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Abstract. A traditional sampling method is that the signal should be sampled at
a rate exceeding twice the highest frequency. This is based on the assumption
that the signal occupies the entire bandwidth. In practice, however, many signals
are sparse so that only part of the bandwidth is used. Compressed sampling has
been developed for low-rate sampling of continuous time sparse signals in shift-
invariant spaces generated by m kernels with period 7. However, in general the
reconstruction of compressed sampling signals is unstable. To reconstruct the
signal, continuous reconstruction is replaced by generalized inverse. In this
paper, periodic non-uniform sampling and the reconstruction of functions in
shift-invariant spaces are discussed, the unique sparse expression is obtained by
using the minimal L; norm. Also, necessary condition and error of reconstruction
were analyzed. Finally, the method was validated via simulation and it was
shown that the method was effective.

Keywords: error analysis; generalized inverse; minimum L; normal; periodic non-
uniform sampling; shift-invariant spaces; sparse signals.

1 Introduction

The traditional assumption underlying most analog-to-digital converters is that
the sample must be acquired at the Shannon-Nyquist rate, corresponding to
twice the highest frequency. In fact, radio frequency technology enables the
modulation of narrow-band signals by high carrier frequencies, which cannot be
sampled using the Shannon theorem anymore [1,2]. Chen Meng and Jamal
Tugan introduced the concept of retaining periodic nonuniform samples from a
group of samples selected from a larger set, obtained by L times oversampling a
continuous signal [3]. Ha T. Nguyen addressed a method to reconstruct the
original signal from periodic nonuniform samples by utilizing optimal Hoo [4].
But most of these approaches can only completely recover the original signals
on the condition that it is known where those signals are located and those
signals occupy almost the whole bandwidth.
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However, many man-made signals are sparse, consisting of a relatively small
number of narrowband transmissions spread across a wide spectrum range. If
we use a traditional periodic non-uniform sampling approach, the sampling
system will be inefficient. David L. Donoho [5] and Emamnuel J. Candés [6]
have pointed out that if a signal has a sparse expansion, one can discard small
coefficients without much perceptual loss. There are a lot of reconstruction
algorithms that can recover sampled sparse signals, such as multiple
measurement vectors [7], minimum L; norm [5], orthogonal matching pursuit
[8], etc. In this study, we brought compressive sensing into the periodic
nonuniform sampling scheme, which is a promising way to achieve sampling
and reconstruction of blind sparse signals.

This paper is organized as follows. In Section 2, periodic nonuniform sampling
theory and the architecture of the system are introduced. Section 3 presents the
proposed approach of recovering the sampled sparse signals. Section 4 deals
with simulations and performance analysis in terms of the empirical recovery
rate. In Section 5, we analyze the reconstruction errors. Finally, in Section 6 the
conclusions of this work are outlined.

2 Theory of Periodic Nonuniform Sampling

Traditional nonuniform sampling is used to convert a continuous analogue
signal x(f)EL,-space into its discrete representation. The architecture of the
sampling system is shown in Figure 1.

In Eq. (1), let a,(f) be a nonuniform sample sequence of the i-th channel defined
by

a()=3 S(t-Tn—-ir)0<i<s—1) (1)

n=-co

where, T is sampling period and 7 is sequence.
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Figure 1 Mode of periodic nonuniform sampling.
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Then, as shown in Figure 1, input channels to the reconstruction box can be
written as in Eq. (2):

y,(n)= bl x(nT +it)o(t —nT —it) 2)

n=—oo

where 0 <i<s-1

In Eq. (3), the corresponding discrete-time Fourier transform is given by:

i

Y(e)= % S X(w-27n/ T)e /™" 3)

n=—o0

In order to reconstruct x(¢) from the samples y[n|(y[n]=[yo[n], yi[7],...,ys1[7]]),
we assume that x(?) lies in a subspace V(p) of L,. In this paper, we define that
V(o) is generated by m space functions ¢(2):

m-1

Vip)= {ZZ rlnlp,(t=nT):r,[n]eL,}
We can represent any x(£)EV(p) as in Eq. (4):

m-1

x(1)=23r,[nkp, (t=nT) “

p=0nez

In order to guarantee a unique stable representation of any signal in V() by
sequence {r,[n]}, the generators ¢(¢) must form a Riesz basis of L,. In other
words, there exist two constants, 0<A < B<oo, such that in Eq. (5).

mZer[n]gop(z—nT)

p=0 nez

Ale{n]]; <

< Bln]|; )

where, ||r[n]||§ = m2i2|rp[n]|2 ,||0||2 is L, norm.

p=0nez

Proposition: if and only if af <W(w) < S, generator ¢,(¢-nT) forms a Riesz
basis.

Where, / is the identity matrix

W(w) =
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1 *
W, =—> v, (0-2zn/TW,(0-2zn/T)

nez

Here, w(w) is the Fourier transform of ¢(?), a,b is subscript.

Proof: Eq. (5) can be rewritten as shown in Eq. (6):

2
dt < B|rinf; (©)

D r[nlp(t —nT)

nez

alnfy <",

In Eq. (7), from the theory of Parseval:

? 1
dt:—_[
2

where, is R(w) is the discrete-time Fourier transform of #[x], and R(w) is 2x-

2

D R (o ()| d (7

nez

D ' [nlpte —nT)

nez

periodic. Then Eq. (7) can be rewritten as in Eq. (8).
1 o0
EI—@
_ 2LZ [["R (@W (@220 T)y (0220 TR (0)d ®)
V4

nez

T | "R (W ()R (0)do
27 J0

D R (oW (w—27zn/T)| di

nez

From Parseval’s theorem then we have Eq. (9) as follows:
2 1 27 .
[ = jo R (0)R(w)do 9)

It is easy to see that W (w) is a positive self-adjoint that has real nonnegative
eigenvalues. Let « be the minimal eigenvalues and S the maximal
eigenvalues. Then we have:

AR (0)R(0) <R (0)R (o)W (@) < BIR " (0)R ()

The conclusion can be obtained that gp(¢-nT) form a Riesz basis if and only if
al <W(w)< pI .
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The above-mentioned subspace FV(p) is a single space. A more interesting
scenario is when x(7) lies in a union of subspaces UVP (@) (0<p<m-1) (see Eq.

(10)):
xy el JV,0 (10)
In the frequency domain, Eq.(4) can be represented as in Eq. (11):

m—1

X(@)=) R, (oW, (o) (In

where, Rp(w) is the discrete-time Fourier transform of r,[n], and y,(w) is a
Fourier transform of ¢,(?).

Substitute Eq. (11) into Eq. (3), then we have Eq. (12).

1 +oo  m-1
Y(0)=— 2 2R (0+27n/Tw, (0+27n/T)e

n=-c0 p=0

-j2rnit/T

1 - < —j2rznit/T (12)
ZFZRP(Q))Z v (0+27n /T)e

p=0 n=-oo
An appropriate matrix representation of Eq. (12) is given by Eq. (13).
Y(w) = H(®)R(w) (13)

Where, Y(@) = (¥, (w),K(w),---YS_l(w))'
R(@) = (Ry(®), R (@), R, (@)’

h0,0 hO,l hO,m—l

H(w)= E :

1 S —j2mnit/T
h (@) = >V, (@+2zn/T)e”’

n=—o0

3 Analysis of Reconstruction Algorithm

In this work, our interest is to take sparse signals as an example for analyzing
the reconstruction system. We suppose that x(?) is a k-sparse signal, which
means that the union of subspaces over at most & elements or only k trains
{ro[n]}p=01,..m1 1 is not zero. In order to improve efficiency and to ensure the
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complete reconstruction of the sampled sparse signal, our sampling scheme has
to recover the sparse signal from a set of k <s <<m sampling sequences. We
cannot recover R(w) via solving Eq. (13) directly when Eq. (13) is a
underdetermined equation.

A unique R(w) can be recovered by solving the optimization problem (see Eq.

(14)).
s.t Y(w) = H(@)R(®) min|R(w)|, 5.t Y(@) = H(@)R(w) (14)

This optimization will recover a k-sparse signal exactly with high probability if
it meets a certain condition, which is given by Theorem 1.

Theorem 1: if R(w) is a solution of Eq. (9) and ||R (a))||0 <kr(H (w))/2, then
R(w) is the unique k-sparse solution. kr(H ()) is the Kruskal rank of H(w).

The Kruskal rank is the maximal ¢ such that every set of ¢ columns of H(w) is
linearly independent.

Proof: Suppose R (w),R,(w) are solutions to Eq.(9), then we have
H(0)(R, (@)~ R, (@) =0.

Because H(w) has kr(H(w)) linearly independent columns. We have Eq. (15).
IR, (@) = R, (@), = kr(H () (15)
On the other hand, we have:

max {[R,(@)], [, ()], } < kr(H () /2
2Ry (@), +||R, (@), < kr(H (@)

Therefore,

R (@)~ R, ()], |IR, ()], +

R, (@)], < kr(H (@) ,

which contradicts with Eq. (15). Therefore, we have R, (@) =R (®) .

But unfortunately the solution of Eq.(10) is both numerically unstable and an
NP-hard problem, which leads to difficulty recovering R(w) using L norm.
There are several alternative algorithms that can replace Ly norm for recovering
R(w). In this work, the minimum L, normal approach algorithm was selected.
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3.1 Minimum L; Normal Approach
The aim of the minimum L; normal algorithm is to find the unique sparse
representation of R(w). The approach is to recover R(w) in three steps: 1) we

find support set B, which is a set of indices corresponding to the non-zero
elements of { R(w))}; 2) once B is found, we have a new matrix, H,(»), which

consists of columns of H(») whose indices correspond to set B. Then, the k£
non-zero elements of {)} R(w))} can be recovered; 3) all m sequences {r[n]}

can be obtained by using an interpolator, the structure of which is shown in
Figure 2.

=[]
bt — > x(7)

> H-(@) | interpolator | |
z .?"M_I[J’J]
-

Figure 2 Block of reconstruction bank.

If index s in sensing matrix H(w) is smaller than m, then Eq. (13) has
unbounded solutions, which is in a space with (m-s) dimensions:

T =N(H())+R (0)

where, is N(H (®)) is null space. Eq. (8) can be rewritten as:
Y (@) = H(o)(R'(0) + O(®))

where, O(w) is the vector in null space N(H (»))

Therefore, our aim is to obtain solution R"(») in null space N(H(#)) through
minimum L, normal (see Eq. (16)).

min||R(@)], s.t Y (0) = H(®)R(0) (16)
Suppose R (@) meets the optimal solution of Eq. (13), then we have Eq. (17):

Y(0) = H(@)R,, () amn
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If set B is the position of nonzero elements of R (w) and the new matrix

H (o) is formed by the column vectors corresponding to nonzero elements in
H(®) and R (), then gives Eq. (18):

opt

Y(0)= H,(0)R" (0) (18)

where, R, (@) is a vector formed by nonzero elements in R, (w).

In R, (@), there are at most k nonzero elements, then H ; (®) has k column

vectors at most. According to analysis of Theorem 1, a necessary condition for
complete reconstruction of the k-sparse signal is kr(H (@)) > 2k , so H ,(®)

must be a column non-singular matrix, otherwise the number of nonzero
elements in R (@) will drop, which is contradictory to optimality. Therefore,

the Penrose generalized inverse matrix of /7 ; (@) is defined as in Eq. (19).

H, (@)= (H; (0)H (0))"H (o) (19)
Where, (-)"! is conjugate transpose.
We can obtain the solution of Eq.(18) in Eq. (20).

R%(@)=(H; (0)H(@)) ' H; (0)Y (») (20)
When set B is found, all m reconstructed sequences r{n] are obtained, that is
shown in Eq. (21).

ry[n]=H;yln] @

r[n]=0 igB

where, 7;[n]=[r[n]; r[nl,---, r,[n]].

3.2 Analysis on Reconstruction Condition of Approach

In this work, L; normal was used to find the unique sparse expression. The L,
normal approach given in Theorem 2 fully meets the complete reconstruction
conditions.

Theorem 2: If the number of R(w) ’s nonzero elements is &, let B be an index

set that contains nonzero elements of R(w), then the matrix H B (d)) is formed

by column vectors of H (w) corresponding to set B.
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When

max max
igB \-n/T <o<un/T

H, (o)h, (w)|l)<1, minimum Z; normal can achieve complete

reconstruction.
Where, H, (@) is generalized inverse of H, (@), h (o), i €B is the rest

column vector of H(w) after removing H (@) .

Proof: Suppose the optimal solution is RB(a)), R.(®) can be any solution of
H(w)R(w) =Y (w), then:

[R* @), =|H; @H, @R’ @), = [H; @Y @], |+, @H@R @] <

max( max \H,;(a))h,.(a))ll)|

igB \-n/T<o<n/T

Rr (a))ul

When rrgx( max | H,(o)h (o) |1) <1, then

—n/T<o<n/T
[R* @), <R (@)

Therefore, when max( max | H,(o)h (0) |1)<1» the sparse signal can be
i¢B

-n/T<o<n/T
completely reconstructed through minimum L; normal. Therefore, the minimum
L, normal approach can completely reconstruct signals.

Defined:
| D@) =2 | d,(@)]
D(@) = (dy(@),d,(@),+,d (@)

0||l is L normal.

where,

Theorem 3 gives conditions for complete reconstruction through the minimum
L, normal approach.

1. . . . .
Theorem 3: When |R(2)], < E(,u "+1), minimum L, normal can realize

complete reconstruction. Where, u = rjnj;c( max |h /H (@)h, (@) ]) .

/T <w<n/T



192 Junyi Luo & Yuting Yang

Proof: According to Theorem 2, when ma}gx( max |H, (o)h, (o) |1)<1,
X3

-n/T <o<n/T
minimum L; normal can realize complete reconstruction of the sparse signal
(see Eq. (22)).

max(_max [H; ()h (o), )
_ - 1 oH
~max(_max (1 @, @) 1] @b 0) 22)
H -1 H
< r}jgz}}x( (HB (@)H (w)) ‘1,1 L H, (@, (a))LJ

Supposed u = max( max ||
J*g

-n/T <w<n/T

h" (@)h, (a))|) , then:

igB \-n/T<w<n/T

max( max |H ; (w)h, (a))|1 ) < uk

where, k is signal sparsity.

Suppose H " (w)H , (0)=1, +E , I, is unit matrix, then: |E| < uk=1).
Then in Eq. (23) we have:

-1 -1 1 1
H" (0)H , () ‘ =‘1 +E < < 23
‘(  @H, @) 1 (I +E) w1 uk =) @)
From Eq. (23), we can obtain Eq. (24):
- Hk
mex(_ mex i @h @] )<l o

When max( max

hax| max o H; (o)h, (w)|1)< 1, minimum L1 normal can completely
1 1
reconstruct signals. Then, &k < E(y’l +1) . Therefore, when ||R(a))||0 < 5( a7+,

minimum L; normal can realize complete reconstruction.

3.3  Interpolator

As soon as r[n] has been obtained, we have recovered x(f) through an
interpolator.

Ty is defined as the oversampling periodic that satisfies 7, =7 /M .
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We can rewrite Eq.(3) as in Eq. (25).

m=1

A[nMT, 1= D 7 [k, (nT,, —cT) (25)

p=0 cez

Upsampling the sequence (x[nTy]:n€Z) by a factor of M, the d-th sub-sequence
is given by Eq. (26).

m=1
A[nMT, +dT, 1= Y Y 7, [clp, ("MT,, +dT, —cT) (26)

p=0 cez

DTFT of Eq.(25) results Eq. (27).
m-1
p=0

Finally, we have the reconstructed signals in the frequency domain as shown in
Eq. (28).

x(a))=lwzle”’dxd(Ma))
d=0

M-1 m-1
=X R, Moy, ,(Mo) (28)
d=0 p=0

m—1

M-1
=Y R,Mwo)Y. ey, ,(Mo)
p=0 d=0 ’

4 Error Analysis

We defined an angle between two closed subspaces A and B of a Hilbert space
V in Egs. (29) and (30) as follows:

cos(4,B) o Equrﬁhﬂ”PBf || 29)
sin(4,B)= sup HPBl f” (30)
fedlfl=t

When reconstructed signal x(¢) €V, we can conclude sampling error e(x(?)) in
Eq. (31) as follows:
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fecxl =[x =%
R 2
=|Bx@)-x@) +|B.x)| 31)
2
2[£.x0)
From Eq.(31), we can have Eq. (32).
b x(t)="F .e(x(1)) (32)
When x(t) € V@ W™ (W is the sampling space), we have Eq. (33).
e(x(@)=x@)-x()=E, . (x()) (33)
where, £, (x(#)) is the oblique projection onto V along WV .

Further, the minimum/maximum limit of the sampling error can be obtained by
Eq. (34).

|7 (x(t))HZ /Hsin(V, WL)HZ <Jex)| <|

B GO Jeostv. | (34)

5 Experiment and Analysis

. . . T R
In this section, we consider the case s =10, 7 = Th as shown in Figure 1.

We suppose the sparse signal x(7) is defined in Eq. (35) as follows:
x (t)=sin(2xaft) +sin(2nf,t ) 35

where, f,, f, are carrier frequency. Both of them are selected from (-610 MHz,
610 MHz) at random, indicated by x (?) € (-610 MHz, 610 MHz).

According to the analysis in Section 2, the above frequency band can be equally
divided into m = 61 segments, where there are at most 4 segments that have
nonzero elements and the signal sparsity & < 4. We suppose a time domain
expression of generation function ¢, (t)(O <p<m-1) in Eq.(36) as follows:

@, )= gt)e”" " (36)

where, ¢(t)=sinc(t /T ), T is the sampling period, 1/7 =20 MHz.
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Given the nature of the sinc function, its space generation function can
constitute Riesz basis and can ensure that signal x(¢) is expressed by r,[n] in

Vip).

Therefore, according to Eq. (4), the frequency domain of x(¢) can be rewritten
in Eq. (37) as follows:
m=1

X(v)= ZRP (¥ (@-2n(p =30y /T) (37)

p=0

where, 0(w) is the Fourier transform of ¢(z)

It is easy to know that matrix H (») ’s Kruskal rank. kr(H (#))=s . According

to the above division method of frequency band and Eq. (4), we can have Eq.
(38) as follows:

> r[nlp,(t=nT): {ro[n]} S 12} fe (—610MHZ,—590MHZ]

neZ

> nlnle, (t=nT):{r[n ]}elz} f €[-590MHz,-570MHz |

neZ

S nlnlp,(t—nT):{r[nl}e 12} fe [—570MHz,—550MHz]

neZ

x(t) e {2 1o [y, (¢ = nT) :{r[n]} €1, [IOMHZIOMHz] (38)

neZ

D rslnleg (t -nT):{r[nlf e,

neZ

f €[550MHz,570MHz |

neZ

S rolnlpy (t —nT):{rynlel,y  f€[590MHz,610MHz)

neZ

—_—— —— —— —_—— —_—— —— ——

S o[l (t = nT) : {ry[n] el,} f €[570MHz,590MHz]

5.1 Analysis on Reconstruction Success Rate

We used the minimum L; normal algorithm and the traditional method to verify
the reconstruction success rate. The proportion of exact recoveries among 100
times of simulation is reported in Figure 3, where the solid line represents the
minimum L; normal algorithm and the dotted line represents the traditional
method. According to the analysis in Section 2 and 3, when L, is used in
periodic non-uniform sampling to reconstruct a signal, the signal sparsity is
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1 . . . .
k< E( 4" +1) . When the sparsity of the input signal is smaller than or equal to

4, the number of sampling channels of the system is only greater than 8 and
complete signal reconstruction can be achieved. However, the traditional

method needs at least 60 channels.

Empirical recovery rate
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Figure 3 Analysis of reconstruction success rate.

5.2 Comprehensive Test and Analysis of the System

According to the analysis in Section 5.1, we know that the input signal sparsity
is 4 at most, so a system with sampling channels s > 8 can realize complete
reconstruction of the signal. In this section, we set s = 10. A 10 x 61 sensing
matrix is formed. The above analysis shows that there are 4 nonzero elements at
most in 61 frequency bands. We separately choose a nonzero parameter in the
positive and negative frequency bands and R, and R, are used to represent
nonzero elements in the positive and negative frequency bands.

Figures 4 and 5 separately represent R, and R, time domain graphics after
interpolation function ¢,(f), where the solid line represents the reconstructed
signal and the dotted line represents the mirrored part of the reconstructed

signal.
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Figure 6 Time domain diagram of the reconstructed signal.



198 Junyi Luo & Yuting Yang

The analysis of Figures 4 and 5 shows time domain graphics of the positive and
negative frequency bands corresponding to R, and R, Figure 6 is the
overlapping part of bands R, and R,, and shows that its amplitude is doubled
and the mirrored signal is suppressed. Figure 7 is the time domain diagram of
the original signal. Comparison of Figures 7 and 6 shows that the reconstructed
signal and the original signal are basically the same.

Amplitude/V
S
wn =3

2.0 . L . . L . . . L x107
0 02 04 06 08 1.0 12 14 16 1.8 20
tls

Figure 7 Time domain diagram of the original signal.

6 Conclusion

This paper proposes a periodic non-uniform sampling system that adopts the
union of subspaces and uses minimum L1 normal to obtain a unique solution of
the undetermined equation. The proposed approach can effectively solve
problems in sampling and reconstruction of blind and sparse analog signals. The
approach herein, compared with traditional periodic non-uniform sampling
system, reduces the number of sampling channels and thus saves system
resources. The simulation and test demonstrated that periodic non-uniform
sampling can completely reconstruct the original signal far below the Nyquist
sampling ratio as long as the number of the system’s sampling channels is twice
larger than the input RF signal sparsity.
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