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Highlights:  

 The micro-bubble generator (MBG) is an effective aerator with higher energy 

efficiency compared to widely used aerators.  

 The performance of an MBG depends on two operating variables, i.e. the liquid flow 

rate (QL) and the air flow rate (QG). 

 The experiment showed that the effect of QL is more significant than the effect of QG. 

 

Abstract. The micro-bubble generator (MBG) is a novel aeration technology 

utilizing the concept of fluid flow through an orifice, where air is sucked into the 

internal chamber of the MBG by the pressure difference created by the orifice and 

immediately pushed by the high-velocity flow of the fluid. This mechanism creates 

micro-size bubbles with a high dissolution rate. This study focused on studying 

the effect on the oxygen dissolution rate of the two most important operating 

parameters, i.e. the volumetric flow rate of the liquid (QL) and the volumetric flow 

rate of the air (QG). Various combinations of values for QL and QG were 

systematically compared by means of the oxygen mass transfer coefficient (kLa). 

The experiment was carried out in a transparent container of 2.8 m x 0.6 m x 0.4 m 

filled with tap water that was aerated using an orifice/porous-pipe type MBG. The 

dissolved oxygen (DO) values were measured at distances of 60 cm, 120 cm, and 

180 cm from the MBG outlet. The experiment was designed with five different 

values for QL and QG respectively. The results showed that the value of kLa, which 

is proportional to the oxygen dissolution rate, increased asymptotically with 

increasing QL value, while the QG values did not significantly affect the kLa value. 

Keywords: aeration; dissolved oxygen; mass transfer coefficient; micro-bubble 

generator; orifice.  
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1 Introduction 

Dissolved oxygen is an important parameter in many industrial practices, such as 

wastewater treatment and aquaculture practices. The micro-bubble generator 

(MBG) is a novel aeration technology that takes advantage of the Bernoulli 

principle of fluid mechanics. Liquid is forced to flow through a narrowing 

channel created by inserting an orifice into a pipe so that the superficial velocity 

of the fluid increases significantly. Consequently, at the point of highest linear 

velocity, the pressure will drop to the lowest level into vacuum condition. Air is 

let in at this point by natural suction due to the pressure difference between the 

atmosphere and the vacuum created by the orifice. The entering air is immediately 

pushed by the high-velocity stream of liquid, breaking it down into micro-size 

bubbles. The small diameter of the bubbles leads to a higher solubility rate of the 

oxygen. 

Several types of MBG have been published, such as the swirl-flow type 

introduced by Ohnari [1], the spherical body type by Sadatomi, et al. [2], the 

orifice/porous-pipe type by Sadatomi, et al. [3], and several other variations. 

Previous experience in our research group suggests that the orifice/porous-pipe 

MBG is the most convenient type to be applied in terms of design simplicity and 

easy maintenance. However, the physical design of the MBG must be 

accompanied by careful consideration of the process parameters to take the most 

advantage of the MBG in supplying oxygen. The most likely influential 

parameters to influence the hydrodynamics of micro-bubble formation are the 

characteristics of the liquid (viscosity, surface tension, and density), the liquid 

flow rate, and the air suction flow rate.   

As published by Parmar and Majumder [4], micro-bubbles have unique 

characteristics, such as a slow rise velocity, a high oxygen dissolution rate, and a 

large gas-liquid interfacial area. These characteristics make MBG a very 

attractive aeration technology. Budhijanto, et al. [5] has published a preliminary 

study on MBG (orifice/porous-pipe type) application in tilapia fish (Oreochromis 

niloticus) aquaculture. Deendarlianto, et al. [6] applied MBG as an aerator in 

wastewater treatment. Iriawan, et al. [7] has confirmed that MBG reaches the 

same dissolved oxygen (DO) level with lower energy consumption compared to 

conventional aerators. Besides, the coverage area that can be managed to 

maintain the same level of DO is also wider with an MBG as aerator.  

All previous studies presented evidence of the potential use of an MBG as an 

effective aerator with higher energy efficiency compared to widely used aerators. 

Nevertheless, deeper study is needed to establish stronger theoretical support in 

order to make better engineering judgments in applying MBGs for various 

purposes. The aforementioned studies applied MBGs with trial-and-error in terms 
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of configuration and operating parameters, such as the combination of liquid flow 

rate and gas flow rate. Meanwhile, other studies, such as Sadatomi, et al. [3], 

mostly describe MBG performance in terms of random operating parameters in 

order to prove that micro-bubbles were generated.  

The current study was focused on finding the best combination of selected 

operating parameters, i.e. the liquid flow rate circulated into the MBG (QL) and 

the gas flow rate into the MBG (QG), with evaluating the sensitivity of MBG 

performance. Studies concerning a method to systematically optimize process 

parameters in MBG application are still very limited, which is one of the 

challenges in MBG development. This paper presents a mass-transfer approach 

to defining the performance of the MBG and hence provide a more practical tool 

for optimizing the MBG configuration. Specifically, this study aimed to evaluate 

the effect of the liquid flow rate (QL) and the air flow rate (QG) on the bubble size 

distribution and the rate of oxygen dissolution at several distances from the MBG 

outlet. 

2 Methods 

This research used an orifice/porous-pipe type MBG (Figure 1) designed and 

fabricated by Fluid Mechanics Laboratory Group, Department of Mechanical and 

Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada. The 

modification of this MBG compared to the original design of Sadatomi, et al. [3] 

uses a ceramic porous pipe. The porous pipe through which the air is sucked into 

the orifice chamber was made of a custom-made plastic scaffold and nylon fibers 

rolled around the scaffold. This customization of the porous pipe increases its 

durability and reduces the manufacture cost.  

 

Figure 1 Schematic diagram of the orifice/porous-pipe MBG. 

The MBG was installed in a transparent-walled container with dimensions of 

280 cm x 60 cm x 40 cm, with the experimental set-up shown in Figure 2. The 
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MBG was installed at a depth of 20 cm under the water surface, located on one 

end of the container.  

The container was filled with clear tap water. A DO meter was secured in place 

to measure the DO level in the container. The initial DO level without aeration 

was ±3 mg/L. The variations in QL were set by adjusting the pump rotation rate, 

while QG was set manually by adjustment of the gas flow meter valve.  

Inverter

DO meter
MBG

Pump

Flowmeter

Flowmeter

Valve

 

Figure 2 Schematic diagram of the experimental set-up. 

Aeration was done with various combinations of QL and QG according to the 

experimental design presented in Table 1. DO measurements were taken using a 

data logger at 3-second intervals for 1.5 minutes, at distances of 60 cm, 120 cm, 

and 180 cm from the MBG outlet. DO measurements were taken three times for 

each combination of QL and QG.  

Table 1 Experimental design for QL and QG combinations in this study. 

QG (LPM) 
QL (LPM) 

(1) (2) (3) (4) (5) 

0.2 30 40 50 60 70 

0.4 30 40 50 60 70 

0.6 30 40 50 60 70 

0.8 30 40 50 60 70 

1.0 30 40 50 60 70 

The bubble size distribution was measured by means of image processing of a 

visual record of the bubbles. The method used is called the shadow image 

technique, referring to the previous study by Majid, et al. [8] for analyzing 

horizontal co-current gas-liquid plug two-phase flow. Basically, this technique 

puts the bubbles between a camera and a screen with a light source on the opposite 
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side (Figure 3). Bubbles create dark spots on the screen, which are then captured 

by the camera (Phantom high speed with a maximum frame rate of 10,000 frames 

per second/fps). Camera adjustment included recording speed at 3000 fps, 

aperture at 2.8, and focal length of the lens at 85 cm. With these conditions, an 

object at 40 cm distance from the lens has a focal depth of 3 cm. A calibration 

plate was inserted into the water container prior to bubble recording to obtain the 

best focus. The background image was obtained by recording an image of the 

container without the presence of bubbles. Digital image processing was 

conducted using Matlab 2016a equipped with Image Processing Toolbox. The 

results are presented as the probability density function (PDF). 

 

Figure 3 Schematic diagram of image recording technique. 

The oxygen dissolution rate was quantified using a simplified model of the 

oxygen mass transfer rate presented in Eq. (1). The parameters compared between 

the various combinations of QL and QG were the values of kLa obtained as the 

negative slope of the linear correlation presented in Eq. (2).  
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where kLa is the volumetric mass transfer coefficient (1/second), C*DO is the 

saturated dissolved oxygen concentration in water (mg/L) empirically correlated 

with temperature in Eq. (3); Ct is the concentration of dissolved oxygen at a 

particular time t (measured by DO meter in mg/L); and C0 is the initial 

concentration of dissolved oxygen in the water (mg/L). 

3 Results and Discussion 

3.1 Bubble Size Distribution 

Figure 4 exhibits the average bubble diameter for the various combinations of QL 

and QG tested in this study. Increasing QL reduced the average bubble size. This 

observation is in good accordance with the work of Khirani, et al. [9]. The 

turbulence induced by a higher QL improved the bubble breakdown mechanism 

in the orifice chamber, resulting in smaller bubbles. On the other hand, increasing 

QG had the opposite effect, i.e. increasing the bubble size. This tendency was also 

observed in the previous study by Majid, et al. [10].  
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Figure 4 Average bubble diameters at various combinations of QL and QG. 

Deeper insight into the bubble size distribution was obtained by observing the 

bubble size distribution plots in Figure 5. In general, increasing QG resulted in a 

wider distribution curve. This reflects more heterogeneous bubble sizes when QG 

was increased. According to Lau, et al. [11], a higher QG causes increasing 

numbers of bubbles with larger sizes, which move more rapidly towards the water 

surface compared to slow-moving micro-bubbles. The fast rising bubbles tend to 

collide with each other and hence create even larger sized bubbles.  
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On the other hand, increasing QL led to a narrower distribution, which implies a 

more homogeneous bubble size, in the range of 100 to 300 microns. Changjun, et 

al. [12] have reported that the dominant forces controlling micro-bubble 

formation are the surface tension and the inertial force of the liquid.  
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(a) QL = 30 lpm  (b) QL = 40 lpm 
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(c) QL = 50 lpm 
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(d) QL = 60 lpm  (e) QL = 70 lpm 

Figure 5 Bubble size distribution at various combinations of QL and QG. 
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The surface tension is responsible for bubble size stability, while the inertial force 

governs the behavior of the bubble in the liquid stream. This theory is the basic 

reference to explain the effects of QL and QG on the micro-bubble size 

distribution. When QG is increased relative to QL, the volume of the bubbles will 

grow to compensate for the additional mass of gas in the same pressure balance 

created by the surface tension. On the other hand, when QL is increased relative 

to QG, the inertial forces around the bubbles will increase to break the surface 

tension force so that the bubbles tend to be smaller and disappear more quickly, 

either by dissolution or by being taken out of the system by the liquid flow. 

According to all plots in Figure 5, the highest probability of occurrence was 

observed in the range of 100-300 µm, accounting for 15-30% of the total bubbles 

captured by the camera. However, we should take into account that the speed of 

the camera may have been insufficient to capture all the bubbles in the system, 

specifically those that existed less than 1/3000 seconds. This portion of fast 

disappearing bubbles may be high in MBG aeration systems that produce very 

small bubbles with a high dissolution rate. 

With such uncertainty in bubble size distribution data due to the limitations of the 

camera, it is necessary to conduct another measurement to define the performance 

of the MBG. As dissolved oxygen is the main target of this aeration process, the 

logical parameter to determine the success of the aeration process is the oxygen 

mass transfer coefficient (kLa) defined by Eq. (2). The higher the kLa values, the 

more preferable the aeration condition. Hence, the combination of QL and QG 

should be chosen so that the highest possible value of kLa is obtained. The next 

section presents a discussion of the effects of various combination of QL and QG 

on the values of kLa. 

3.2 Volumetric Mass Transfer Coefficient (kLa) 

The values of kLa were obtained based on data fitting on Eq. (2). Figure 6 presents 

the values of kLa for various combinations of QL and QG. The measurement of 

DO was taken at a distance of 60 cm from the MBG outlet. The most interesting 

fact was that the values of kLa increased with increasing QL, but did not 

significantly change with increasing QG. Compared to Figure 5, although the 

bubble size distribution seems similar for all combinations of QL and QG, it turns 

out that the oxygen dissolution behaviors were quite different with those 

combinations. 

According to a widely accepted theory on transport phenomena stated by Bird, et 

al. [13], a higher QL value leads to a higher kLa due to increased turbulence, which 

reduces the interface resistance for any mass transfer across an interface. This is 

the reason why increasing QL from 30 to 60 lpm significantly increased the kLa 
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values. Increasing QL further to 70 lpm did not significantly increase the kLa value 

anymore because the concentration of dissolved oxygen had reached its saturation 

point. The effect of QL was more dominant than that of QG with respect to creating 

turbulence in the MBG, which is required to enhance kLa. Therefore, QG is less 

influential on the values of kLa compared to the effect of QL on kLa.  
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Figure 6 Values of kLa at various combinations of QL and QG. 

Figure 6 confirms that QL has a more profound effect on kLa. Therefore, the 

evaluation of the effect on distance was only conducted with variation of QL. 

Figure 7 shows that at 180 cm distance from the MBG outlet, the kLa value 

decreased significantly. At this position, the effect of QL was not as large as at 

other positions. A possible explanation for this behavior is that beyond 120 cm 

from the MBG outlet, the oxygen transfer is not effective anymore. This 

preliminary study merely highlighted that it is important to determine the farthest 

distance reached by the micro-bubbles, because beyond this critical distance, the 

aeration is not effective at all. A more detailed calculation of such critical distance 

is beyond the scope of this study; it needs to be modeled to determine the 

optimum configuration/position of the MBG installation.  

 

It is worth mentioning that an optimum QL value could be determined based on 

this study. A QL value of 60 lpm was considered optimum because increasing it 

to 70 lpm did not change the kLa value and hence with respect to energy 

consumption. Thus, there was no use in supplying more energy to make QL higher 

than 60 lpm. 

The aforementioned analysis on the effects of QL, QG and distance from MBG 

outlet on the kLa values was crosschecked using two-way analysis of variance 

(ANOVA). The ANOVA calculation is presented in Table 2. Significant effects 
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are represented by a p-value smaller than 0.05. Based on Table 2, QL, distance, 

and the interaction of both had significant effects. 
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Figure 7 Values of kLa at various QL values and distances from the MBG outlet. 

Table 2 Analysis of variance for the effects of QL, QG, and distance on kLa 

values. 

Source 
Adjusted 

sum of squares 

Adjusted 

mean squares 
F-value P-value 

QL 0.034493 0.034493 395.50 0.000 

QG 0.000012 0.000012 0.14 0.710 

X 0.045498 0.045498 521.67 0.000 

QL*QG 0.000057 0.000057 0.65 0.421 

QL*X 0.002576 0.002576 29.54 0.000 

QG*X 0.000138 0.000138 1.59 0.209 

4 Conclusion 

Affordable formation of bubble size in the micron range is the purpose of micro-

bubble generator (MBG) technology. This study presented a systematic method 

to evaluate the performance of an MBG in terms of bubble size distribution and 

oxygen mass transfer coefficient. 

In the micrometer range, bubble size measurement is limited by the capability of 

the camera to capture bubble formation, which may take a very short time, 

making it impossible to be captured by camera. However, the bubble size 

distribution measured in this study yielded the general finding that a higher QL 
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value led to a smaller average bubble size, while a higher QG value induced a 

larger average bubble size. Besides, increasing QL relative to QG tended to 

homogenize the bubble size, hence narrowing the bubble size distribution curve. 

On the other hand, increasing QG relative to QL caused a wider size distribution 

curve, which indicates a more heterogeneous bubble size. 

The value of mass transfer coefficient (kLa) is the most appropriate option to 

define MBG performance because it is determined based on accurate data of 

dissolved oxygen over a certain period of time. It was shown that kLa values were 

significantly affected by QL and distance from the MBG outlet. A higher value of 

kLa indicates better MBG performance in supplying dissolved oxygen and could 

be achieved at higher QL. It should be noted that an optimum QL was determined, 

above which the value of kLa could not be increased anymore as saturation was 

already reached. With respect to distance from the MBG outlet, a critical distance 

was observed. At points farther than this critical distance, the value of kLa 

dropped significantly. 
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