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Abstract. In the process of GNSS deformation monitoring, it is inevitable that 
the monitoring data are contaminated by noise. Effectively mitigating the impact 
of noise on the measurements and thus improving the quality of the deformation 
data is the objective of GNSS data processing. Wavelet analysis can analyse the 
signal according to different frequencies of the signal. Simulation data can be 
used to determine the best wavelet basis function and select the appropriate 
decomposition level. In this paper, an improved threshold de-noising method is 
proposed, based on an analysis of conventional hard threshold de-noising, soft 
threshold de-noising and compulsory de-noising methods. The improved method 
was examined through a simulation analysis and applied in an engineering case. 
The results show that it effectively removed the noise at high frequencies while 
retaining data details and mutation. The de-noising ability of the proposed 
technique was better than that of the conventional methods. Moreover, this 
method significantly improved the quality of the deformation data. 

Keywords: GNSS deformation monitoring data; improved threshold de-noising 
method; best wavelet basis function; appropriate decomposition level; threshold de-
noising; wavelet analysis. 

1 Introduction 

In the GNSS deformation monitoring process, errors (i.e. noise) are inevitably 
present in the monitoring results because of the influence of external conditions, 
measurement methods, measurement instruments, data transmission, and other 
factors. In particular, white noise from the multi-path effect covers almost the 
entire monitoring range of the GNSS deformation data. Monitoring data consist 
of two parts, namely real data and noise. Thus, the objective of GNSS 
deformation data processing is to effectively reduce errors (noise) that affect the 
data, preventing the real data to be covered by noise. Traditional processing 
methods for deformation monitoring data have wide applications but are limited 
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by a number of drawbacks. For example, the commonly used Kalman filter and 
smoothing method are capable of data de-noising [1-2] but broaden the 
waveform. Moreover, smoothing the mutation component of the signal leads to 
loss of important information regarding mutation. Wavelet analysis is a local 
and multi-scale analysis tool that can decompose a known data signal according 
to its various frequencies. As the scale changes from large to small, the signal is 
transformed from coarse to fine observation. The low-frequency part has a high 
frequency resolution and a low time resolution, whereas the high-frequency part 
has a low frequency resolution and a high time resolution. 

The first step of wavelet de-noising is selecting the best wavelet function. Under 
normal circumstances, the best wavelet function is selected based on simulation 
examples [3], after which the de-noising method is selected. The most widely 
applied method is threshold de-noising, which includes hard threshold de-
noising, soft threshold de-noising, and forced de-noising [4]. Finally, based on 
the high-frequency signal and a given specific threshold, the low-frequency and 
high-frequency parts are reconstructed [5]. This study performed a systematic 
analysis of the different threshold de-noising methods and proposes an 
improved threshold de-noising method that is based on the data processing of a 
simulation experiment and an engineering example. Compared with 
conventional de-noising methods, the improved threshold de-noising method 
can better eliminate noise while effectively retaining the original data details 
and mutation, thus avoiding the loss of effective data from the high frequency 
part. Therefore, the proposed method has the potential to improve the quality of 
GNSS deformation monitoring data. 

2 Principle of Wavelet Threshold De-noising and the Improved 
Method 

GNSS deformation monitoring data can be viewed as a set of signals consisting 
of real data and noise data, where the noise primarily comprises random white 
noise. The noise appears as high-frequency signals that are mainly contained in 
the high frequencies of the wavelet. The real data appear as low-frequency 
signals and some stationary signals. 

 ( ) ( ) ( )s t x t w t= +  (1) 

In Formula (1), s(t) denotes monitoring data, x(t) denotes real data, w(t) denotes 
noise data, and w(t) denotes Gaussian white noise. 

2.1 Wavelet Analysis 
The purpose of wavelet transform is to approximate a signal or function from a 
series of functions. The series of functions is called the wavelet basis function, 
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which is obtained by wavelet translation and scaling. The basis function has the 
function of multi-resolution analysis. It is a window of constant size, although 
the shape of the window can change the time-frequency analysis method [6]. 

 1/2( )( , ) ( ) ( )WAV t b
T f a b a dt f t

a
ψ

− −
= ∫  (2) 

 )()( 2/1,

a
bsasba −

= − ψψ  (3) 

Formula (2) is the wavelet transform model, and Formula (3) is called the 
mother wavelet. In Formula (3), , ( )a b sψ  and ψ  are the same functions. 

, ( )a b sψ  is the result of ψ  obtained through telescopic translation. a  is the 
telescopic factor, and b  is the translation factor. The other wavelet basis 
functions are all obtained by changing the mother wavelet scaling factor ( a ) 
and the translation factor (b ).  

2.2 Principle and Method of Wavelet De-noising 
The features of wavelet transform include time-frequency localization, multi-
resolution analysis, de-correlation and flexible choice of basis function 
resolution, de-correlation and flexible choice of basis function. These features 
allow wavelet transform to effectively remove the noise coefficient while 
maximizing the retention of the signal coefficients. In this way, optimal 
estimation of the real data signals can be obtained [7]. Wavelet de-noising can 
be divided into three main steps [8]: 

(1) Data signal wavelet decomposition. Depending on the need for data 
smoothing and noise reduction in relation to the adaptability of the model, the 
best wavelet function and wavelet decomposition level are selected to 
decompose the data signal; the scale coefficients and wavelet coefficients are 
extracted; and the high-frequency coefficients are separated from the low-
frequency coefficients. 

(2) Threshold quantization analysis of the high-frequency coefficient layer of 
wavelet decomposition. The high-frequency coefficients are quantified based on 
different threshold de-noising methods and threshold selection methods.  

(3) Data signal reconstruction. In order to reconstruct the quantized high-
frequency coefficients and low-frequency coefficients, the data signals are 
obtained after de-noising [9-12]. 

(4) Hard threshold de-noising. After the data signal is decomposed with the 
wavelet function, if the high-frequency coefficient of the different layers 
exceeds a given threshold, then it is reserved; otherwise, it is zero, i.e.: 
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(5) Soft threshold de-noising. After the data signal is decomposed with the 
wavelet function, if the high-frequency coefficient of the different layers 
exceeds a given threshold, then it should be subtracted from the threshold; 
otherwise, it is zero, i.e.: 
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(6) Compulsory de-noising. To compulsory eliminate the decomposed 
components of the high-frequency part, the coefficient should be zero, i.e.: 

 ( ) ( , ( ( )))D n zeros l length d n=  (6) 

In Formulas (4), (5), and (6), wλ  denotes the processed data, w  denotes the 
low-frequency data signal, λ  is a given threshold, ( )sign w  denotes the 
symbols of w , ( )D n  represents the high-frequency coefficient, 

( , ( ( )))zeros l length d n  is for setting the high-frequency part to zero. 

Choosing the appropriate threshold is the key to effective wavelet threshold de-
noising. The classical threshold proposed by Donoho [13] is shown in Formula 
(7). In the present study, the improved method of Zhao Baozhen was used 
(Formula (8)). 

 2 log Nλδ σ=  (7) 

 2 log / ( 1)N IN eλδ σ λ= + −   (8) 

The signal-to-noise ratio (SNR), root mean square error (RMSE), and the 
similarity between the graphs of the reconstruction and the original data are 
three effective indicators for evaluating the quality of data processing [14]. To 
ensure that the reconstructed data are not distorted, the SNR should be 
increased, RMSE should be small, and the wavelet de-noising effect should be 
better. 
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In the formula, SNR is the signal-to-noise ratio, RMSE  is the root mean 
square error, ( )I i  are the after-processing data, ( )dI i  are the original data, and 
N  is the number of data. 

2.3 De-noising Method of Improved Threshold 
Using different threshold de-noising methods can lead to different de-noising 
results. In forced de-noising, the high-frequency coefficient is set to zero. 
Although the de-noising effect is obvious, useful data from the high-frequency 
part is lost. As a result, hard threshold and soft threshold de-noising methods are 
more widely used [15-18]. However, Formulas (3) and (4) show that when the 
high-frequency coefficient is below the threshold, both methods make it zero. 
Consequently, useful information from the high-frequency part is lost. 
Therefore, we propose an improved threshold de-noising method. If the high-
frequency coefficient exceeds a given threshold, then it is reserved; otherwise, 
this part will be multiplied by a constant ( a ). When 0=a , this method is 
equivalent to hard threshold de-noising, i.e.: 
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Through reverse thinking, arbitrary values of a  can be considered to establish 
the mathematical relationship between SNR and a , and consequently establish 
a mathematical model of the two. Simulation experiments revealed that the a  
value and the SNR form a parabola. The mathematical expression is then fitted 
in Matlab to obtain the derivative of the formula in order to find the value of a . 
When the mathematical relationship reaches the maximum value, the value of  
a  is the value chosen by the improved method. 

3 Simulation Test 

3.1 Selection of Wavelet Base Function 
The selection of the wavelet basis function is mainly based on the de-noising 
effect on the actual data. This study utilized Matlab as the platform. Block data 
were used, and random white noise was added to the data. Then, the basis 
functions sym4, sym8, db3, and db6 were used to de-noise. The SNR and 
RMSE of the data processing were compared for the four kinds of wavelet basis 
functions. Finally, the most suitable wavelet basis function was selected. 
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Figure 1 Simulation of data preparation. 

In Figure 1, the data available in the blocks call Matlab (Figure 1 – top), and 
Matlab were used to generate a random white noise noise = 0.1 × randn (size 
(blocks)) (Figure 1 – middle), and the noise was added to the known data 
generated (Figure 1 – bottom). 

 
Figure 2 Data processing of different wavelet basis functions. 
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Table 1 SNR and RMSE of Processing Data by Different Wavelet Bases. 

 The Type Of Wavelet SNR/dB RMSE/mm 
sym4 24.6242 0.1744 
sym8 23.8359 0.1910 
db3 24.7156 0.1726 
db6 23.2220 0.2050 

As shown in Figure 2 and Table 1, de-noising the same data using different 
wavelet basis functions leads to different results of data signal processing. 
Systematic analysis was conducted on four kinds wavelets, namely, sym4, 
sym8, db3, and db6, which are the most commonly used in deformation data 
processing. As shown in Table 1, the SNR of the maximum db3 value was 
24.7156, whereas the minimum value was 23.2220 db6; the RMSE of the 
maximum db6 value was 0.2050, whereas the minimum value was 0.1726 db3. 
Therefore, db3 is more suitable for data signal de-noising. 

3.2  Selection of Wavelet Decomposition Level 
In the process of wavelet de-noising, the selection of the optimal decomposition 
level is one of the main factors that influence the de-noising effect [19-25]. In 
this study, the best decomposition layer was selected based on an analysis of the 
leleccum data signal 2~9 layer and on a systematic analysis of the SNR and 
RMSE curves of the hierarchical reconstruction data. 

 
Figure 3 Influence of different decomposition levels on data de-noising. 
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Table 2 SNR and RMSE of Different Decomposition Levels on Data De-
noising. 

Decomposition level SNR/dB RMSE/mm 
2 32.9312 9.4213 
3 34.9907 7.4325 
4 35.6229 6.9108 
5 35.3708 7.1143 
6 34.6478 7.7319 
7 33.8591 8.4668 
8 33.9070 8.4202 
9 13.3250 90.0378 

As shown in Figure 3 and Table 2, when the decomposition levels were not the 
same, the data de-noising effect was not the same. Figure 3 shows that when the 
decomposition level was 9, the reconstructed data contained graphic distortion. 
The reason is that the wavelet analysis regards the real data signal as noise that 
should be eliminated. When the decomposition level was 2, although the 
reconstructed data signal was not distorted, the noise was not eliminated very 
well. Therefore, to ensure that the data signal is without distortion, the optimal 
decomposition level must be selected based on SNR and RMSE. In this study, 
the decomposition layer was 4. 

3.3 Improved Threshold De-noising Method 
This study adopted the db3 wavelet function for the simulation data signal by a 
four-layer wavelet decomposition. Suppose a value of a . Using the improved 
threshold de-noising method presented in this paper, different values of a  were 
calculated corresponding to SNR, as shown in Table 3. 

Table 3 Different  a  Corresponding to SNR 

a SNR/dB a SNR/dB 
1 27.1133 0.1 37.2911 

0.9 27.9905 0.04 37.3235 
0.8 28.9525 0.005 37.1876 
0.7 30.0123 0.007 37.1983 
0.6 31.1826 0.0001 37.1600 
0.5 32.4702 0.00005 37.1597 
0.4 33.8620 0.00001 37.1595 
0.3 35.2882 0.000005 37.1595 
0.2 36.5536 0 37.1595 

As shown in Figure 4, to calculate the function expression (12), a  is set as the 
independent variable and SNR as the dependent variable. The corresponding 
value of a  is calculated when the expression reaches the maximum value. 
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Figure 4 The mathematical relationship between a  and SNR. 

 ( ) 5 4 3 220.59 78.52 114.7 74.57 7.791 37.15f x x x x x x= − + − + +  (12) 

 ( ) 4 3 2' 102.9717 314.0858 344.0005 149.1466 7.791f x x x x x= − − +  (13) 

The solution of the mathematical expression: X1 = 1.311, X2 = 0.8393 + 0.5051i, 
X3 = 0.8393 - 0.5051i, and X4 = 0.0601. Therefore, a  = 0.0601 ( 10 <≤ a ). 

 
Figure 5 Data comparison of different threshold de-noising methods and 
improved threshold de-noising method. 

Figure 5 shows the data reconstruction process. Although the processed data of 
the hard threshold and soft threshold de-noising were not distorted and the 
smoothness of the data was maintained, original data details and mutation were 
lost. The improved threshold de-noising method not only assures the absence of 
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distortion but also well preserves data details and mutation. As can be seen in 
Figure 5, the data signal obtained by the improved threshold de-noising method 
was closer to the original data signal than that obtained by the other two 
methods for processing the data signal. As shown in Table 4, the SNR of the 
improved threshold de-noising was 38.5541 of the maximum, and its RMSE 
was 4.9314 of the minimum, suggesting that the improved method is superior to 
the conventional threshold de-noising methods. 

Table 4 Different Threshold De-noising Methods and Improved Threshold De-
noising Method for SNR and RMSE. 

De-noising Type SNR/dB RMSE/mm 
Original signal with noise 27.5134 17.5793 
Hard threshold de-noising 37.5087 5.5621 
Soft threshold de-noising 36.6976 6.1065 

Improved threshold de-noising ( a  = 0.0601) 38.5541 4.9314 

4 An Engineering Example 
To verify the de-noising effect of the improved threshold de-noising method in 
practice, it was applied to an Anshan mine waste dump for open-pit GNSS 
deformation monitoring data processing. The receiver was composed of GPS, 
GLONASS, COMPASS. The plane precision was ± (2.5 + 1 × 10-6 D) mm, and 
the elevation accuracy was ± (5 + 1 × 10-6 D) mm. In this experiment, mainly 
monitoring with the rapid static method was used, once every five days. Each 
observation time was 30 min, with a sampling interval of 10 s, and each 
observation time was strictly conducted at the same time every day. 

All phase noise data were de-noised using hard threshold de-noising, soft 
threshold de-noising and the improved threshold de-noising according to the 
abovementioned method to establish the mathematical relationship between a  
and SNR. As shown in Table 5, a  = 0.2838. After wavelet analysis was applied 
to analyze the monitoring data, the data point error was improved compared 
with that of the untreated data. The results show that the effect of hard threshold 
de-noising was better than that of soft threshold de-noising. We propose an 
improved threshold de-noising method to minimize errors. 

Table 5  Median Error of a Different Cycle Threshold Data Processing Method 
of No. 18 Monitoring Points. 

Processing method Median error 
Original data 0.1692  

Hard threshold de-noising 0.0807  
Soft threshold de-noising 0.0949  

Improved method for de-noising 0.0658  
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Hard threshold de-noising, soft threshold de-noising, and improved threshold 
de-noising were used to process the 31 cycle data. 

 
Figure 6 Line chart of data processing with different threshold de-noising 
methods. 

Table 6 SNR and RMSE of Different Threshold De-noising Methods. 

Processing method SNR RMSE 
Hard threshold de-noising 30.1265 0.1804 
Soft threshold de-noising 29.2616 0.2027 

Improved method for de-noising 33.4764 0.0967 
 
As shown in Figure 6, the data signal obtained by the improved wavelet 
threshold de-noising method was closer to the original data signal than that 
obtained by hard threshold de-noising and soft threshold de-noising. Although 
hard threshold de-noising also removed the noise very well and effectively 
smoothed the data signal, useful data were missing from the high-frequency 
part. Consequently, the data signal lost its original details and mutation. 
However, in our investigation, the improved threshold de-noising method 
preserved the details and mutation of the high-frequency part, thereby making 
the after-processing data closer to the original data. Moreover, as shown in 
Table 6, the improved threshold de-noising method presented in this paper 
performed better than both other methods in image de-noising for improving the 
quality of the data. 

5 Conclusion 
In this paper, an improved threshold de-noising method was proposed based on 
data simulation and an engineering example, as well as systematic analysis of 
the selection of the wavelet de-noising basis function and the optimal 
decomposition level. The best wavelet basis function can be selected by 
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analyzing the results of actual data processing through Matlab data signal 
simulation of the quantitative and qualitative analyses of four kinds of the most 
commonly used deformation data processing wavelet bases. The selected 
wavelet base in this paper was db3. The decomposition level of the data signal 
wavelet analysis was one of the other main factors that affected the data 
processing results. In this study, the selected number of layers of decomposition 
was 4. Analysis of hard threshold de-noising, soft threshold de-noising, and 
forced de-noising revealed that the quality of the data processing of the 
improved threshold de-noising method was the best. Data simulation and an 
engineering example revealed that the improved method yielded a better de-
noising effect than the conventional methods. 
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