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Highlights:

e Improved Modified Symbiosis Organisms Search (IMSOS) is proposed to improve the
standard Modified Symbiosis Organisms Search (MSOS) algorithm.

e IMSOS was tested on the inversion of geoelectrical data (self-potential and vertical
electrical sounding measurements), both synthetic and field data.

e IMSOS accurately determined the model parameters and model uncertainty.

e Like SOS and MSOS, IMSOS is also tuning parameter free.

Abstract. Symbiotic Organisms Search (SOS) is a global optimization algorithm
inspired by the natural synergy between the organisms in an ecosystem. The
interactive behavior among organisms in nature simulated in SOS consists of
mutualism, commensalism, and parasitism strategies to find the global optimum
solution in the search space. The SOS algorithm does not require a tuning
parameter, which is usually used to balance explorative and exploitative search by
providing posterior sampling of the model parameters. This paper proposes an
improvement of the Modified SOS (MSOS) algorithm, called IMSOS, to enhance
exploitation along with exploration strategies via a modified parasitism vector.
This improves the search efficiency in finding the global minimum of two
multimodal testing functions. Furthermore, the algorithm is proposed for solving
inversion problems in geophysics. The performance of IMSOS was tested on the
inversion of synthetic and field data sets from self-potential (SP) and vertical
electrical sounding (VES) measurements. The IMSOS results were comparable to
those of other global optimization algorithms, including the Particle Swarm
Optimization, the Differential Evolution and the Black Holes Algorithms. IMSOS
accurately determined the model parameters and their uncertainties. It can be
adapted and can potentially be used to solve the inversion of other geophysical
data as well.
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1 Introduction

Geoelectrical data (for example from self-potential and vertical electrical
sounding measurements) can be used to determine relevant subsurface
parameters. In order to determine these parameters, data inversion is required.
Data inversion is not only done to optimize misfit between observed and
calculated data but also to evaluate the posterior distribution of models (PDM)
and quantify the model uncertainties. The latter represents, at least in part, the
non-uniqueness of the inverse problem solution. Causes of a non-unique solution
in inversion results include noise contained in the measured data, bandwidth
limitations, physical assumptions (e.g. isotropy, anisotropy, homogeneity, etc.),
and numerical approximations for forward mathematical modeling [1-4].

Posterior sampling, generally performed by applying the Monte Carlo (MC)
technique, is done to derive the uncertainties of the inversion modeling solution.
MC is computationally expensive since the posterior sampling necessitates
calculation of the likelihood function [5]. However, some meta-heuristic
algorithms (MHAs), including the Genetic Algorithm (GA) [6], the Particle
Swarm Optimization (PSO) [7], the Differential Evolution (DE) [8], the Black
Holes Algorithm (BHA) [9], the Flower Pollination Algorithm (FPA) [10], etc.
provide posterior sampling of model parameters with the capacity to trade off
between exploration and exploitation of the search space.

The most notable advantages of MHAs are their independence from the initial
model and avoidance of gradient-based calculation to find the global optimum
solution. However, the results of some MHAs depend on the controlling
parameters. For example, 1) GA requires mutation and crossover probabilities;
2) PSO requires inertia weight, cognitive and social parameters; 3) FPA requires
switching probability; 4) DE involves a weighting factor and crossover
probability, etc. Furthermore, some MHAs require parameter tuning to balance
the exploration and exploitation capacities of the algorithm. Improper tuning of
the MHA parameters may lead to a non-optimum solution and may increase the
computational time required for inversion. Several tuning parameter free MHAs
have been proposed, including the Black Hole Algorithm [9,11], the Symbiosis
Organisms Search (SOS) [12], the Ions Motion algorithm [13], the Dragonfly
algorithm [14], the Adaptive Differential Evolution [15], the Marine Predatory
algorithm [16], etc. Sometimes, the weak exploitation capability of tuning
parameter free MHAs leads to very slow convergence because of stagnation at
local optima.

A simple, yet powerful and relatively fast convergence MHA that does not need

parameter tuning is SOS, proposed by Cheng & Prayogo [12]. The algorithm
simulates symbiotic interaction strategies that organisms use to survive in their
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ecosystem. The SOS algorithm was successfully applied to solve non-linear and
multimodal problems, for example in structural optimization [12,17,18], power
plants and system optimization [19], and antenna design [20]. In this paper, an
improvement of the previously modified SOS algorithm for the inversion of
geophysical data is proposed by providing posterior sampling of the model
parameters. Noisy synthetic and field data from self-potential (SP) and vertical
electrical sounding (VES) measurements were used to test the performance of the
proposed IMSOS algorithm in the inversion process. All inversion estimation
problems considered here are highly non-linear and have non-unique solutions
[9,21].

2 Symbiosis Organism Search Algorithm

Symbiosis is the interaction or relationship between two different organisms in a
natural ecosystem. The SOS algorithm was inspired by symbiosis mechanisms
and contains mutualism, commensalism and parasitism phases [12]. Mutualism
symbiosis describes the interaction of two organisms where both of them benefit
from this interaction. Commensalism symbiosis denotes interaction where one of
the organisms involved obtains the benefits from another organism, which is not
affected by the relationship. Finally, parasitism symbiosis is the interaction
between two organisms where one organism survives by harming the other
organism.

2.1 Mutualism Phase

For processing in the mutualism phase, for each organism X, an organism JX; is
selected randomly from the ecosystem, where X; # X;. The interaction between X;
and JX; is to increase the mutual survival advantages within the ecosystem by
creation of new organisms as follows:

Xinew = Xi + rand(oal)X(Xbest_XmutualXBFi) (1)
Xjnew = Xj + rand(oal)X(Xbest _Xmutual XBF2) (2)

where X denotes the organism with the best objective function value or fitness
and rand(0,1) is a vector of random numbers uniformly distributed between 0 and
1. Furthermore, BF'; and BF> reflect the benefit factors for each organism with
respect to their interaction represented by Xuunai, as determined by

Xoutual = (Xi+Xj)/2 3)

m

The benefit factors in Eqs. (1) and (2) are stochastically chosen as either 1 or 2
by using
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BF, =1+ round[rand(0,1)] 4)
BF, =1+ round[rand(0,1)] 5)

The new candidates for solutions Xiuew and Xjnew replace X; and Xj, respectively,
if their fitness is better than that of the organisms before interaction. Otherwise,
Xi and X; as the initial organisms are retained. In this case, organisms in the
ecosystem represent models in the model space, where the indices i and j refer to
models in the population.

Egs. (1) and (2) show that an organism can partially or fully benefit from the
interaction process. The level of benefit from the interaction is expressed in the
value of the benefit factor. A small benefit factor is associated with a small step
in the algorithm search, including the exploitation capacity, which may decrease
the convergence speed of the algorithm. Conversely, a large benefit factor may
be beneficial for the exploration property of the algorithm and for the
convergence speed. Thus, the exploitation and exploration capacities of the
mutualism phase depend on the benefit factor. Consequently, in order to obtain a
good balance between the exploitation and exploration of the algorithm some
authors have proposed an adaptive method to determine the benefit factor [17,18]
to replace Eqs. (4) and/or (5). In this study, following Kumar, et al. [17], the
adaptive benefit factor was determined based on an objective function that varies
throughout the iteration process, i.e.

_ | S (X)) if f(X,,)#0
ABE =\ s round[rand (0,1)]  if f(Xo)=0 (6)

Furthermore, benefit factor BF in Eq. (1) is determined as follows:

1 if ABF <1

BR =12 if ABF>1 ™)
ABF  otherwise

2.2 Commensalism Phase

In the commensalism phase, an organism JX; interacts with another organism JX;
chosen randomly from the ecosystem, where X; # Xj. The interaction is such that
X increases its opportunity to survive by taking advantage from X; without
affecting X;. A new candidate for the solution in the commensalism phase is
created by

Xipew = X +rand(=1,1)x (X5 — X ;) ®)

mew
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where rand(-1,1) is a vector of random numbers uniformly distributed between -1
and 1. The comparison of the fitness values of X; and X determines which
organism will survive for the next generation.

2.3 Parasitism Phase

In the parasitism phase, the interaction between organisms is analogous to the
interaction between Plasmodium parasites, Anopheles mosquitos and humans.
The human host is harmed, while the Anopheles mosquito as parasite carrier is
left unharmed and the Plasmodium parasite obtains a benefit, because it can
reproduce in the human body. Parasites in humans are generally not only of one
kind and different parasites can interact among each other. In such cases, for a
given organism X, an artificial parasite vector is created based on other organisms
Xj, Xk and Xj, randomly selected from the ecosystem serving as hosts to Xparasite-
We use a slightly modified formula from Kumar, et al. [17] for Xparasite, as
follows:

v X; if rand(0,1) > 0.5 )
parasite. )y ;+rand(0,1)(X; —X;) otherwise

Furthermore, the parasite vector will try to replace X; in the ecosystem using
greedy selection, i.e. by comparing their fitness. Eq. (9) is a mutation strategy
like in other MHAs, which is to avoid premature convergence and to explore
different regions of the search space. In addition, Eq. (9) requires three randomly
selected models from the population, such that the computational time may
slightly increase compared to the original modified SOS (MSOS).

2.4 SOS Properties

The success rate of MHAs in solving problems depends on the exploitation and
exploration capabilities of the algorithm. Exploitation represents local search
capability around a potential solution, leading to faster convergence, while
exploration implies that the algorithm is able to sample different parts of the
search space to find the global optimum, which is usually associated with slow
convergence. Ideally, MHASs have to converge relatively fast and simultaneously
find an accurate solution associated with the global optimum. This condition will
be fulfilled when the MHA has a good balance between its exploration and
exploitation capabilities.

The exploitation property of the SOS algorithm is correlated with the mutualism
and commensalism phases, while the exploration capability is associated with the
mutualism and parasitism phases [12,22]. More specifically, the exploitation
capability of SOS is related to factors such as: 1) partial benefit of the organism
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from the interaction in the mutualism phase related to a small benefit value; 2)
common interaction in the commensalism phase, which is also used in other
global optimization algorithms, including DE and GA; 3) the use of the best
solution as reference point in the commensalism phase to exploit promising
regions [12,17,22]. Meanwhile, the exploration capability of SOS is related to
factors such as: 1) a large benefit value in the mutualism phase, which induces
the organism to fully benefit from the interaction, thus reducing exploitation; 2)
a mutation-like operator used in the parasitism phase for preventing premature
convergence and maintaining diversity [17,22].

Strategies that may be used to balance the exploration and exploitation
capabilities of the SOS algorithm include: 1) using an adaptive benefit factor in
the mutualism phase [17]; 2) using the original SOS algorithm for exploitation in
the commensalism phase [23], 3) using a mutation strategy in the parasitism
phase [17]. Furthermore, greedy selection is applied in all phases to choose
organisms that can survive in the ecosystem. This approach is applied by
comparing the fitness of the new organism to the pre-interaction organisms.

3 Forward Modeling

Forward modeling describes the estimation of theoretical data for the model
parameters, m. Forward modeling is denoted by F(m). Formulas for some
forward modeling calculations used in this paper are presented briefly for
completeness in the following sections.

3.1 Self-Potential (SP)

For an idealized body (e.g. sphere, horizontal cylinder and vertical cylinder), the
SP anomaly at a point x; can be expressed as follows [24,25]:

(x; —D) cos(0) + 4 sin(B)
((x; =D)* + 1*)?

v(x;) = K (10)

where K and 0 are the polarization and the polarization angle, respectively, and %
and D denote the depth and position (relative to the coordinate origin) of the
anomalous source’s center, respectively, while g represents the shape factor. The
shape factor is 0.5, 1.0 and 1.5 for a vertical cylinder, a horizontal cylinder and a
sphere, respectively. Hence, /(m) = v(x;), where m contains K, 6, /#, D and q.

3.2 Vertical Electrical Sounding (VES)

The VES response of a layered earth or 1D model is apparent resistivity ps, which
can be determined from the convolution formula as follows [21,26]:
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kmax

Po = 2 Ti0) fi an

where fi are linear filter coefficients as a function of the measurement

configuration used. 7(A) is the resistivity transform function, which can be
calculated by using Pekeris’ recursion formula as follows [21, 26]:

Ti1 (M) +p; tanh(Ah;)

T,0.) =
14T, (%) tanh(Mk;) / p,

i=n-1,n2,..,1 (12)

For an n-layered model T = pu, hence T1(A) is the resistivity transform at the
surface, while p; and 4; are the resistivity and the thickness of the i-th layer,
respectively. Therefore, in the VES method F(m) = ps, m contains p; and 4;, i =
1,2, ..., n, where n is the total number of layers in the 1D model.

4 Inversion

Inversion is a process to determine model parameters from observed data by
fitting calculated data F(m) to observed data d. For a non-linear relationship
between the model and the data, expressed in forward modeling function F(m),
most inversions obtain a solution by linearization and updating the initial model
iteratively so that it converges to the best model [4].

The inversion process using a global optimization algorithm is generally geared

to minimize an objective function. In order to invert SP data, the objective

function Objsp can be defined as follows [25]:

_ 2[d; ~ Fy(m)| )
d; = F(m) |+ d; + Fy(m) |

Objsp

where d; and Fi(m) describe the i-th element of the observed and the calculated
SP data, respectively, while || . || denotes the vector magnitude operator or sum
over the absolute values of the vectors’ elements. Using the same notation, the
objective function for VES is expressed as follows:

_ lllog(d;/ Fmy || o
| log(d) |

Solutions to geophysical inverse problems are generally not unique due to the
presence of noise and the inherent theoretical relationship between the observed
parameters or data and the model parameters. Consequently, many models with
different combination of parameters can be considered optimum solutions, i.e.
the predicted data fit the observed data.

Objygs (14)
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The use of MHAs is a good option for solving inversion problems in order to
provide a set of equivalent models since they have the exploration capacity to
find solutions in the search space. In such cases, MHAs provide an effective and
efficient sampling mechanism, which can lead not only to the best model but also
to a set of models fulfilling certain criteria of optimality, i.e. low misfit. For
example, inversion that uses the Black Holes Algorithm and PSO variants
[7,9,11] may result in a large number of models M, that fit the observed data d
within misfit tolerance ol as follows [2]:

me M, : Obj(m) < tol (15)

The only problem with the exploration property of MHAsS is that they are more
time-consuming in obtaining convergence. Therefore, in order to obtain a set of
good models, MHAs should balance their exploitation and exploration
capabilities, where SOS is one of the MHAS that have that ability without tuning
parameter, as described in Section 2.4.

5 Algorithm Testing

The performance and reliability of Improved Modified SOS (IMSOS) and
Modified SOS (MSOS) [17] were compared by evaluation of the well-known
Ackley and Griewank functions. The upper and lower bounds were set to [-600,
600] and [-32, 32] for the Griewank and the Ackley testing function, respectively.
IMSOS and MSOS were tested in solving 30 dimensions of both functions, which
are multimodal functions that are generally used to evaluate unconstrained
algorithm performance, as in inversion problems. The tests were run for 5 times
to demonstrate the consistency and performance of both algorithms.

The results showed that IMSOS performed better than MSOS in finding the
global minimum (Figures 1(a) and 1(b)) for both the Ackley and the Griewank
testing function, with both algorithms having comparable explorative capabilities
(Figures 1(c) and 1(d)). Therefore, IMSOS improved its exploitation capability
while maintaining its exploration capability (diversity of the population).

6 Application to Synthetic Data

The IMSOS algorithm was applied to invert synthetic SP and VES data using the
parameters in Tables 1 and 2, respectively. In inversion, the model parameters
that represent the organism are contained in X, while the mutualism,
commensalism and parasitism phases are applied to search for optimum models
and to construct the posterior distribution of models (PDM), which requires
number of function evaluations (NFE). Furthermore, the stopping criteria for all
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algorithms is the maximum number of function evaluations, FE,..., which was set
to 80000 and 2000 evaluations for SP and VES inversion, respectively.
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Figure 1 Convergence curves for the Griewank function (a) and the Ackley
function (b), and the explorative capabilities for the Griewank function (c) and the
Ackley function (d).

6.1 Self-Potential Data

The synthetic SP data associated with two-body anomalies were generated by
using Eq. (10) with 5% Gaussian noise added. Table 1 presents the synthetic
model parameters, the parameter model bounds for the search spaces and the
inversion results from the IMSOS algorithm. Recently, MHAs have succeeded in
recovering the model parameters of multiple SP anomaly sources, including BHA
[9], PSO [25], the Genetic Prices Algorithm (GPA) [27], Very Fast Simulated
Annealing (VFSA) [28], the Flower Pollination Algorithm (FPA) [10] and the
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Whale Optimization Algorithm (WOA) [29]. GPA and VFSA need many more
forward modeling evaluations for global optimization compared to the other
algorithms [9,10,25,29]. We compared inversion using IMSOS to PSO [25] and
BHA [9], where both IMSOS and BHA algorithms were successful in inverting
SP data containing multi-body anomalies. BHA is tuning parameter free, while
the PSO inversion parameters were set as in by Monteiro-Santos [25].

Table 1 True parameters, search space, inversion results and their uncertainties
(median + igr) from BHA and SOS for synthetic SP data.

Parameters K D (m) h (m) 0% q
True anomaly 1 1000 -100 7 40 1.5
True anomaly 2 -400 30 30 60 1

Ranges of anomaly 1 0 to 2000 -150 to -50 0-100 0-180 0.1-1.8
Ranges of anomaly 2 -700 to 700 -50 to 150 0-100 0-180 0.1-1.8
Anomaly 1 (IMSOS) 926.56+£163.28 -99.80+0.54  6.97+£0.63  31.42+4.55 1.48+0.03
Anomaly 2 (IMSOS) -182.65+20.22 31.46+1.05 25.94+1.00 65.19+£1.77  0.90+0.01
Anomaly 1 (BHA)  820.41+71.78 -99.75+0.45  8.574£3.64  35.30+£6.16 1.41+0.06
Anomaly 2 (BHA) -275.21+33.14 31.69+£2.70  29.63+1.58  64.49+4.74  0.96+0.01

Figure 2(a) shows that the SP data fittings (median of the PDM) from IMSOS
and BHA were better than from PSO, which can also be seen from the best
objective function curves (Figure 2(b)). The theoretical response of the median
model from PDM tended to fit the observed data equally well [9]. In addition,
Figure 2c illustrates that BHA had the best explorative capability. Nevertheless,
the method also had good balance between its exploration and exploitation
capabilities, with a large interquartile (iqr) and the lowest best objective function.
The IMSOS algorithm also has balanced capacities, while PSO could not find the
global minimum. Thus, BHA and IMSOS outperformed the PSO algorithm,
probably due to the tuning parameter of the algorithm not being appropriately set.
As a consequence, the algorithm was likely to get trapped in a local minimum.

Figure 3 represents the PDM of the model parameters constructed by IMSOS
using tolerance 0.3 for the objective function. The statistics of the PDM are
presented in Table 1, compared to the BHA inversion results. In this case, the
PSO inversion results did not lead to a PDM, because none of the particles from
all iterations met Eq. (13), as can be seen in Figure 1(b). Table 1 also shows that
the IMSOS results were comparable with those from BHA, while PSO could not
resolve the problem well, especially for anomaly 1. Furthermore, Figure 3 shows
that the medians of the PDM from IMSOS were close to the true model
parameters. This means that IMSOS has a good balance between exploration and
exploitation capabilities in SP data inversion.
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Figure 2 Comparison between the synthetic and the calculated SP data from the
PSO, BHA and SOS median models, and the properties from PSO, BHA and SOS
for the synthetic SP data, including the best and interquartile of the objective
function with number of function evaluations (NFE).
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Figure 3 Histogram provided by IMSOS from the synthetic SP data, where
crosses indicate the median from the model samples, while dots indicate the true
model parameters.
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6.2  Resistivity Data

VES synthetic data with a Schlumberger array for a three-layered earth model
was calculated by using Eq. (11) with 5% Gaussian noise added to the synthetic
apparent resistivity data to simulate noisy field data. Table 2 shows the true model
parameters and the upper and lower bounds of the search space for inversion with
DE and IMSOS. The DE parameters and strategy for VES data inversion were
based on Balkaya [8].

Table 2 true parameters, search space, and inversions results from DE and
IMSOS for synthetic VES data.

Parameters True Model Search Space DE IMSOS
hl (m) 2 0.5-10 2.03+00 2.03+0.00
h2 (m) 25 5-50 22.44+0.01 22.44+0.00

pl (Qm) 2500 500 - 10000  2462.41+£0.24 2462.41+0.09
p2 (Qm) 100 10 - 1000 98.86+0.01 98.86+0.01
p3 (Qm) 300 10 - 3000 288.22+0.04  288.22+0.00

Figure 4 shows the convergence and dispersion curves, indicating that IMSOS
and DE have the same exploration and exploitation capabilities. In order to
construct a PDM, a threshold of 1.2 was set for the objective function. Figure 5
is the histogram of the PDM for IMSOS, with the true model parameters and the
median of the PDM represented by red dots and green crosses, respectively. Table
2 and Figure 6 contain a comparison of the results in terms of PDM statistics for
DE and IMSOS, which show that the IMSOS results were comparable to the DE
results and both results were close to the true model parameters from the VES
synthetic data. Furthermore, Figure 6 also shows a good fit between the observed
(or synthetic) and the calculated VES data using DE and IMSOS from the best
model in terms of RMS error between observed and calculated data.

o Convergence curves Dispersion curves
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Figure 4 Comparison of IMSOS and DE in terms of the best objective function
with NFE (left) and interquartile objective function with NFE (right).
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Figure 5 Histogram of PDM from synthetic VES data inversion using IMSOS,
where crosses indicate the median model samples, while dots indicate the true
model.
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Figure 6 (a) Comparison of synthetic VES data (solid dots) and calculated
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inverse 1D model from the best model of IMSOS (dashed lines) and DE (dash-
dot) compared to the synthetic model (full line). The interval of the search space
is shown as an envelope of all lines (right).
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7 Application to Field Data

7.1 Self-Potential Data

Field SP data were measured at P79-P83, in the embankment area of the LUSI
mudflow, Sidoarjo, East Java, Indonesia. As detailed in previous works [9,30,31],
the embankment is unstable and has collapsed several times. Sungkono &
Warnana [9] interpreted the SP data using BHA as four horizontal cylindrical
structures. Some structures may be correlated with piping or seepage in the
embankment. We also assumed that the SP data can be associated with four
anomalous sources. The limits of the search spaces were similar with those used
in BHA inversion, while FE, was set to 300,000 evaluations. Figure 7 shows a
comparison of the SP data inversion results using IMSOS and BHA, while Table
3 lists the numerical values. Figure 7b and Figure 7¢ indicate that BHA is more
explorative than IMSOS. However, IMSOS had explorative capability up to
70,100 of NFE and a lower final objective function.

The uncertainty of the model parameters from inversion is constructed by using
Eq. (15). Table 3 indicates that the uncertainty of the model parameters of IMSOS
was in good agreement with the BHA results, especially concerning the factors
of distance, depth and shape. In addition, the IMSOS results also showed that the
shape of the models was around 1, which is associated with a horizontal cylinder
(q = 1). These anomalies are interpreted as horizontal fractures that are affected
by deformation in this area [9,30,31].

Table 3 Inversion parameters (search space) and results (model parameters) and
their uncertainties using IMSOS compared to BHA [9] for field SP data.

Parameter Anomaly K D h 0 q
Body 1 -700 to 0 0-75 0-80 0-180 03-1.8
Parameter ~ Body 2 -700 to 0 75-110 0-80 0-180 0.3-1.8
range Body 3 0 to 700 150-215 0-80 0-180 0.3-1.8
Body 4 =700 to 0 200 - 300 0-80 0-180 03-1.8

Body 1 -412.99+4.47 46.46+0.60 16.16+£0.35 104.07+1.85 1.06+0.00
Body2 -386.59+£11.10 99.69+0.39  15.76+0.59 85.88+2.88  1.14+0.01

BHA [9]
Body3 480.60+27.95 154.93+0.76 25.61+0.36 140.23+2.02 1.01+0.01
Body4 -563.42+10.49 268.04+2.10 18.93+0.43 103.75+6.47 1.1740.19
Body I -303.83+49.88 40.99+1.20 15.0142.25 74.2645.11 1.17+0.19
Msog | Body2 -493.38+4824 895751320 13074742 14996290 1.20:0.14

Body3 634.83+22.73 140.22+£2.65 17.93+0.79 91.99+£8.70  1.03+0.03
Body 4 -574.72+17.18 279.1142.56  21.69+0.59 136.62+6.72 1.06+0.01
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Comparison between observed and calculated data
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Figure 7 Inversion results using IMSOS and BHA of SP data from the LUSI
embankment: observed and calculated SP data, convergence of the best objective
functions and dispersion curves represented by the iqr of the objective functions.

7.2 Resistivity Data

Field VES data were also taken from P79-P83 at the LUSI embankment. The
materials used to construct the embankment consist mainly of alluvium (clay, silt
and sand) [32]. The thickness of the embankment area varied from 10 to 15 meter
and is affected by water leakage. The VES data were measured by using a
Schlumberger configuration for determining the thickness of the embankment.
From Figure 8 it can be seen that IMSOS is slightly more explorative than DE for
VES data inversion. In this case, FE,..x was set to 20,000.

Using a tolerance of 3 from the convergence curve, the results from IMSOS were
used to construct a PDM (Figure 9). The calculated VES data from the inverse
models using IMSOS and DE showed a good match with the field data (Figure
10). Table 4 shows the median of the model parameters and their uncertainties
are shown as bounds in the search space. Additionally, the result indicates that
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the thickness of the embankment was around 11.88 + 0.11 meter, by assuming
that the embankment has higher resistivity compared to its base (clay) [31]. The
result for embankment thickness was relatively close to the embankment design
of LUSI, i.e. 11 meter [33]; the embankment has been repaired after failure in
2008.
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Figure 8 Convergence and dispersion curves from inversion of field VES data
by using the IMSOS and DE algorithms.
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Figure 9 Histogram for model parameter estimates from IMSOS inversion of
field VES data. The embankment thickness was determined by the sum of the
thickness of layer 1 and layer 2 (% and /). Crosses denote the median of the PDM,
while dots indicate the best-fitting model.
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Fitting Curves between observed and calculated Subsurface model
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Figure 10 Inversion results of observed VES data, comparison between observed
VES data dispersion (solid dots) and the best modeled VES data using IMSOS
(solid lines) (left), the lower and upper bounds of the search area (dashed lines)
and inverted resistivity profiles (solid line) using IMSOS and DE (right).

Table 4 Search space and inversions results and their uncertainties using
IMSOS and DE for field VES data.

Parameters Search Space DE IMSOS
hl (m) 1-15 1.2840.00  1.28+0.00
h2 (m) 1-20 10.60+0.00  10.60+0.00

pl (Qm) 0.1-300 96.05+0.05  96.05+0.04

p2 (Qm) 0.001-300  25.50+0.00 25.50+0.00

p3 (Qm) 0.0001 - 300 0.95+0.00  0.95+0.00
8 Conclusion

In this study, a new improved modified SOS algorithm (IMSOS) for solving
geophysical inversion problems was presented. The parasitism phase of the
original MSOS was modified and tested on the Ackley and the Griewank testing
functions. Like the standard SOS and MSOS algorithms, IMSOS is also adaptive
and tuning parameter free while having a good equilibrium between its
exploration and exploitation capabilities, which is required for solving inversion
problems in geophysics. The algorithm also has the capability of constructing a
PDM from generated samples of the search space. In order to demonstrate its
performance, the IMSOS algorithm was applied to noisy synthetic data sets of SP
and VES data. Moreover, the algorithm was also used to invert an SP and VES
field data set from the LUSI mudflow embankment, Sidoarjo, East Java,
Indonesia. Other population-based algorithms, i.e. PSO, DE and BHA, were
employed for comparison with the IMSOS algorithm.
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The synthetic and field data inversions showed that the IMSOS algorithm is
effective for geophysical data inversion, leading to good results and providing the
uncertainty of the model parameters through a PDM from the inversion process.
In addition, the inverse models resulting from IMSOS were comparable with the
results from similar population or swarm-based algorithms. However, we found
that the proposed algorithm still suffers from a fundamental limitation of the
global approach of inverse problems, i.e. many evaluations need forward
modeling, which hinders its use for very complex forward modeling algorithms
with a large number of model parameters.
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