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Abstract. This paper demonstrates a new alternative way in estimating 

seismically thin-bed (below-tuning) thickness. Initial thickness is built by band-

pass filtering the amplitude display of a zero-phase seismic. The filter removes 

the non minimum and or non maximum and left the maximum and or the 

minimum of seismic amplitude. The unresolved below-tuning thickness is then 

corrected by zero-INTENS-difference (z-i-d) attribute. INTENS is integrated 

energy spectra, an attribute which can be derived from spectral analysis. z-i-d 

attribute is zero difference of INTENS between the seismic and its synthetic. The 

method generates INTENS difference profile by subtracting seismic INTENS 

and its synthetic INTENS iteratively. The iteration is controlled by dipole space 

shifting from distance to closer or vice versa. The true thickness is derived by 

locating z-i-d which laid in INTENS different profile.  It has found that, for free 

noise true seismic and perfect-wavelet (a wavelet which only approximately 

similar with wavelet which constructing the true seismic) synthetic seismic, in 

INTENS different profile, the z-i-d location always corresponds to true dipole 

space or thickness. The method could resolve all thickness of a wedge-modeled 

seismic with three different dominant frequencies.  When the synthetic seismic is 

constructed with imperfect wavelet, slightly different analysis is needed to locate 

z-i-d attribute and the result is not as perfect as when perfect wavelet 

constructing synthetic seismic. A quiet similar result is got when the method is 

implemented for noisy wedge-modeled seismic. Bad thickness estimation is 

resulted for 20% noise seismic. The method algorithm is extended for similar 

dipole polarity model and multilayer model to bring the method to real seismic 

data nearer. The extension is done by estimating thickness of every layer of a 

stacked-wedge-modeled seismic. The algorithm then generalized for estimating 

layers thickness with several thickness combinations. The method was able to 

delineate shallow channel of Stratton Field by providing good pseudo-acoustic-

impedance (pseudo AI) map. 

Keywords: below tuning; integrated energy spectra; intens; seismic attribute; seismic 

inversion; seismic resolution; spectral analysis; thin layer. 
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1 Introduction 

For decades, researchers have noticed that conventional seismic has a trouble 

when resolving the thickness of very thin layer. Researcher agreed that the 

thickness which can be resolved by conventional seismic is about λ/4 and 

above, where λ is predominant wavelength [1,2]. λ/4 was known as tuning 

thickness. The recent study was reported by Zang [3]. It was claimed that tuning 

thickness will be unlimited for free noise data and can be as small as λ/16 for 

real data which was acquired with current technology. 

Russel [4] identified the effect of thin layer to the seismic inversion, a method 

which has claimed as the best tool for reservoir characterization. It was found 

that as the time separation between reflection the coefficient become smaller, 

the interference between overlapping wavelet become more severe. The effect 

is, the amplitude spectrum was altered as well as the phase spectrum. Russel [4] 

demonstrated recursive inversion and maximum likelihood deconvolution for a 

wedge modeled seismic to show the effect in practical. There were two 

dominant effects reported e.g. the two seismic inversion failed to resolve bed 

thickness below λ/4 and the top wedge appeared ‘pulled-up’ at the traces near 

the edge of the wedge. 

The improvement of seismic vertical resolution has also been tried in frequency 

domain [5-7]. Portniaguine and Castagna [8] inverted the reflectivity of thin bed 

by spectral inversion, a form of sparse-spike inversion in that it outputs a sparse 

reflectivity series. The result showed that spectral inversion is good when the 

data has high signal-to-noise but bad when the data has low signal-to-noise 

(noise level 0.01% and above. The inversion became noisy when using 

imperfect wavelet (a wavelet which is only approximately similar to wavelet 

constructing the true seismic). 

In 2006, Puryear and Castagna [7] derived an algorithm for calculating a bed 

thickness from amplitude spectrum of the seismic. The algorithm was 

implemented for both modeled and real data. The result showed that the 

algorithm is robust for thick beds but noisy for very thin beds. 

Liu and Marfurt [9] proposed thin-bed thickness prediction using peak 

instaneous frequency. The objective of the method is to improve the instaneous 

frequency method which was unstable and unreliable when the data have low 

signal-to-noise ratio. It was found that peak instaneous frequency was inversely 

proportional to the layer thickness and well-correlated with the layer thickness 

measured in the wells. But, it’s less sensitive of peak instaneous frequency to 

the reflection coefficient changes, lead to its inverse trend become complicated 

for layer less than one eight wavelength thick. 
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Hall [10] introduced cepstral, spectral of spectral, decomposition for predicting 

bed thickness. The thickness of layer are identified from the notch that 

periodically characterized by the spectral of the layer. Hall claimed that cepstral 

decomposition has the potential to significantly improve the accuracy of bed 

thickness estimation from seismic. But, Hall noted, that in the real data, 

estimating the periodic notch is difficult because the notch are commonly 

somewhat cryptic. Another weakness is, cepstrum is unfamiliar to most seismic 

interpreter although it is well-known in several other branches of signal 

processing. 

This paper proposes the alternative way in estimating layer thickness by 

combining the minimum-maximum (will be called as m-m) and zero-INTENS-

difference (will be called as z-i-d) attribute. The estimation of layer thickness 

below tuning thickness will be demonstrated.  The m-m attribute is derived by 

band-pass filtering the amplitude display. Z-i-d is derived by subtracting the 

integrated energy spectral (INTENS) of synthetic by the INTENS of the original 

seismic. It will be shown that combination of two attribute above can be used as 

layer thickness estimator. 

2 m-m Attribute 

Assuming that seismic is normal incident and zero phase, the reflectivity is in 

coincide with minimum or maximum amplitude of seismic signature. Peaking 

only the maximum and or minimum of seismic, the spike can be got. It can be 

simply done by band-pass filtering the amplitude display of seismic. The non 

maximum and or non minimum of amplitude display are removed and the 

maximum and or minimum amplitude are left. The ‘new’ attribute named m-m 

attribute. Figure 1 shows the minimum-maximum (m-m) attribute of an 

opposite-polarity pair of dipole seismic. It is shown that the m-m attribute 

accurately resolve the dipole space or thickness. But, unlike a common seismic 

inversion, m-m attribute provide ‘wrong’ reflectivity magnitude. The pseudo-

reflectivity could be another name of m-m attribute. This paper will only take 

the benefit of m-m attribute in accurately resolving the thickness of the dipole. 

The m-m attribute can be extended for more than two reflectors (dipole) by 

adjusting the band of filter according to geology or earth-model to be 

considered. It will also make the broadband frequency of seismic accessible by 

m-m attribute. 
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Figure 1 m-m attribute (2
nd 

column 2
nd

 row) from seismic  (1
st
 column 2

nd
 row) 

built from reflectivity (1
st
 column 1

st
 row) convolved with 25 Hz dominant 

frequency, 2 ms sampling rate and 35 wavelength Ricker wavelet (2
nd

 column 1
st
 

row). 

Figure 2 shows the m-m attribute of wedge modeled seismic resulted from 

convolution the model reflectivity with Ricker wavelet from 25 Hz dominant 

frequency, 2 ms sampling rate and 35 wavelengths (2
nd

 column Figure 1). From 

Chung and Lawton [11], the tuning thickness of the seismic is 15.6 ms located 

near trace 13 of the seismic section. 
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Figure 2 m-m attribute (2
nd

 row) of wedge modelled seismic (2
nd

 column 1st 

row) of wedge modeled reflectivity (1
st
 column). 

 
It is showed that, in term of positioning the reflector, m-m attribute displays 

fairly similar layer thickness to which displayed by spectral inversion [7,8]. 

With this performance and its simple process, m-m attribute is chosen to be 

starting process of estimating the thickness of layer when it went below tuning. 

Because m-m attribute will pick the peak and/or trough of seismic as 

‘reflectivity-like’ spike, the method requires or will only work with zero-phase 

seismic. Every non zero-phase seismic has to be transformed to zero-phase one 

before the m-m attribute is extracted. 

The sample rate interval is another important factor for m-m attribute. It will be 

the thinnest thickness which m-m attribute can resolve. However, a thickness 

thinner than sample rate interval can be obtain if seismic re-sampling is 

allowable.  
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3 Integrated Energy Spectra (INTENS) 

Integrated Energy Spectra (INTENS) is a form of frequency domain analysis 

which firstly introduced by Marangakis, et al. [12]. INTENS is defined as 

integrated partial energy plotted against frequency. Mathematically, INTENS of 

a time series data at frequency f is defined as: 

                      fu                                   f     

 E(f) = 100 ∫ A(f)  A*(f) df / ∫ A(f)  A*(f) df   (1) 

                                             
fl

                                   
fl 

where A(f) and A*(f) are the amplitude spectra of the time series at frequency f 

and the conjugate consecutively. fl and fu is the lowest and highest frequency 

range consecutively. 

 

Figure 3 Seismogram (dash line)-wavelet (full line) INTENS comparison. 

When thickness greater than tuning (1
st
 row); thickness closely to tuning (1st 

column 2nd row) and thickness under tuning (2
nd

 column 2
nd

 row) (recalculated 

after Marangakis, et al. [12]). 
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INTENS can be applied to any time series data. Two INTENS of two time 

series data can be compared for further study or analysis. Figure 3 shows 

graphical comparison of a dipole seismic and its applied wavelet. 

It is showed that when the thickness of dipole is close to the tuning thickness, 

the INTENS of seismic is nearly similar to which of the wavelet. 

It was indicated that INTENS was consistently changing whatever close the 

dipole spaces or whatever seismically thin the layer will. INTENS is claimed as 

a good layer thickness identifier [12].  

4 How INTENS Can Help Layer Thickness Estimation  

The previous INTENS studies leads to a hypothesis: the INTENS of a synthetic 

seismic has to be similar to its true seismic. The better synthetic seismic the less 

INTENS difference.   

To prove the hypothesis, the previous m-m attribute study is recalled. The trace 

6 of m-m attribute study at Figure 2 will be used as a sample. The trace 6 has 

true thickness 1 sample rate interval (sri) and m-m attribute 7 sri. The following 

are the process run: 

1. The INTENS of trace 6 of true seismic (2
nd

 column Figure 2) is calculated 

2. The synthetic seismic of trace 6 is built by convolving the trace 6 of m-m 

attribute (2
nd

 row Figure 2)  with the true wavelet (2
nd

 column Figure 1) 

3. The INTENS of synthetic seismic (step 2) is calculated 

4. The INTENS of synthetic seismic (step 3) is subtracted by the INTENS of 

true seismic (step 1) 

5. The space of m-m attribute of trace 6 is contracted 1 thickness interval 

shorter 

6. Step 2, 3  and 4 are repeated 

7. Step 5 and 6 are repeated until the space of m-m attribute is 1 thickness 

interval. 

 
Table 1 displays INTENS observation of the modeled seismic. It is shown that 

the 0 (zero) value of INTENS-difference between the synthetic and its true 

seismic points to the true thickness of wedge.  

Table 2 and Figure 4 shows the result of INTENS observation for traces below 

tuning (trace 6 to 12) of the wedge model. Table 2 informs clearly that 0 (zero) 

value of INTENS-difference always points the true thickness. Figure 4 also 

gives the same information although 2 pairs of plot (8 and 9, 11 and 7) nearly 

close each other. 
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Tabel 1 INTENS Difference of Trace 6 of seismic (2
nd

 column Figure 2). 

Dipole Thickness 

(sri) 
INTENS Difference 

1 0 

2 -165.0921 

3 -234.9346 

4 -241.1266 

5 -211.6287 

6 -159.3323 

7 -90.6405 

                                          (sri=sample rate interval) 
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Figure 4 INTENS Difference vs Thickness of Trace 6. 

Tabel 2 INTENS-Difference of Traces below tuning of wedge modeled 

seismic. It is showed that zero INTENS difference point to true thickness.  

Dipole 

True 

Thickness 

(sri) 

INTENS Difference 

Trace 6 Trace 7 Trace 8 Trace 9 Trace 10 Trace 11 Trace 12 

m-m att. 

7 sri 

m-m att. 

6 sri 

m-m att. 

6 sri 

m-m att. 

6 sri 

m-m att. 

6 sri 

m-m att. 

7 sri 

m-m att. 

7 sri 

1 0 165.09 234.93 241.12 211.62 159.33 90.64 

2 -165.09 0 69.84 76.03 46.53 -5.75 -74.45 

3 -234.93 -69.84 0 6.19 -23.30 -75.60 -144.29 

4 -241.12 -76.03 -6.19 0 -29.49 -81.79 -150.48 

5 -211.62 -46.53 23.30 29.49 0 -52.29 -120.98 

6 -159.33 5.759 75.60 81.79 52.29 0 -68.69 

7 -90.64     68.69 0 
(sri: sample rate interval) 
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Figure 5 summarizes the ‘full-work’ of layer thickness estimation by combining 

m-m and z-i-d attribute. To make a better calculation, the true reflectivity 

magnitude is restored to m-m attribute map before synthetic seismic is built. 

The step is done because, actually, the reflectivity magnitude is not changed at 

below tuning zone. In real world, true reflectivity can be got from well log data.  
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Figure 5 INTENS-Difference of Traces below-tuning of modeled wedge. 
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Figure 6 m-m Attribute, Zero-INTENS-Difference and True Thickness 

relationship. 

Figure 6 illustrates the relationship between true thickness, apparent thickness 

(m-m attribute) and zero-INTENS-difference thickness. It is shown that, below 

tuning zone, zero-INTENS-difference accurately point to the true thickness. At 

the tuning zone, the apparent thickness (m-m attribute) and zero-INTENS-
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difference thickness coincide with true thickness. At the zone between tuning 

and twice tuning, the apparent thickness (m-m attribute) and zero-INTENS-

difference thickness drop 1 thickness interval below true thickness. 

Based on model information, the top reflector is corrected from ‘pulled-up’ 

effect. Perfect (noise free) data and perfect wavelet make the method work 

perfectly.  

 

 

 

Figure 7 The final result of wedge modeled seismic thickness estimation. The 

true seismic (1
st
 row 1

st
 column), the m-m attribute thickness initial estimation 

(2
nd

 column 1
st
 row), the z-i-d attribute finalized estimation (1

st
 column 2

nd
 row) 

and the synthetic seismic  (2
nd

 column 2
nd

 row). 

5 Effect of Dominant Frequency 

Frequency takes important role in seismic exploration. To observe how affected 

the proposed method by frequency, two wedge modeled seismic with lower and 

higher dominant frequency have used as sample. The first is wedge modeled 

seismic with 20 Hz of dominant frequency (19,5ms of tuning thickness) and the 

other is wedge modeled seismic with 30 Hz of dominant frequency (13ms of 

tuning thickness). 
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Figure 8  m-m Attribute, z-i-d and true thickness relationship for 20Hz-wedge-

modeled seismic (left) and 30Hz-wedge-modeled seismic (right). 

 

 

Figure 9 Thickness estimation of 20Hz-wedge-modeled seismic. True seismic 

(1
st
 row 1

st
 column), m-m attribute thickness (1

st
 row 2

nd
 column), z-i-d attribute 

thinckness (2
nd

 row 1
st
 column), and synthetic seismic (2

nd
 row 2

nd
 column). 

Figure 8 illustrates the relationship between true thickness, m-m attribute and z-

i-d thickness of wedge-modeled seismic with 20Hz dominant frequency (first 

column) and wedge-modeled seismic with 30Hz dominant frequency. 
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Comparing to previous 25Hz graphic, the z-i-d thickness curve of all of three 

are similar in trend and has similar position regarding to their true thickness. It 

can be concluded that m-m and z-i-d attribute combination is not sensitive to 

dominant frequency of seismic. 

Figure 9 and Figure 10 depict the result of thickness estimation of 20Hz and 30 

Hz wedge modeled seismic respectively. It is shown that there is no significant 

difference between the last two results with the first (25Hz seismic model). 

 

 

Figure 10  Thickness estimation of 30Hz wedge modeled seismic. True 

seismic (1
st
 row 1

st
 column), m-m attribute thickness (1

st
 row 2

nd
 column), z-i-

d attribute thinckness (2
nd

 row 1
st
 column), and synthetic seismic (2

nd
 row 2

nd
 

column). 

6 Effect of Imperfect Wavelet 

To observe how close the method to the real world, an imperfect wavelet has 

been used to estimate the layer thickness replacing the perfect one. A wavelet 

was extracted from trace 35 of the 25Hz wedge modeled seismic by S4M™’s 

s_seismic2wavelet MatLab™ routine code, Figure 11. The wavelet is called 

imperfect because of its dissimilarity with the true or perfect wavelet (wavelet 
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which constructing true seismic). The thickness estimation, then, is done as 

previously done for the perfect wavelet. The result is tabulated in Table 3. 

Problem arises at the Table 3 because there is no zero value of INTENS 

difference which can be used as true thickness indicator. Otherwise the 

minimum absolute value of INTENS-difference, which always zero for perfect 

wavelet cases, does not point a consistent thickness. To see more, how 

imperfect wavelet affect z-i-d thickness prediction, the minimum absolute 

INTENS difference is plotted, Figure 13. 

Tabel 3 INTENS Difference of 25Hz-wedge-modeled seismic when the 

synthetic seismic constructed using extracted wavelet. There is no z-i-d attribute 

showed. 

Dipole 

True 

Thickness 

(sri) 

INTENS Difference 

Trace 6 Trace 7 Trace 8 Trace 9 Trace 10 Trace 11 Trace 12 

m-m att. 7 

sri 

m-m att. 

6 sri 

m-m att. 6 

sri 

m-m att. 

6 sri 

m-m att. 

6 sri 

m-m att. 

7 sri 

m-m att. 

7 sri 

1 -21.06 144.03 213.87 220.06 190.57 138.27 69.58 

2 -210.45 -45.36 24.49 30.68 1.18 -51.11 -119.81 

3 -287.03 -121.93 -52.09 -45.90 -75.40 -127.69 -196.39 

4 -288.27 -123.18 -53.34 -47.14 -76.64 -128.94 -197.63 

5 -248.15 -83.06 -13.22 -7.03 -36.52 -88.82 -157.51 

6 -183.19 -18.09 51.75 57.94 28.44 -23.85 -92.55 

7 -102.31     57.03 -11.67 

 

 

Figure 11 Extracted wavelet from trace 35 25Hz-wedge-modeled seismic. 
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Figure 12 Effect of imperfect wavelet to minimum Absolute INTENS 

difference (z-i-d in perfect wavelet case) thickness prediction. It is showed that 

only the zone below tuning affected by imperfect wavelet. 

 
It is shown by Figure 12, that only the zone below tuning affected by imperfect 

wavelet. The tuning zone and above, the minimum-Absolute-INTENS-

difference is still follow the z-i-d trend or not affected by imperfect wavelet. 

Although, it is still difficult to predict the true thickness either from the graph or 

from table. 

But, if it is tried to find out where the zero value inside or nearest the profile, it 

will be realized that the zero value is located near the value which point the true 

thickness. Figure 13 will help the observation. 
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Figure 13 INTENS-Difference profile of 25Hz wedge modeled seismic when 

the synthetic seismic is constructed with imperfect wavelet 

Attention has to be taken when deciding which zero position should be chosen 

as true thickness estimation guide. Because of parabolic pattern of the profile, 

there are 2 zero position exists. It is proposed to use additional parameters to 
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help decision making. That is m-m attribute ratio. m-m attribute  ratio is ratio 

between the m-m attribute and corrected m-m attribute (m-m attribute after the 

true or tuning reflectivity restored in).  Figure 14 illustrate the relationship 

between minimum-absolute-INTENS-difference, m-m attribute, m-m attribute 

ratio and true thickness. 
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Figure 14  The relation of minimum-absolute-INTENS-difference, m-m 

attribute, m-m attribute ratio and true thickness. 

 

 

Figure 15 Result of thickness estimation of 25Hz-wedge-modeled seismic 

when imperfect wavelet (Figure 11) is used to construct the synthetic seismic. 

The true thickness will be estimated as the thickness which pointed by first zero 

when the m-m ratio is below the m-m attribute or apparent thickness and will be 
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the thickness pointed by second zero if the m-m ratio is above the m-m 

attribute. Figure 15 shows the result of thickness estimation of 25Hz-wedge-

modeled seismic when imperfect wavelet (Figure 11) is used to construct the 

synthetic seismic.  

7 Effect of Noise 

The method was implemented to invert the thickness of noisy wedge modeled 

seismic. The result is summarized in Figure 16. It is shown that up to the 10% 

noise level data the method still gives a robust result but when the noise reach 

20% the method gives noisy result. 

 
 

Figure 16 (continue) Thickness estimation of noisy-wedge-modelled seismic 

with 5% noise (1
st
 column 1

st
 row), 10% noise (2

nd
 column 1

st
 row), 20% noise 

(1
st
 column 2

nd
 row) and the estimated thickness for consecutively 5% noise (2

nd
 

column 2
nd

 row), 10% noise (1
st
 column 3

rd
 row), 20% noise (2

nd
 column 3

rd
 

row). 
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Figure 16   Thickness estimation of noisy-wedge-modelled seismic with  5% 

noise (1
st
 column 1

st
 row), 10% noise (2

nd
 column 1

st
 row), 20% noise (1

st
 

column 2
nd

 row) and  the estimated thickness for consecutively 5% noise (2
nd

  

column 2
nd

  row), 10% noise (1
st
 column 3

rd
 row), 20% noise (2

nd
 column 3

rd
  

row). 

8 Similar Polarity and Multilayer Algorithm Extension 

The similar dipole polarity is modeled by inserting a similar spike near 

extracted m-m attribute as test case. If the INTENS difference of the new m-m 

attribute is smaller than its original, then the new m-m attribute is chosen as 

earth model, otherwise the original is kept as model. 

 The extension of the method for more than one thin layer model is done by 

analyzing matrices of INTENS different of every trace of seismic.  When single 

layer model generates column matrices which length is equal to thickness 

variation numbers, hence multi layer model will generate L1xL2xL3……..Ln 

matrices. Where L1, L2, L3, Ln are thickness variation number of layer 1, 2, 3 

and n consecutively. It can be imagine that inverting more than 3 layers will be 

very complicated. 

 

Figure 17 2 (two) layers model (left) and its inverted thickness (right). 
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Simply, this paper analyzes INTENS different matrices of two layers model 

first. 

Making easier analysis, the element of matrices are grouped by minimum 

different thickness between total thickness of layer thickness combination and 

its m-m attribute, and minimum sum of thickness difference of every layer 

between thickness combination and its m-m attribute. No simple or general 

pattern is found. The rules or algorithm for thickness determination is 

constructed with the guidance of model. Figure 18 shows the reflectivity model 

and its inverted thickness.  Base on 2 layers model inversion, the 3 layers model 

algorithm is developed. Basically, 3 layers model inversion is an iterative one of 

2 layers model inversion. The entire layers thickness inversion is done by 

estimating the thickness of every two consecutive layer. The result of previous 

two consecutive layer inversions is used to invert the next two consecutive 

layers. Figure 18 shows the 3 layer model and its inverted thickness.  

   

 

Figure 18 3 (three) layers model: seismic (1
st
 column 1

st
 row), m-m attribute 

(2
nd

 column 1
st
 row) and its estimated thickness (2

nd
 row). 
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9 Real Data Implementation 

The extended algorithm is applied to Stratton Field seismic data, a public data 

provided by Texas Bureau of Economic Geology. This paper will focus on 

shallow region of Stratton Field where a channel structure appears at 

approximately 842 ms time-depth [6]. Figure 19 (left) is an amplitude time slice 

identifying the channel. A phase change is introduced across the time slice due 

to a gentle dip of the bed; however the channel can be clearly identified. Figure 

19 (right) shows that a conventional horizon-picking time structure does not 

give a clear channel representation, although the channel is still visible. 

 

Figure 19 Amplitude time slice showing channel structure at shallow region of 

Stratton seismic (left) and structural (time) surface of picked horizon outlining 

the channel (right) (from Pennington [6]). 

  

Figure 20 Stratton Shallow Region relative impedance time slice. Calculated 

by the method (left) and after estimated by kriging (right). 

This paper estimate the time thicknesses and pseudo-reflectivity using 

combination of m-m and z-i-d attribute. Then, calculate and map the relative 

impedance by assuming the top layer is water. Figure 6 shows contoured time 

slices of relative impedance volume of Stratton shallow region. When the 

volume is sliced horizontally, fewer channels part are represented with fewer 

noises (Figure 20 (right)). But when the volume is sliced deeply, more channel 

parts are represented however more noises are appear. The more channel parts 

representation conform the amplitude time slice including dipping bed 

introduced by phase changes.  
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Figure 21 Cross section of Stratton Shallow Channel pseudo-impedance. 

10 Discussion and Conclusions 

It has been shown that maximum-minimum (m-m) attribute can resolve the 

reflector position of a wedge-modeled seismic. Regardless the magnitude 

estimated, m-m attribute can be considered to be alternative in providing 

preliminary reflectivity, persistently, pseudo-reflectivity map. The provided 

map then can be further processed for complete seismic inversion. 

Combining the m-m attribute with   zero-INTENS-difference (z-i-d) attribute, 

estimating the true thickness of wedge-modeled seismic can be done accurately. 

When the synthetic seismic is constructed with a perfect wavelet, the thickness 

below tuning of the wedge is estimated precisely. Although perfect wavelet is 

only ‘a myth’ in real world, the evidence enables solution of estimating the 

layer thickness below tuning. 

The z-i-d attribute cannot be found directly from the INTENS-difference profile 

when an imperfect wavelet is used to construct the synthetic seismic. The z-i-d 

attribute can be found statistically from INTENS-difference profile by finding 

the nearest-to-zero of the INTENS-difference profile value. Because of 

parabolic character of INTENS-difference profile, there are two zero which has 

to be chosen. m-m ratio has been proposed as additional parameter to help 

decision making. When m-m ratio is above m-m attribute the second zero is 

chosen and the first zero is chosen when m-m ratio is below m-m attribute. 
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Algorithm of thickness estimation using m-m and z-i-d attribute can be 

extended for more than one layer. It may be the only one way, but iterating two 

consecutive layers thickness estimation can be used as multilayer thickness 

estimation in general. However more than 3 layers model has not been tested, 

the result indicates that the algorithm will still robust for inverting more than 3 

layers model. The effect of more layer number still needs further observation.  

 

Stratton shallow channel region pseudo-relative-impedance has mapped well by 

the extended method. The region is difficult to be mapped by conventional 

tracked (picked) horizon because the channel differs from it surrounding (non 

channel) is only 2 ms [6]. The cross section of pseudo-impedance (Figure 21) 

shows that the channel thickness is about 10 ms or less, which is below tuning 

which around 15 to 13 ms.  Although there is no well confirming the pseudo-

impedance map, the method capability of delineating pseudo-relative-

impedance of Stratton shallow channel indicates that the method potential to 

characterize  thin bed reservoir.  
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