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Highlights: 

 Improved Modified Symbiosis Organisms Search (IMSOS) is proposed to improve the 
standard Modified Symbiosis Organisms Search (MSOS) algorithm. 

 IMSOS was tested on the inversion of geoelectrical data (self-potential and vertical 
electrical sounding measurements), both synthetic and field data. 

 IMSOS accurately determined the model parameters and model uncertainty. 
 Like SOS and MSOS, IMSOS is also tuning parameter free. 

 
Abstract. Symbiotic Organisms Search (SOS) is a global optimization algorithm 
inspired by the natural synergy between the organisms in an ecosystem. The 
interactive behavior among organisms in nature simulated in SOS consists of 
mutualism, commensalism, and parasitism strategies to find the global optimum 
solution in the search space. The SOS algorithm does not require a tuning 
parameter, which is usually used to balance explorative and exploitative search by 
providing posterior sampling of the model parameters. This paper proposes an 
improvement of the Modified SOS (MSOS) algorithm, called IMSOS, to enhance 
exploitation along with exploration strategies via a modified parasitism vector. 
This improves the search efficiency in finding the global minimum of two 
multimodal testing functions. Furthermore, the algorithm is proposed for solving 
inversion problems in geophysics. The performance of IMSOS was tested on the 
inversion of synthetic and field data sets from self-potential (SP) and vertical 
electrical sounding (VES) measurements. The IMSOS results were comparable to 
those of other global optimization algorithms, including the Particle Swarm 
Optimization, the Differential Evolution and the Black Holes Algorithms. IMSOS 
accurately determined the model parameters and their uncertainties. It can be 
adapted and can potentially be used to solve the inversion of other geophysical 
data as well. 

Keywords: free tuning parameter; geoelectrical data; model parameter; inverse 
problem; uncertainty analysis. 
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1 Introduction 

Geoelectrical data (for example from self-potential and vertical electrical 
sounding measurements) can be used to determine relevant subsurface 
parameters. In order to determine these parameters, data inversion is required. 
Data inversion is not only done to optimize misfit between observed and 
calculated data but also to evaluate the posterior distribution of models (PDM) 
and quantify the model uncertainties. The latter represents, at least in part, the 
non-uniqueness of the inverse problem solution. Causes of a non-unique solution 
in inversion results include noise contained in the measured data, bandwidth 
limitations, physical assumptions (e.g. isotropy, anisotropy, homogeneity, etc.), 
and numerical approximations for forward mathematical modeling [1-4]. 

Posterior sampling, generally performed by applying the Monte Carlo (MC) 
technique, is done to derive the uncertainties of the inversion modeling solution. 
MC is computationally expensive since the posterior sampling necessitates 
calculation of the likelihood function [5]. However, some meta-heuristic 
algorithms (MHAs), including the Genetic Algorithm (GA) [6], the Particle 
Swarm Optimization (PSO) [7], the Differential Evolution (DE) [8], the Black 
Holes Algorithm (BHA) [9], the Flower Pollination Algorithm (FPA) [10], etc. 
provide posterior sampling of model parameters with the capacity to trade off 
between exploration and exploitation of the search space. 

The most notable advantages of MHAs are their independence from the initial 
model and avoidance of gradient-based calculation to find the global optimum 
solution. However, the results of some MHAs depend on the controlling 
parameters. For example, 1) GA requires mutation and crossover probabilities; 
2) PSO requires inertia weight, cognitive and social parameters; 3) FPA requires 
switching probability; 4) DE involves a weighting factor and crossover 
probability, etc. Furthermore, some MHAs require parameter tuning to balance 
the exploration and exploitation capacities of the algorithm. Improper tuning of 
the MHA parameters may lead to a non-optimum solution and may increase the 
computational time required for inversion. Several tuning parameter free MHAs 
have been proposed, including the Black Hole Algorithm [9,11], the Symbiosis 
Organisms Search (SOS) [12], the Ions Motion algorithm [13], the Dragonfly 
algorithm [14], the Adaptive Differential Evolution [15], the Marine Predatory 
algorithm [16], etc. Sometimes, the weak exploitation capability of tuning 
parameter free MHAs leads to very slow convergence because of stagnation at 
local optima. 

A simple, yet powerful and relatively fast convergence MHA that does not need 
parameter tuning is SOS, proposed by Cheng & Prayogo [12]. The algorithm 
simulates symbiotic interaction strategies that organisms use to survive in their 
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ecosystem. The SOS algorithm was successfully applied to solve non-linear and 
multimodal problems, for example in structural optimization [12,17,18], power 
plants and system optimization [19], and antenna design [20]. In this paper, an 
improvement of the previously modified SOS algorithm for the inversion of 
geophysical data is proposed by providing posterior sampling of the model 
parameters. Noisy synthetic and field data from self-potential (SP) and vertical 
electrical sounding (VES) measurements were used to test the performance of the 
proposed IMSOS algorithm in the inversion process. All inversion estimation 
problems considered here are highly non-linear and have non-unique solutions 
[9,21]. 

2 Symbiosis Organism Search Algorithm 

Symbiosis is the interaction or relationship between two different organisms in a 
natural ecosystem. The SOS algorithm was inspired by symbiosis mechanisms 
and contains mutualism, commensalism and parasitism phases [12]. Mutualism 
symbiosis describes the interaction of two organisms where both of them benefit 
from this interaction. Commensalism symbiosis denotes interaction where one of 
the organisms involved obtains the benefits from another organism, which is not 
affected by the relationship. Finally, parasitism symbiosis is the interaction 
between two organisms where one organism survives by harming the other 
organism.  

2.1 Mutualism Phase 

For processing in the mutualism phase, for each organism Xi, an organism Xj is 
selected randomly from the ecosystem, where Xi  Xj. The interaction between Xi 
and Xj is to increase the mutual survival advantages within the ecosystem by 
creation of new organisms as follows: 

 )()1,0( 1BFXXrandXX mutualbestiinew   (1) 

 
)()1,0( 2BFXXrandXX mutualbestjjnew 

  
(2)

 

where Xbest denotes the organism with the best objective function value or fitness 
and rand(0,1) is a vector of random numbers uniformly distributed between 0 and 
1. Furthermore, BF1 and BF2 reflect the benefit factors for each organism with 
respect to their interaction represented by Xmutual, as determined by 

 
2/)( jimutual XXX 

  
(3)

 

The benefit factors in Eqs. (1) and (2) are stochastically chosen as either 1 or 2 
by using 
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 )]1,0([11 randroundBF   (4) 

 )]1,0([12 randroundBF   (5) 

The new candidates for solutions Xinew and Xjnew replace Xi and Xj, respectively, 
if their fitness is better than that of the organisms before interaction. Otherwise, 
Xi and Xj as the initial organisms are retained. In this case, organisms in the 
ecosystem represent models in the model space, where the indices i and j refer to 
models in the population. 

Eqs. (1) and (2) show that an organism can partially or fully benefit from the 
interaction process. The level of benefit from the interaction is expressed in the 
value of the benefit factor. A small benefit factor is associated with a small step 
in the algorithm search, including the exploitation capacity, which may decrease 
the convergence speed of the algorithm. Conversely, a large benefit factor may 
be beneficial for the exploration property of the algorithm and for the 
convergence speed. Thus, the exploitation and exploration capacities of the 
mutualism phase depend on the benefit factor. Consequently, in order to obtain a 
good balance between the exploitation and exploration of the algorithm some 
authors have proposed an adaptive method to determine the benefit factor [17,18] 
to replace Eqs. (4) and/or (5). In this study, following Kumar, et al. [17], the 
adaptive benefit factor was determined based on an objective function that varies 
throughout the iteration process, i.e. 

 ( ) / ( ) if ( ) 0
1 [ (0,1)] if ( ) 0

i best best

best

f X f X f XABF round rand f X
            (6)

 

Furthermore, benefit factor BF1 in Eq. (1) is determined as follows:  
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2.2 Commensalism Phase 

In the commensalism phase, an organism Xi interacts with another organism Xj 
chosen randomly from the ecosystem, where Xi  Xj. The interaction is such that 
Xi increases its opportunity to survive by taking advantage from Xj without 
affecting Xj. A new candidate for the solution in the commensalism phase is 
created by 

 )()1,1( jbestiinew XXrandXX   (8) 
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where rand(-1,1) is a vector of random numbers uniformly distributed between -1 
and 1. The comparison of the fitness values of Xi and Xinew determines which 
organism will survive for the next generation. 

2.3 Parasitism Phase 

In the parasitism phase, the interaction between organisms is analogous to the 
interaction between Plasmodium parasites, Anopheles mosquitos and humans. 
The human host is harmed, while the Anopheles mosquito as parasite carrier is 
left unharmed and the Plasmodium parasite obtains a benefit, because it can 
reproduce in the human body. Parasites in humans are generally not only of one 
kind and different parasites can interact among each other. In such cases, for a 
given organism Xi, an artificial parasite vector is created based on other organisms 
Xj, Xk and Xl, randomly selected from the ecosystem serving as hosts to Xparasite. 
We use a slightly modified formula from Kumar, et al. [17] for Xparasite, as 
follows: 

 









otherwise))(1,0(

5.0)1,0(if

lkj

i
parasite XXrandX

randX
X  (9) 

Furthermore, the parasite vector will try to replace Xi in the ecosystem using 
greedy selection, i.e. by comparing their fitness. Eq. (9) is a mutation strategy 
like in other MHAs, which is to avoid premature convergence and to explore 
different regions of the search space. In addition, Eq. (9) requires three randomly 
selected models from the population, such that the computational time may 
slightly increase compared to the original modified SOS (MSOS). 

2.4 SOS Properties 

The success rate of MHAs in solving problems depends on the exploitation and 
exploration capabilities of the algorithm. Exploitation represents local search 
capability around a potential solution, leading to faster convergence, while 
exploration implies that the algorithm is able to sample different parts of the 
search space to find the global optimum, which is usually associated with slow 
convergence. Ideally, MHAs have to converge relatively fast and simultaneously 
find an accurate solution associated with the global optimum. This condition will 
be fulfilled when the MHA has a good balance between its exploration and 
exploitation capabilities. 

The exploitation property of the SOS algorithm is correlated with the mutualism 
and commensalism phases, while the exploration capability is associated with the 
mutualism and parasitism phases [12,22]. More specifically, the exploitation 
capability of SOS is related to factors such as: 1) partial benefit of the organism 
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from the interaction in the mutualism phase related to a small benefit value; 2) 
common interaction in the commensalism phase, which is also used in other 
global optimization algorithms, including DE and GA; 3) the use of the best 
solution as reference point in the commensalism phase to exploit promising 
regions [12,17,22]. Meanwhile, the exploration capability of SOS is related to 
factors such as: 1) a large benefit value in the mutualism phase, which induces 
the organism to fully benefit from the interaction, thus reducing exploitation; 2) 
a mutation-like operator used in the parasitism phase for preventing premature 
convergence and maintaining diversity [17,22]. 

Strategies that may be used to balance the exploration and exploitation 
capabilities of the SOS algorithm include: 1) using an adaptive benefit factor in 
the mutualism phase [17]; 2) using the original SOS algorithm for exploitation in 
the commensalism phase [23], 3) using a mutation strategy in the parasitism 
phase [17]. Furthermore, greedy selection is applied in all phases to choose 
organisms that can survive in the ecosystem. This approach is applied by 
comparing the fitness of the new organism to the pre-interaction organisms. 

3 Forward Modeling 

Forward modeling describes the estimation of theoretical data for the model 
parameters, m.  Forward modeling is denoted by F(m). Formulas for some 
forward modeling calculations used in this paper are presented briefly for 
completeness in the following sections. 

3.1 Self-Potential (SP) 

For an idealized body (e.g. sphere, horizontal cylinder and vertical cylinder), the 
SP anomaly at a point 𝑥௜ can be expressed as follows [24,25]: 

 q
i

i
i

hDx

hDx
Kxv

))((

)sin()cos()(
)(

22 


  (10)
 

where K and  are the polarization and the polarization angle, respectively, and h 
and D denote the depth and position (relative to the coordinate origin) of the 
anomalous source’s center, respectively, while q represents the shape factor. The 
shape factor is 0.5, 1.0 and 1.5 for a vertical cylinder, a horizontal cylinder and a 
sphere, respectively. Hence, F(m) = v(xi), where m contains K, , h, D and q. 

3.2 Vertical Electrical Sounding (VES) 

The VES response of a layered earth or 1D model is apparent resistivitya, which 
can be determined from the convolution formula as follows [21,26]: 
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where fk are linear filter coefficients as a function of the measurement 
configuration used. T() is the resistivity transform function, which can be 
calculated by using Pekeris’ recursion formula as follows [21, 26]:  
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i = n-1, n-2, …, 1  (12)

 

For an n-layered model Tn = n, hence T1() is the resistivity transform at the 
surface, whilei and hi are the resistivity and the thickness of the i-th layer, 
respectively. Therefore, in the VES method F(m) = a, m contains i and hi, i = 
1, 2, …, n, where n is the total number of layers in the 1D model. 

4 Inversion 

Inversion is a process to determine model parameters from observed data by 
fitting calculated data F(m) to observed data d. For a non-linear relationship 
between the model and the data, expressed in forward modeling function F(m), 
most inversions obtain a solution by linearization and updating the initial model 
iteratively so that it converges to the best model [4].  

The inversion process using a global optimization algorithm is generally geared 
to minimize an objective function. In order to invert SP data, the objective 
function ObjSP can be defined as follows [25]: 

 ||)(||||)(||

||)(||2

mm

m

iiii

ii
SP FdFd

Fd
Obj




  (13)
 

where di and Fi(m) describe the i-th element of the observed and the calculated 
SP data, respectively, while || . || denotes the vector magnitude operator or sum 
over the absolute values of the vectors’ elements. Using the same notation, the 
objective function for VES is expressed as follows:  

 
100

||)log(||

||)(/log(||


i

ii
VES d

Fd
Obj

m

 
(14)

 

Solutions to geophysical inverse problems are generally not unique due to the 
presence of noise and the inherent theoretical relationship between the observed 
parameters or data and the model parameters. Consequently, many models with 
different combination of parameters can be considered optimum solutions, i.e. 
the predicted data fit the observed data. 
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The use of MHAs is a good option for solving inversion problems in order to 
provide a set of equivalent models since they have the exploration capacity to 
find solutions in the search space. In such cases, MHAs provide an effective and 
efficient sampling mechanism, which can lead not only to the best model but also 
to a set of models fulfilling certain criteria of optimality, i.e. low misfit. For 
example, inversion that uses the Black Holes Algorithm and PSO variants 
[7,9,11] may result in a large number of models Mtol that fit the observed data d 
within misfit tolerance tol as follows [2]: 

 tolObjM tol  )(: mm  (15) 

The only problem with the exploration property of MHAs is that they are more 
time-consuming in obtaining convergence. Therefore, in order to obtain a set of 
good models, MHAs should balance their exploitation and exploration 
capabilities, where SOS is one of the MHAs that have that ability without tuning 
parameter, as described in Section 2.4. 

5 Algorithm Testing 

The performance and reliability of Improved Modified SOS (IMSOS) and 
Modified SOS (MSOS) [17] were compared by evaluation of the well-known 
Ackley and Griewank functions. The upper and lower bounds were set to [-600, 
600] and [-32, 32] for the Griewank and the Ackley testing function, respectively. 
IMSOS and MSOS were tested in solving 30 dimensions of both functions, which 
are multimodal functions that are generally used to evaluate unconstrained 
algorithm performance, as in inversion problems. The tests were run for 5 times 
to demonstrate the consistency and performance of both algorithms.  

The results showed that IMSOS performed better than MSOS in finding the 
global minimum (Figures 1(a) and 1(b)) for both the Ackley and the Griewank 
testing function, with both algorithms having comparable explorative capabilities 
(Figures 1(c) and 1(d)). Therefore, IMSOS improved its exploitation capability 
while maintaining its exploration capability (diversity of the population). 

6 Application to Synthetic Data 

The IMSOS algorithm was applied to invert synthetic SP and VES data using the 
parameters in Tables 1 and 2, respectively. In inversion, the model parameters 
that represent the organism are contained in X, while the mutualism, 
commensalism and parasitism phases are applied to search for optimum models 
and to construct the posterior distribution of models (PDM), which requires 
number of function evaluations (NFE). Furthermore, the stopping criteria for all 
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algorithms is the maximum number of function evaluations, FEmax, which was set 
to 80000 and 2000 evaluations for SP and VES inversion, respectively. 

 

(a) (b) 

 

(c) (d) 

Figure 1 Convergence curves for the Griewank function (a) and the Ackley 
function (b), and the explorative capabilities for the Griewank function (c) and the 
Ackley function (d). 

6.1 Self-Potential Data 

The synthetic SP data associated with two-body anomalies were generated by 
using Eq. (10) with 5% Gaussian noise added. Table 1 presents the synthetic 
model parameters, the parameter model bounds for the search spaces and the 
inversion results from the IMSOS algorithm. Recently, MHAs have succeeded in 
recovering the model parameters of multiple SP anomaly sources, including BHA 
[9], PSO [25], the Genetic Prices Algorithm (GPA) [27], Very Fast Simulated 
Annealing (VFSA) [28], the Flower Pollination Algorithm (FPA) [10] and the 
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Whale Optimization Algorithm (WOA) [29]. GPA and VFSA need many more 
forward modeling evaluations for global optimization compared to the other 
algorithms [9,10,25,29]. We compared inversion using IMSOS to PSO [25] and 
BHA [9], where both IMSOS and BHA algorithms were successful in inverting 
SP data containing multi-body anomalies. BHA is tuning parameter free, while 
the PSO inversion parameters were set as in by Monteiro-Santos [25].  

Table 1 True parameters, search space, inversion results and their uncertainties 
(median ± iqr) from BHA and SOS for synthetic SP data. 

Parameters K D (m) h (m) θ (o) q 

True anomaly 1 1000 -100 7 40 1.5 
True anomaly 2 -400 30 30 60 1 

Ranges of anomaly 1 0 to 2000 ˗150 to -50 0 - 100 0 - 180 0.1 - 1.8 
Ranges of anomaly 2 ˗700 to 700 ˗50 to 150 0 -100 0 - 180 0.1 - 1.8 
Anomaly 1 (IMSOS) 926.56±163.28 -99.80±0.54 6.97±0.63 31.42±4.55 1.48±0.03 
Anomaly 2 (IMSOS) -182.65±20.22 31.46±1.05 25.94±1.00 65.19±1.77 0.90±0.01 
Anomaly 1 (BHA) 820.41±71.78 -99.75±0.45 8.57±3.64 35.30±6.16 1.41±0.06 
Anomaly 2 (BHA) -275.21±33.14 31.69±2.70 29.63±1.58 64.49±4.74 0.96±0.01 

Figure 2(a) shows that the SP data fittings (median of the PDM) from IMSOS 
and BHA were better than from PSO, which can also be seen from the best 
objective function curves (Figure 2(b)). The theoretical response of the median 
model from PDM tended to fit the observed data equally well [9]. In addition, 
Figure 2c illustrates that BHA had the best explorative capability. Nevertheless, 
the method also had good balance between its exploration and exploitation 
capabilities, with a large interquartile (iqr) and the lowest best objective function. 
The IMSOS algorithm also has balanced capacities, while PSO could not find the 
global minimum. Thus, BHA and IMSOS outperformed the PSO algorithm, 
probably due to the tuning parameter of the algorithm not being appropriately set. 
As a consequence, the algorithm was likely to get trapped in a local minimum.  

Figure 3 represents the PDM of the model parameters constructed by IMSOS 
using tolerance 0.3 for the objective function. The statistics of the PDM are 
presented in Table 1, compared to the BHA inversion results. In this case, the 
PSO inversion results did not lead to a PDM, because none of the particles from 
all iterations met Eq. (13), as can be seen in Figure 1(b). Table 1 also shows that 
the IMSOS results were comparable with those from BHA, while PSO could not 
resolve the problem well, especially for anomaly 1. Furthermore, Figure 3 shows 
that the medians of the PDM from IMSOS were close to the true model 
parameters. This means that IMSOS has a good balance between exploration and 
exploitation capabilities in SP data inversion. 



Improved Modified SOS for Geoelectrical Data Inversion 

893 

 
Figure 2 Comparison between the synthetic and the calculated SP data from the 
PSO, BHA and SOS median models, and the properties from PSO, BHA and SOS 
for the synthetic SP data, including the best and interquartile of the objective 
function with number of function evaluations (NFE). 

 

Figure 3  Histogram provided by IMSOS from the synthetic SP data, where 
crosses indicate the median from the model samples, while dots indicate the true 
model parameters.   
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6.2 Resistivity Data 

VES synthetic data with a Schlumberger array for a three-layered earth model 
was calculated by using Eq. (11) with 5% Gaussian noise added to the synthetic 
apparent resistivity data to simulate noisy field data. Table 2 shows the true model 
parameters and the upper and lower bounds of the search space for inversion with 
DE and IMSOS. The DE parameters and strategy for VES data inversion were 
based on Balkaya [8].  

Table 2 true parameters, search space, and inversions results from DE and 
IMSOS for synthetic VES data. 

Parameters True Model Search Space DE IMSOS 

h1 (m) 2 0.5 - 10 2.03±00 2.03±0.00 
h2 (m) 25  5 - 50 22.44±0.01 22.44±0.00 

ρ1 (Ωm) 2500 500 - 10000 2462.41±0.24 2462.41±0.09 
ρ2 (Ωm) 100 10 - 1000 98.86±0.01 98.86±0.01 
ρ3 (Ωm) 300 10 - 3000 288.22±0.04 288.22±0.00 

Figure 4 shows the convergence and dispersion curves, indicating that IMSOS 
and DE have the same exploration and exploitation capabilities. In order to 
construct a PDM, a threshold of 1.2 was set for the objective function. Figure 5 
is the histogram of the PDM for IMSOS, with the true model parameters and the 
median of the PDM represented by red dots and green crosses, respectively. Table 
2 and Figure 6 contain a comparison of the results in terms of PDM statistics for 
DE and IMSOS, which show that the IMSOS results were comparable to the DE 
results and both results were close to the true model parameters from the VES 
synthetic data. Furthermore, Figure 6 also shows a good fit between the observed 
(or synthetic) and the calculated VES data using DE and IMSOS from the best 
model in terms of RMS error between observed and calculated data. 

Figure 4 Comparison of IMSOS and DE in terms of the best objective function 
with NFE (left) and interquartile objective function with NFE (right).   
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Figure 5  Histogram of PDM from synthetic VES data inversion using IMSOS, 
where crosses indicate the median model samples, while dots indicate the true 
model. 

 

Figure 6 (a) Comparison of synthetic VES data (solid dots) and calculated 
response of the best models from IMSOS (dashed lines) and DE (crosses) (left), 
inverse 1D model from the best model of IMSOS (dashed lines) and DE (dash-
dot) compared to the synthetic model (full line). The interval of the search space 
is shown as an envelope of all lines (right). 
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7 Application to Field Data 

7.1 Self-Potential Data 

Field SP data were measured at P79-P83, in the embankment area of the LUSI 
mudflow, Sidoarjo, East Java, Indonesia. As detailed in previous works [9,30,31], 
the embankment is unstable and has collapsed several times. Sungkono & 
Warnana [9] interpreted the SP data using BHA as four horizontal cylindrical 
structures. Some structures may be correlated with piping or seepage in the 
embankment. We also assumed that the SP data can be associated with four 
anomalous sources. The limits of the search spaces were similar with those used 
in BHA inversion, while FEmax was set to 300,000 evaluations. Figure 7 shows a 
comparison of the SP data inversion results using IMSOS and BHA, while Table 
3 lists the numerical values. Figure 7b and Figure 7c indicate that BHA is more 
explorative than IMSOS. However, IMSOS had explorative capability up to 
70,100 of NFE and a lower final objective function. 

The uncertainty of the model parameters from inversion is constructed by using 
Eq. (15). Table 3 indicates that the uncertainty of the model parameters of IMSOS 
was in good agreement with the BHA results, especially concerning the factors 
of distance, depth and shape. In addition, the IMSOS results also showed that the 
shape of the models was around 1, which is associated with a horizontal cylinder 
(𝑞 ≈ 1). These anomalies are interpreted as horizontal fractures that are affected 
by deformation in this area [9,30,31]. 

Table 3 Inversion parameters (search space) and results (model parameters) and 
their uncertainties using IMSOS compared to BHA [9] for field SP data. 

Parameter Anomaly K D h θ q 

Parameter 
range 

Body 1 ˗700 to 0 0 - 75 0 - 80 0 - 180 0.3 - 1.8 

Body 2 ˗700 to 0 75 - 110 0 - 80 0 - 180 0.3 - 1.8 
Body 3 0 to 700 150 - 215 0 - 80 0 - 180 0.3 - 1.8 
Body 4 ˗700 to 0 200 - 300 0 - 80 0 - 180 0.3 - 1.8 

BHA [9] 

Body 1 ˗412.99±4.47 46.46±0.60 16.16±0.35 104.07±1.85 1.06±0.00 

Body 2 ˗386.59±11.10 99.69±0.39 15.76±0.59 85.88±2.88 1.14±0.01 

Body 3 480.60±27.95 154.93±0.76 25.61±0.36 140.23±2.02 1.01±0.01 

Body 4 ˗563.42±10.49 268.04±2.10 18.93±0.43 103.75±6.47 1.17±0.19 

IMSOS 

Body 1 -303.83±49.88 40.99±1.20 15.01±2.25 74.26±5.11 1.17±0.19 

Body 2 ˗493.38±48.24 89.57±13.29 13.07±7.42 14.99±62.90 1.20±0.14 

Body 3 634.83±22.73 140.22±2.65 17.93±0.79 91.99±8.70 1.03±0.03 

Body 4 ˗574.72±17.18 279.11±2.56 21.69±0.59 136.62±6.72 1.06±0.01 
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Figure 7 Inversion results using IMSOS and BHA of SP data from the LUSI 
embankment: observed and calculated SP data, convergence of the best objective 
functions and dispersion curves represented by the iqr of the objective functions. 

7.2 Resistivity Data 

Field VES data were also taken from P79-P83 at the LUSI embankment. The 
materials used to construct the embankment consist mainly of alluvium (clay, silt 
and sand) [32]. The thickness of the embankment area varied from 10 to 15 meter 
and is affected by water leakage. The VES data were measured by using a 
Schlumberger configuration for determining the thickness of the embankment. 
From Figure 8 it can be seen that IMSOS is slightly more explorative than DE for 
VES data inversion. In this case, FEmax was set to 20,000. 

Using a tolerance of 3 from the convergence curve, the results from IMSOS were 
used to construct a PDM (Figure 9). The calculated VES data from the inverse 
models using IMSOS and DE showed a good match with the field data (Figure 
10). Table 4 shows the median of the model parameters and their uncertainties 
are shown as bounds in the search space. Additionally, the result indicates that 
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the thickness of the embankment was around 11.88 ± 0.11 meter, by assuming 
that the embankment has higher resistivity compared to its base (clay) [31]. The 
result for embankment thickness was relatively close to the embankment design 
of LUSI, i.e. 11 meter [33]; the embankment has been repaired after failure in 
2008. 

  

Figure 8 Convergence and dispersion curves from inversion of field VES data 
by using the IMSOS and DE algorithms. 

 
Figure 9 Histogram for model parameter estimates from IMSOS inversion of 
field VES data. The embankment thickness was determined by the sum of the 
thickness of layer 1 and layer 2 (h1 and h2). Crosses denote the median of the PDM, 
while dots indicate the best-fitting model. 
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Figure 10   Inversion results of observed VES data, comparison between observed 
VES data dispersion (solid dots) and the best modeled VES data using IMSOS 
(solid lines) (left), the lower and upper bounds of the search area (dashed lines) 
and inverted resistivity profiles (solid line) using IMSOS and DE (right). 

Table 4 Search space and inversions results and their uncertainties using     
IMSOS and DE for field VES data. 

Parameters Search Space DE IMSOS 

h1 (m) 1 - 15 1.28±0.00 1.28±0.00 
h2 (m) 1 - 20 10.60±0.00 10.60±0.00 

ρ1 (Ωm) 0.1 - 300 96.05±0.05 96.05±0.04 
ρ2 (Ωm) 0.001 - 300 25.50±0.00 25.50±0.00 
ρ3 (Ωm) 0.0001 - 300 0.95±0.00 0.95±0.00 

8 Conclusion 

In this study, a new improved modified SOS algorithm (IMSOS) for solving 
geophysical inversion problems was presented. The parasitism phase of the 
original MSOS was modified and tested on the Ackley and the Griewank testing 
functions. Like the standard SOS and MSOS algorithms, IMSOS is also adaptive 
and tuning parameter free while having a good equilibrium between its 
exploration and exploitation capabilities, which is required for solving inversion 
problems in geophysics. The algorithm also has the capability of constructing a 
PDM from generated samples of the search space. In order to demonstrate its 
performance, the IMSOS algorithm was applied to noisy synthetic data sets of SP 
and VES data. Moreover, the algorithm was also used to invert an SP and VES 
field data set from the LUSI mudflow embankment, Sidoarjo, East Java, 
Indonesia. Other population-based algorithms, i.e. PSO, DE and BHA, were 
employed for comparison with the IMSOS algorithm. 
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The synthetic and field data inversions showed that the IMSOS algorithm is 
effective for geophysical data inversion, leading to good results and providing the 
uncertainty of the model parameters through a PDM from the inversion process. 
In addition, the inverse models resulting from IMSOS were comparable with the 
results from similar population or swarm-based algorithms. However, we found 
that the proposed algorithm still suffers from a fundamental limitation of the 
global approach of inverse problems, i.e. many evaluations need forward 
modeling, which hinders its use for very complex forward modeling algorithms 
with a large number of model parameters. 
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