 

means the current ( )tw  is ”good”. In such a good situation, it is reasonable to 

keep ( )tw  unchanged by setting )(tf = 0 because any attempt to update ( )tw  

might make the situation worse. On the contrary, if the current state is stepping 

away from the goal state, then the value 
( )t

P
w

 must be increasing. It means the 

current ( )tw  is ”bad” and must be updated to decrease 
( )t

P
w

 by setting 1)( tf . 

 

Figure 5 CAPS with failure detector. 

The update rule of (16) is generic in that it can be used to tune any type of 

controller provided that the derivative of the action with respect to the controller 

weights (i.e., ( ) / ( )u t t w ) exists. The derivatives of the controllers used in 

this paper can be easily obtained. 

3.5 Convergence Analysis 

By its definition in (12), 
( )t

P
w

 is a positive definite function. Suppose that 
( )t

P
w

 

is a Lyapunov function candidate. The goal is to make the time derivative of 

( )t
P

w
 negative either definite or semidefinite (or equivalently, to make 

( )
0

t
P 

w
) until the goal state is achieved at which 

( )
0

t
P 

w
. 

Since 
( )t

P
w

 is a function of the action ( ( ), ( ))u u t t w s  and the next state 

( )t t s , it can be rewritten as a function of ( )t t s , ( )ts , and ( )tw : 

 
( ) ( )

( ( ), ( ), ( ))
t t

P P t t t t 
w w

s s w . 

We obtain 
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( ) 1 2t

P P P  
w

, (18) 

where 

( ) ( )

1
( ) ( )

( ) ( )

T T

t t
P P

P t t t
t t t

 
     

   

   
   
   

w w
s s

s s
, 

 
( )

2
( )

( )

T

t
P

P t
t


 



 
 
 

w
w

w
. (19) 

Nothing we can do to make 
1

P  negative either definite or semidefnite. The 

second term 
2

P , however, includes the term ( )tw  that allows us to introduce 

any adaptation law for the controller weights to make 
2

0P  . 

Substituting (14) and (15) into 
2

P , we obtain 

2

2

( ) ( ) ( ) ( )
( ) sign 0

( ) ( ) ( ) ( )

T

D t D t u t u t
P D t t

u t u t t t


   
   

   

    
    
    w w

. 

Now, 
2

P  is guaranteed to be negative definite except the goal state is achieved. 

Since 
2

0P   , we can hope that by choosing  sufficiently large, we would 

obtain 
2 1

P P , which results in 
( )

0
t

P 
w

. However, the condition 
( )

0
t

P 
w

 

is not necessarily obtained by applying the update rule of (15) all the time to 

make 
2

0P  , i.e., when 
1

P  is negative. Keeping the update rule of (15) working 

to make 
2

0P   when 
1

P  is negative makes 
1 2 ( )t

P P P  
w

more negative, which 

might be unnecessary, and moreover, make the situation worse. In such a case, 

introducing the failure detector into the update rule of (15) makes sense in that it 

cancels 
2

P  when necessary, i.e., when 
1

0P  . 

Substituting (14) and the update rule with the failure detector of (16) into 
2

P  in 

(19), we obtain 

2

2

( ) ( ) ( ) ( )
( ) ( ) sign 0

( ) ( ) ( ) ( )

T

D t D t u t u t
P f t D t t

u t u t t t


   
   

   

    
    
    w w

. 
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Now, 
2

P  is guaranteed to be negative definite only when ( ) 1f t   and the goal 

state is not achieved yet, otherwise zero. 

Suppose that we choose   sufficiently large that can make 
2 1

P P . When 
1

P  

is negative already, 
( )t

P
w

 must be decreasing, then ( )f t  can be set to zero to 

cancel 
2

P , keeping the current ( )tw  considered ”good” unchanged. Conversely, 

when 
1

P  is positive, 
( )t

P
w

 would be increasing if 
2

P  is cancelled, leaving the 

current ( )tw  gets ”worse”. To prevent such a situation from happening, ( )f t  

should be set to 1 to make 
2

0P  , and we can hope 
( )t

P
w

 to decrease at the next 

time step. 

4 Experimental Results 

 

Figure 6 Cart-pole plant. 

We implement CAPS using two different types of controller, i.e., the linear state 

feedback controller (9) and the fuzzy controller (11). We use an extended name 

to call CAPS when the controller is replaced with a certain type of controller. 

When the state feedback controller is used, CAPS is referred to as LCAPS 

(Linear Controller with Approximated Policy Search). When the controller is 

replaced with the fuzzy controller, CAPS is called by FCAPS (Fuzzy Controller 

with Approximated Policy Search). 

To evaluate performances of both LCAPS and FCAPS, a cart-pole balancing 

plant as shown in Figure 6 is used as a benchmark problem for the experiments. 
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The cart-pole plant has four state variables: 
1

s   (angle of pole with the 

vertical), 
2

s   (pole angular velocity), 
3

s x  (cart position on a track), and 

4
s x  (cart velocity). In this simulation, only the first two state variables are 

taken into consideration. 

Dynamic equations of the cart-pole plant are as follows: 

 

 

1 2

2

2 1

1 1

2 2

1

3 4

2

2 1 2 1

4

( ) ( )

( ) ( ) sin ( )
sin ( ) cos ( )

( )
cos ( )4

3

( ) ( )

( ) ( ) sin ( ) ( ) cos ( )
( )

c

c

c

s t s t

u t mls t s t
g s t s t

m m
s t

m s t
l

m m

s t s t

u t ml s t s t s t s t
s t

m m



 










 




 
 
 

 
 
 

 (20) 

where g  represents the acceleration of gravity, 
c

m  is the cart mass, m  is the 

pole mass, l  is the half-pole length, and u  is the force applied to the cart. In 

(20), the coefficients of friction of the pole on the cart and the cart on the track 

are ignored. The cart-pole plant dynamics of (20) is almost linear when the pole 

angle is near the upright position and the cart is near the center. In contrast, its 

nonlinearity increases drastically when the pole angle is of large values. 

For these experiments, the cart-pole plant parameters are set as follows. g = 

9.81 ms−
2
, 

c
m = 1.0 kg, m = 0.1 kg, and l = 0.5 m. The above cart-pole plant 

dynamics were then simulated using the 4th-order Runge-Kutta method with a 

time step of t = 10 ms.  

All the controller parameters in LCAPS and FCAPS are initialized to zero and 

the controller output is limited within the range of [−20, 20] N. As the linear 

state feedback controller is given two input, i.e., 
1

s   and 
2

s  , its 

parameter vector is of the size of 2. For the fuzzy controller, we define five 

Gaussian membership functions (i.e., 
1 2

5p p  ), with the centers at {-30,-

20,0,20,30} deg and {-60,-30,0,30,60} deg/s, respectively, and standard 

deviations: {20,10,10,10,20} deg and {30,15,10,15,30} deg/s, respectively. 

Beyond the range [-30,30] deg for   and [-60,60] deg/s for  , the state 
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variables will be assigned with the maximum degree of membership (i.e., 1). By 

defining five membership functions for each state variables, the fuzzy controller 

parameter vector will have the size of 25. Given such a big number of controller 

parameters, the surface of the evaluation function becomes very complex where 

it may have many local optima which make FCAPS difficult to find optimum 

parameter vector. And, since we do not introduce any prior knowledge of the 

plant to initialize the parameter vector (instead, all its elements are simply set to 

zero), FCAPS will have a heavy burden of adjusting the parameters initially. 

There have been many proposed methods to balance the pole [6,8]. They 

include prior knowledge of the plant and reduce the number of parameters of 

the controller to make tuning easier. In addition, they use the normalized values 

of the state variables to reduce the search space of controller parameters. But, 

we are not primarily interested in solving pole-balancing problem using CAPS. 

Instead, we simply set the controller parameters to zero to make the problem of 

balancing the pole more difficult. While a variety of well-developed adaptive 

tuning method can be (and has been) successfully applied to the pole-balancing 

problem, they may not be applicable to the problem with the simple setting 

explained above.  

In the experiments, we consider two types of problems. (1) Set-point problems 

where the goal state is fixed. (2) Tracking problems where the goal state is 

changing. The learning rate is chosen as  = 5000, while   is set to 0,00001.  

 

Figure 7 Solving set point problems with LCAPS. 
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Figure 8 Solving set point problems with FCAPS. 

In the set-point problems, the goal is to balance the pole in an upright position. 

The angular responses due to the application of both LCAPS and FCAPS to the 

plant are shown in Figure 7 and Figure 8. These graphs show that using the 

failure detector both LCAPS and FCAPS successfully balanced the pole 

initialized at 30 deg, but failed when they do not use the failure detector. 

The second sets of experiments are concerned with the tracking problem in 

which the desired angle is changing. In this simulation, we set the trajectory of 

  to be tracked by CAPS as ( / 30)sin( )
goal

t   rad. With this trajectory, the 

pole periodically oscillates around the vertical position with the maximum 

deviation of / 30  rad. 

 

Figure 9 Solving tracking problems with LCAPS. 
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Figure 10 Solving tracking problems with FCAPS. 

Figure 9 and Figure 10 shows the angular responses of both LCAPS and 

FCAPS in the tracking problems. The graphs show that using the failure 

detector both LCAPS and FCAPS controlled the pole successfully to follow the 

desired trajectory, but failed when they do not use the failure detector. 

In the experiments, the fuzzy controller in FCAPS has 25 parameters while the 

linear state feedback controller in LCAPS only 2 parameters. The simulation 

results show that FCAPS is better than LCAPS where FCAPS could follow the 

desired trajectory more closely than LCAPS. Those results correspond to the 

fact that the more number of the controller parameters enables the controller to 

have more resources and resolution, i.e., it can keep producing appropriate 

actions, given seemingly same states. 

5 Conclusions 

In this paper, an adaptive control scheme that involves manipulating a controller 

using a gradient method to improve its performance as measured by an 

approximated evaluation function was implemented. Represented as a function 

of Euclidean distance from a goal state and an action, the approximated 

evaluation function could tell the controller the appropriate actions to be 

executed to solve a control problem whose plant dynamics is not known. 

Simulation results show that the proposed scheme is effective for controlling the 

pole-balancing plant despite an unknown plant dynamics. Further, the proposed 

scheme works better when implemented using a fuzzy controller than using a 

linear state feedback controller. 
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