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However, many man-made signals are sparse, consisting of a relatively small 
number of narrowband transmissions spread across a wide spectrum range. If 
we use a traditional periodic non-uniform sampling approach, the sampling 
system will be inefficient. David L. Donoho [5] and Emamnuel J. Candès [6] 
have pointed out that if a signal has a sparse expansion, one can discard small 
coefficients without much perceptual loss. There are a lot of reconstruction 
algorithms that can recover sampled sparse signals, such as multiple 
measurement vectors [7], minimum L1 norm [5], orthogonal matching pursuit 
[8], etc. In this study, we brought compressive sensing into the periodic 
nonuniform sampling scheme, which is a promising way to achieve sampling 
and reconstruction of blind sparse signals. 

This paper is organized as follows. In Section 2, periodic nonuniform sampling 
theory and the architecture of the system are introduced. Section 3 presents the 
proposed approach of recovering the sampled sparse signals. Section 4 deals 
with simulations and performance analysis in terms of the empirical recovery 
rate. In Section 5, we analyze the reconstruction errors. Finally, in Section 6 the 
conclusions of this work are outlined. 

2 Theory of Periodic Nonuniform Sampling 

Traditional nonuniform sampling is used to convert a continuous analogue 
signal x(t)∈L2-space into its discrete representation. The architecture of the 
sampling system is shown in Figure 1. 

In Eq. (1), let ai(t) be a nonuniform sample sequence of the i-th channel defined 
by 

  ( ) ( )(0 1)i
n

a t t Tn i i sd t
+¥

=-¥

= - - £ £ -å    (1) 

where, T is sampling period and   is sequence. 

 
Figure 1 Mode of periodic nonuniform sampling. 
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Then, as shown in Figure 1, input channels to the reconstruction box can be 
written as in Eq. (2): 

 ( ) ( ) ( )
n

i
n

y n x nT i t nT it d t
=¥

=-¥

= + - -å       (2) 

where 0 ≤ i ≤ s - 1 

In Eq. (3), the corresponding discrete-time Fourier transform is given by: 

   2 /1
( ) ( 2 / ) j ni T

i
n

Y X n T e
T

   






     (3) 

In order to reconstruct x(t) from the samples y[n](y[n]=[y0[n], y1[n],…,ys-1[n]]), 
we assume that x(t) lies in a subspace V(φ) of L2. In this paper, we define that 
V(φ) is generated by m space functions φ(t): 

1

2
0

( ) { [ ] ( ) : [ ] }
m

p p p
p n z

V r n t nT r n L 


 

    

We can represent any x(t)∈V(φ) as in Eq. (4): 

 
1

0

( ) [ ] ( )
m

p p
p n z

x t r n t nTj
-

= Î

= -åå  (4) 

In order to guarantee a unique stable representation of any signal in V(φ) by 
sequence {rp[n]}, the generators φ(t) must form a Riesz basis of L2. In other 
words, there exist two constants, 0<A B<£ ¥ , such that in Eq. (5). 

 
2

1
2 2

2 2
0 2

r[ ] [ ] ( ) r[ ]  
m

p p
p n z

A n r n t nT B n


 

      (5) 

where, 
1 22

2
0

r[ ] [ ]
m

p
p n z

n r n


 

 ,
2

 is L2 norm. 

Proposition: if and only if ( )I W Ia w b£ £ , generator φp(t-nT) forms a Riesz 
basis.  

Where, I is the identity matrix    

  
1,1 1,

,1 ,

( )

m

m m m

W

w w

w w

 

 
 
 
  


  


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,

* ( ) ( )
1

2 / 2 /a b a b
n z

w n T n T
T

y w p y w p
Î

= - -å
 

Here, ψ(ω) is the Fourier transform of φ(t), a,b is subscript.              

Proof: Eq. (5) can be rewritten as shown in Eq. (6):   

 

2
2 2*

2 2
[ ] [ ] ( ) [ ]r r r

n z

n n t nT ndt  





    (6) 

In Eq. (7), from the theory of Parseval: 

 

2 2

* *1
[ ] ( ) ( ) ( )

2
Rr

n nz z

n t nT dtdt  


 

 
 

     (7) 

where, is ( )R   is the discrete-time Fourier transform of [ ]r n , and ( )R   is 2π-

periodic.  Then Eq. (7) can be rewritten as in Eq. (8). 

 

2

*

2 * *

0

2 *

0

1
R ( ) ( 2 / )

2

1
R ( ) ( 2 / ) ( 2 / )R( )

2

R ( ) ( )R( )
2

n z

n z

n T dt

n T n T d

T
W d





   


       


   











  









 (8) 

From Parseval’s theorem then we have Eq. (9) as follows:   

 
22 *

2 0

1
r[ ] R ( )R( )

2
n d


  


     (9) 

It is easy to see that ( )W   is a positive self-adjoint that has real nonnegative 

eigenvalues. Let   be the minimal eigenvalues and   the maximal 

eigenvalues. Then we have: 
* * *R ( )R( ) R ( )R( ) ( ) R ( )R ( )AI W BI         

The conclusion can be obtained that φp(t-nT) form a Riesz basis if and only if 
. ( ) II W   
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The above-mentioned subspace V(φ) is a single space. A more interesting 
scenario is when x(t) lies in a union of subspaces ( )pV  (0≤p≤m-1) (see Eq. 

(10)): 

 ( ) )px t V    (10) 

In the frequency domain, Eq.(4) can be represented as in Eq. (11): 

 
1

0

( ) ( ) ( )
m

p p
p

X R   




           (11) 

where, RP(ω) is the discrete-time Fourier transform of rp[n], and ψp(ω) is a 
Fourier transform of  φp(t). 

Substitute Eq. (11) into Eq. (3), then we have Eq. (12). 

        (12) 

An appropriate matrix representation of Eq. (12) is given by Eq. (13). 

          ( ) ( ) ( )Y H R     (13) 

Where,  
 

0 1 1( ) ( ( ), ( ), ( )) 'mR R R R      

 
0,0 0,1 0, 1

1,0 1,1 1, 1

...

( )
m

s s s m

h h h

H

h h h




   

 
   
  

   


 

 
2 /

,

1
( ) ( 2 / ) j ni T

i p p
n

h n T e
T

p tw y w p
+¥

-

=-¥

= +å
 

3  Analysis of Reconstruction Algorithm 

In this work, our interest is to take sparse signals as an example for analyzing 
the reconstruction system. We suppose that x(t) is a k-sparse signal, which 
means that the union of subspaces over at most k elements or only k trains 
{rp[n]}p=0,1,…,m-1 1 is not zero. In order to improve efficiency and to ensure the 

1
2 /

0

1
2 /

0

( ) ( 2 / ) ( 2 / )

( ) ( )  

1

1
2 /        =  

m
j ni T

p p
n p

m
j ni T

p p
p n

iY R n T n T e
T

R n T e
T

p t

p t

w w p y w p

w y w p

+¥ -
-

=-¥ =

- +¥
-

= =-¥

= + +

+

åå

å å

0 1 1( ) ( ( ), ( ), ( )) 'sY Y Y Y    
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complete reconstruction of the sampled sparse signal, our sampling scheme has 
to recover the sparse signal from a set of k s m< <<  sampling sequences. We 
cannot recover R(ω) via solving Eq. (13) directly when Eq. (13) is a 
underdetermined equation. 

A unique R(ω) can be recovered by solving the optimization problem (see Eq. 
(14)). 

  s.t ( ) ( ) ( )Y H R  
0

min ( )R   s.t ( ) ( ) ( )Y H R      (14) 

This optimization will recover a k-sparse signal exactly with high probability if 
it meets a certain condition, which is given by Theorem 1. 

Theorem 1: if R(ω) is a solution of Eq. (9) and 
0

( ) ( ( )) / 2R kr Hw w£ , then 

R(ω) is the unique k-sparse solution. ( ( ))kr H w  is the Kruskal rank of H(ω). 

The Kruskal rank is the maximal q such that every set of q columns of H(ω) is 
linearly independent. 

Proof：Suppose ( )aR  , ( )bR   are solutions to Eq.(9)，then we have 

. 

Because H(ω) has ( ( ))kr H   linearly independent columns. We have Eq. (15).  

 
0

( ) ( ) ( ( ))b aR R kr H            (15) 

On the other hand, we have: 

 0 0
max ( ) , ( ) ( ( )) / 2b aR R kr H    

0 0
( ) ( ) ( ( ))b aR R kr H      

Therefore, 

,
0 0 0

( ) ( ) ( ) ( ) ( ( ))b a b aR R R R kr H        , 

which contradicts with Eq. (15). Therefore, we have . 

But unfortunately the solution of Eq.(10) is both numerically unstable and an 
NP-hard problem, which leads to difficulty recovering R(ω) using L0 norm. 
There are several alternative algorithms that can replace L0 norm for recovering 
R(ω). In this work, the minimum L1 normal approach algorithm was selected.  

( ) ( )) 0( )( b aH R Rw w w- =

( ) ( )b aR R 
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3.1 Minimum L1 Normal Approach  

The aim of the minimum L1 normal algorithm is to find the unique sparse 
representation of ( )R w . The approach is to recover 	in three steps: 1) we 
find support set B, which is a set of indices corresponding to the non-zero 
elements of { ( )R  )}; 2) once B is found, we have a new matrix, ( )BH w , which 

consists of columns of ( )wH  whose indices correspond to set B. Then, the k 

non-zero elements of {)} )} can be recovered; 3) all m sequences {r[n]} 

can be obtained by using an interpolator, the structure of which is shown in 
Figure 2.  

 
Figure 2 Block of reconstruction bank. 

If index s in sensing matrix ( )wH  is smaller than m, then Eq. (13) has 
unbounded solutions, which is in a space with (m-s) dimensions: 

*( ( )) ( )T N Rw w= +H  

where, is ( ( ))N wH  is null space. Eq. (8) can be rewritten as:  

*( ) ( )( ( ) ( ))    Y H R O  

where, ( )O  is the vector in null space  

Therefore, our aim is to obtain solution * ( )R w  in null space ( ( ))N wH  through 
minimum L1 normal (see Eq. (16)).  

 
1

min ( )R s.t ( ) ( ) ( )w w w=Y H R      (16) 

Suppose opt ( )R w
 
meets the optimal solution of Eq. (13), then we have Eq. (17):  

 opt( ) ( ) ( ) Y H Rw w w=      (17) 

( )R w

( )R 

( ( ))N wH
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If set B is the position of nonzero elements of opt ( ) R w  and the new matrix  

( )BH w  is formed by the column vectors corresponding to nonzero elements in 

( )wH  and opt ( ) R w , then gives Eq. (18):  

 ( ) ( ) ( )B
BY H Rw w w=  (18) 

where, ( )BR w  is a vector formed by nonzero elements in opt ( ) R w .  

In opt ( ) R w , there are at most k nonzero elements, then ( )BH w  has k column 

vectors at most. According to analysis of Theorem 1, a necessary condition for 
complete reconstruction of the k-sparse signal is ( ( )) 2kr H kw ³ , so ( )BH w  

must be a column non-singular matrix, otherwise the number of nonzero 
elements in opt ( ) R w

 
will drop, which is contradictory to optimality. Therefore, 

the Penrose generalized inverse matrix of  is defined as in Eq. (19).  

  (19) 

Where, ()H is conjugate transpose. 

We can obtain the solution of Eq.(18) in Eq. (20).  

   (20) 

When set B is found, all m reconstructed sequences  are obtained, that is 
shown in Eq. (21). 

              (21) 

       

where, . 

3.2 Analysis on Reconstruction Condition of Approach 

In this work, L1 normal was used to find the unique sparse expression. The L1 
normal approach given in Theorem 2 fully meets the complete reconstruction 
conditions.  

Theorem 2: If the number of ’s nonzero elements is k, let B be an index 

set that contains nonzero elements of ( )wR , then the matrix  is formed 

by column vectors of  corresponding to set B.  

( )BH w

H 1 H ( )( ) ( ( ) ( ))B B B ww w w- -=H H H H

H 1 H( ) ( ( ) ( )) ( ) ( )B
B B    R H H H Y

[ ]r n

[ ] [ ]B Br n H y n-=

[ ] 0   ir n i B 

0 1 -1[ ] [ [ ];  [ ], ,  [ ]]B kr n r n r n r n 

( )wR

( )BH w

( )wH
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When  

( )1π / π /
max max ( ) ( ) 1B i

i B T Tw
w w-

Ï -
<

≤ ≤
H h , minimum L1 normal can achieve complete 

reconstruction.  

Where,  is generalized inverse of , ,  is the rest 

column vector of  after removing .  

Proof: Suppose the optimal solution is ,  can be any solution of 

, then:  

 

 

 

When , then 

. 

Therefore, when  1
π / π /

max max | ( ) ( ) | 1B i
i B T T

 

 


≤ ≤
H h , the sparse signal can be 

completely reconstructed through minimum L1 normal. Therefore, the minimum 
L1 normal approach can completely reconstruct signals.  
 
Defined:  

1

1
0

| ( ) | | ( ) |
N

i
i

D d 




  

 

where, 
1

·  is L1 normal.  

 
Theorem 3 gives conditions for complete reconstruction through the minimum 
L1 normal approach.  
 

Theorem 3: When , minimum L1 normal can realize 

complete reconstruction. Where, . 

( )B H ( )B H ( )i wh i BÏ

( )H ( )B H

( )B R ( )r R

( ) ( ) ( )  H R Y

1 1
( ) ( ) ( ) ( )

B

B B
B    R H H R

1 1
( ) ( ) ( ) ( ) ( )

B B r      H Y H H R

 1 1π / π /
max max | ( ) ( ) | ( )B i r

i B T T
  

  ≤ ≤
H h R

 1
π / π /

max max | ( ) ( ) | 1B i
i B T T

 

 


≤ ≤
H h

1
( )B  R

1
( )r R

0 1 1( ) ( ( ), ( ), , ( ))ND d d d    

1

0

1
( ) ( 1)

2
w m -< +R

H

π/ π /
max( max | ( ) ( ) |)

j g
j g T Tw

m w w
¹ - <

=
≤

h h
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Proof: According to Theorem 2, when , 

minimum L1 normal can realize complete reconstruction of the sparse signal 
(see Eq. (22)).  

( )
( )

( )

1/ /

1

/ / 1

1

1/ /1,1

max max ( ) ( )

       max max ( ) ( ) ( ) ( )

       max ( ) ( ) max ( ) ( )

B B

B B

B i
i B T T

H
B i

i B T T

H H
B i

i B T T

H h

H H H h

H H H h

p w p

p w p

p w p

w w

w w w w

w w w w

-

Ï - £ £

--

Ï - £ <

-

Ï - £ <

æ ö
= ç ÷

è ø

æ ö
ç ÷£ ç ÷
è ø

                                 (22) 

 

Supposed ( )H

π / π /
max max || ( ) ( )

j g
j g T Tw

m w w
¹ - <

=
≤

h h , then:  

 H

π / π / 1
max max ( ) ( )i

i B T T B
k


  

  ≤
≤H h  

where, k is signal sparsity.  

Suppose H ( ) ( )
B B kI Ew w = +H H , kI  is unit matrix, then: 

1,1
E < .  

Then in Eq. (23) we have:  

   (23)  

From Eq. (23), we can obtain Eq. (24): 

   (24) 

When , minimum L1 normal can completely 

reconstruct signals. Then, . Therefore, when , 

minimum L1 normal can realize complete reconstruction.  

3.3 Interpolator 

As soon as r[n] has been obtained, we have recovered x(t) through an 
interpolator. 

TN is defined as the oversampling periodic that satisfies . 

( )1
π/ π/

max max | ( ) ( ) | 1B i
i B T Tw

w w-

Ï -
<

≤ ≤
H h

( 1)k 

( ) ( )
1 1

1,11,1 1,1

1 1
( ) ( )  

1 1 ( 1)B

H
B kH H I E

E k
w w

m

- -
= + £ £

- - -

( )1π/ π/
( ) ( )

1 ( 1)
max max B i

i B T T

k

kw

m
w w

m
-

Ï -
<

- -≤ ≤
H h

( )1π/ π /
( ) ( ) 1max max B i

i B T Tw
w w-

Ï -
<

≤ ≤
H h

11
( 1)

2
k m -< + 1

0

1
( ) ( 1)

2
w m -< +R

/NT T M=
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We can rewrite Eq.(3) as in Eq. (25). 

 
1

0

[ ] [ ] ( )N N

m

p p
p c z

x nMT c nT cTr 


 

     (25) 

Upsampling the sequence (x[nTN]:n∈Z) by a factor of M, the d-th sub-sequence 
is given by Eq. (26).  

 
1

0

[ ] ( ) [ ]
m

N N p p N N
p c z

dd c nMT T cTx nMT T r 


 

         (26) 

 DTFT of  Eq.(25) results Eq. (27).   

     (27) 

Finally, we have the reconstructed signals in the frequency domain as shown in 
Eq. (28). 

 

1

0

1 1

,
00

11

,
0 0

( ) ( )

( ) ( )

( ) ( )

        

        

M
j d

d
d

M m
j d

p p d
pd

Mm
j d

p p d
p d

M M

M M

R

R

x e x M

e

e

w

w

w

w y w

w y w

w w
-

=

- -

==

--

= =

=

=

=

å

å

å

å

å

                 (28) 

4  Error Analysis  

We defined an angle between two closed subspaces A and B of a Hilbert space 
V in Eqs. (29) and (30) as follows: 

                                                                                (29) 

, 1
sin( , ) sup

B
f A f

A B P f

 
                           (30) 

 
When reconstructed signal ( )x t V

, we can conclude sampling error e(x(t))  in 
Eq. (31) as follows: 

1

,
0

( ) ( ) ( )
m

p p d
p

dX Rw w y w
-

=

=å

, 1
cos( , ) inf Bf A f

A B P f
Î =

=
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From Eq.(31), we can have Eq. (32). 

       (32) 

When ( )x t V W   (W is the sampling space), we have Eq. (33). 

 ( ( )) ( ) ( ) ( ( ))
VW

e x t x t x t E x t^= - =


  (33) 

where, ( ( ))
VW

E x t  is the oblique projection onto V along . 

Further, the minimum/maximum limit of the sampling error can be obtained by 
Eq. (34). 

 
2 22 22

( ( )) sin( , ) ( ( )) ( ( )) cos( , )
V V

P x t V W e x t P x t V W 
  

    (34) 

5  Experiment and Analysis 

In this section, we consider the case s = 10 , 
17

T
t = , as shown in Figure 1.  

We suppose the sparse signal x(t) is defined in Eq. (35) as follows:   

 1 2 ( ) sin(2π ) sin(2π ) x t f t f t= +  (35) 

where, 1f ,  are carrier frequency. Both of them are selected from (-610 MHz, 

610 MHz) at random, indicated by  x (t) ϵ	(-610 MHz, 610 MHz).  

According to the analysis in Section 2, the above frequency band can be equally 
divided into m = 61 segments, where there are at most 4 segments that have 
nonzero elements and the signal sparsity k ≤ 4. We suppose a time domain 
expression of generation function ( )(0 1)p t p mj £ £ -  in Eq.(36) as follows:  

 j2π( 30) /( ) ( )e p t T
p t tj f -=      (36) 

where, ( ) sinc( / )t t Tf = , T is the sampling period, 1 / 20 MHzT = .  

( ) ( ( ))
V V

P x t P e x t 

W 

2f
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11
( 1)

2
k   . When the sparsity of the input signal is smaller than or equal to 

4, the number of sampling channels of the system is only greater than 8 and 
complete signal reconstruction can be achieved. However, the traditional 
method needs at least 60 channels.  

 

Figure 3 Analysis of reconstruction success rate. 

5.2 Comprehensive Test and Analysis of the System  

According to the analysis in Section 5.1, we know that the input signal sparsity 
is 4 at most, so a system with sampling channels s ＞ 8 can realize complete 
reconstruction of the signal. In this section, we set s = 10. A 10 × 61 sensing 
matrix is formed. The above analysis shows that there are 4 nonzero elements at 
most in 61 frequency bands. We separately choose a nonzero parameter in the 
positive and negative frequency bands and Ra and Rb are used to represent 
nonzero elements in the positive and negative frequency bands.  

Figures 4 and 5 separately represent Ra and Rb time domain graphics after 
interpolation function , where the solid line represents the reconstructed 

signal and the dotted line represents the mirrored part of the reconstructed 
signal.  
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Figure 4 Ra time domain diagram. 
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Figure 5 Rb time domain diagram.  

 

Figure 6 Time domain diagram of the reconstructed signal.  
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The analysis of Figures 4 and 5 shows time domain graphics of the positive and 
negative frequency bands corresponding to Ra and Rb. Figure 6 is the 
overlapping part of bands Ra and Rb, and shows that its amplitude is doubled 
and the mirrored signal is suppressed. Figure 7 is the time domain diagram of 
the original signal. Comparison of Figures 7 and 6 shows that the reconstructed 
signal and the original signal are basically the same.  

 

Figure 7 Time domain diagram of the original signal.  

6 Conclusion  

This paper proposes a periodic non-uniform sampling system that adopts the 
union of subspaces and uses minimum L1 normal to obtain a unique solution of 
the undetermined equation. The proposed approach can effectively solve 
problems in sampling and reconstruction of blind and sparse analog signals. The 
approach herein, compared with traditional periodic non-uniform sampling 
system, reduces the number of sampling channels and thus saves system 
resources. The simulation and test demonstrated that periodic non-uniform 
sampling can completely reconstruct the original signal far below the Nyquist 
sampling ratio as long as the number of the system’s sampling channels is twice 
larger than the input RF signal sparsity. 
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