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Highlights:

e Indonesian rice hull biomass is abundantly available.

e Rice hull can serve as a good bio-silica source with low-cost raw material.

e  This study investigated the effects of the operating variables of rice hull ash extraction.
e  The bio-silica yield and purity were strongly affected by the acid concentration in the

pretreatment.
e  Variable screening can cut bio-silica production cost and time by half.

Abstract. The huge amount of rice hull biomass available in Indonesia can be
utilized as raw material for bio-silica production. This study investigated the
production of high-purity bio-silica from rice hull ash through an alkaline
extraction process. A full factorial design (FFD) was used to screen for significant
effects of the observed variables. Three operating variables — acid concentration,
solvent to feed ratio (Rsr), and extraction time — were investigated with the
purpose of obtaining a high yield and high purity of bio-silica. Yield and purity
above 96% were achieved by using pretreatment with 1 mol/L HCl. Employing an
Rgr of 5 and a longer extraction time improved the bio-silica yield. The operating
variable that enhanced the bio-silica yield and purity most was acid concentration.
All variable interactions had an insignificant effect on purity, while two interacting
variables had a significant effect on bio-silica yield. Based on the results of this
study, rice crop residue can be optimally converted to a bio-silica product in terms
of yield and purity by optimizing the most effective operating variables.

Keywords: acid concentration; alkaline extraction, bio-silica; full factorial design, rice
hull ash.

1 Introduction

Developing countries in Southeast Asia have enormous rice crop (Oryza sativa
L.) production [1-4], among them Indonesia. Rice processing often generates an
abundant amount of rice hull, which is usually discharged to a landfill or open
burned [5,6]. On the other hand, rice hull can serve as a bio-silica source as a low-
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cost raw material, which is frequently used in non-food industrial applications
[7]. Even now, many silica-based products are used for pharmaceutical
applications such as drug delivery systems, nanocomposite film for modified-
release tablets, and microparticles for promising esophageal mucosal delivery
systems [8,9]. Therefore, proper rice hull utilization is interesting due to its ability
to replace fossil resources. It is economically attractive, has wide applications in
terms of energy and chemicals, and has an environmentally friendly production
process [10-13].

Rice hull utilization is usually executed through calcination followed by
extraction with an alkaline solvent to produce water glass [14,15], also known as
the sol-gel method [16-19]. Subsequently, the water glass is titrated with acid
after which the obtained gel begins to precipitate. The precipitate is in a colloidal
state, which is further aged and dried to obtain bio-silica [20]. The developed sol-
gel method has been proven to be capable of synthesizing silica with altered
properties such as nano-sized and doped nanocomposites for disinfectant
purposes [17], UV-protective materials [18], and mesoporous thin film [21].

Due to the previously mentioned capabilities of the sol-gel method, this method
was chosen in this study for the extraction of rice hull ash to produce bio-silica.
Several variables affect the extraction process, such as acid washing time, acid
concentration, solvent to feed ratio (Rs), solvent concentration, and extraction
time and temperature [6,22-28]. However, not all of them have a significant
effect. In addition, many studies only dealt with the development of rice hull
extraction methods to obtain high-purity bio-silica [22,23,25,29,30] or to produce
submicron bio-silica particles [31-34]. Rice hull utilization experiments with
statistical analysis that have been done so far targeted bio-silica particle size
distribution analysis [35], observation of the effect of bio-silica gel concentration
on cement matrix compressive strength [16], phenolic compound production
optimization [1], alkali pretreatment and enzymatic hydrolysis [3], S-blocker
synthesis [7], lignin extraction [36], energy production [37], and de-lignification
[38].

As mentioned above, the study on determining the significant operating variables
in the rice hull ash extraction process to produce high-purity bio-silica through
statistical analysis has not been done yet. Hence, this study intended to investigate
the effects of three extraction operating variables — acid concentration, Rsr, and
extraction time — on bio-silica yield and purity. The significant main and
interaction effects as well as the quantitative relationships between the operating
variables were also studied.
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2 Materials and Methods

2.1 Bio-silica Production Experiment

Rice hull was purchased from a rice milling industry in Bandung, West Java.
Analytical-grade HCl and NaOH were procured from Merck. The rice hull was
first calcined at 700 °C to form ash, which was then pretreated by an acid wash
using HCI with concentrations varied at 0.1 and 1 mol/L. Subsequently,
atmospheric chemical extraction of the treated rice hull ash was assisted with
NaOH at 120 °C under Rsr of 5 and 6. The extraction time was varied at 1 h and
2 h. Afterward, the extract solution was filtered to obtain water glass and was
slowly titrated with HCI at room temperature. The gel was aged, rinsed with
distilled water, and finally dried. The experiment was carried out in triplicate. The
desired responses were bio-silica yield and purity. The bio-silica yield (Y) is
defined as the ratio of bio-silica obtained from the extraction to silica content in
rice hull ash. The value is calculated with Eq. (1).
m,xP

Y= # X 100% @)
where m,, is the mass of bio-silica, B, is the bio-silica purity, m, is the mass of
rice hull ash, and P, is the silica content in the rice hull ash.

2.2 Bio-silica Characterization

Silica content in rice hull ash (P,) and bio-silica purity (Pp) were measured by a
Rigaku ZSX Primus I+ X-ray fluorescent spectrometer equipped with a
palladium X-ray generator and silicon detector. The sample should be pretreated
by grinding and pelletizing, followed by drying. The external morphology of the
obtained bio-silica was characterized by a Phenom proX desktop scanning
electron microscope at 12.5 kV and a working distance of 9.6 mm.

23 Investigation Methods

A full factorial design (FFD) was employed to investigate, analyze, and screen
for significant effects of the observed variables on rice hull ash extraction. The
design had three observed factors (variables), here denoted as X;, X,, and X5.
Each factor was used at two levels; the values used for each level are tabulated in
Table 1.

Table 1 Operating variables and level values used in the rice hull ash extraction
experiment.

Factor Variable Name [Units] Low Level (-1)  High Level (+1)

X Acid concentration [mol/L] 0.1 1
X, Rsyr [-] 5 6
X3 Extraction time [h] 1 2
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The desired responses were analyzed separately and the outcomes of the FFD
analysis involved the residual plot, the main plot, the interaction plot, and the
response contour plot.

The statistical model development was generated using Eq. (2) for bio-silica yield
and Eq. (3) for bio-silica purity. The significance of the main and interaction
effects of the observed variables was evaluated under a P-value of < 5% to
estimate the relative importance of the variables. Furthermore, insignificant
variables were eliminated after the two-tailed T-test (Eq. (4)) and the simplified
model was then assessed. Both simplified models were then validated with the
experimental data.

Y=0Co+ X CiXi + Zi2:12?=2 CijXiXj + C123X1X2X3

(2

B, =Ky + YL KX+ Y Z?:z KijXiXj + K123X1 X, X3 3)
C K

4)

T e r—
value S E,C S E,K

where Y and Pp are the responses for bio-silica yield and purity, C and K are the
model coefficients, X; are the main effects of the operating variables, X;X;
represent the interaction effects between the operating variables, and SE is the
model coefficient standard error in the respective terms.

3 Results and Discussion

3.1 Effects of Extraction Operating Variables

Based on the XRF result, the rice hull ash had a purity of 87.69%. The average
results, supplemented with standard deviation (ST. DEV), are outlined in Table
2. Pretreatment under 0.1 mol/L acid, extraction with Rsr 5-6, and extraction time
1-2 h yielded a purity in the range of 58-62%. On the other hand, rice hull ash
pretreatment with 1 mol/L HCI prior to extraction increased the purity from
87.69% to approximately 96%. Thus, it can be said that only the acid
concentration strongly affected the bio-silica purity, while Rsr and extraction
time had a low impact. However, the bio-silica purity from this study was still
slightly lower than the silica purity obtained from the research conducted by
Maksum, et al. (2019), which was 99.93% [14]. They found that applying
roasting-quenching before the acid wash contributed to significant removal of
alkaline minerals, especially potassium.
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Table 2 also reflects that bio-silica yield was in the range of 47-64% under an
acid concentration of 0.1 mol/L and 72-97% under an acid concentration of 1
mol/L. For each acid concentration value and Rsr 5, a longer extraction time
improved the bio-silica yield. The opposite behavior was found for Rgr 6, where
the bio-silica yield was suppressed from 1-h to 2-h extraction. This phenomenon
is in line with the simulation study by Ramli, et al. (2022) [19] as well as the
study conducted by Steven, et al. (2021) [6], where the highest bio-silica yield
was reached at Rgr 6 and 1-h extraction time.

Table 2 Average experiment results (+ ST. DEV).

Coded X; Coded X, Coded X3  Bio-silica Yield (%)  Bio-silica Purity (%)

-1 -1 -1 47+2 58£8
-1 -1 1 58+2 62+5
-1 1 -1 64 +£2 62+5
-1 1 1 56+2 60+8
1 -1 -1 72 +4 96+ 1
1 -1 1 83+3 96+ 1
1 1 -1 97 +1 960
1 1 1 84+1 96+ 0

FFD is an efficient experimental design for two or more variables that are varied
together and usually used to explore the influence of main factors and their
interactions [39,40]. FFD is also frequently used in industrial R&D due to its
ability to screen the most significant variables, which further allows cost and time
efficiency of industrial production [41,42]. Based on the FFD preliminary
analysis, the extraction data were normally distributed (Figures 1(a)-(b)), whereas
the residuals were randomly scattered, both for bio-silica yield and purity
(Figures 1(c)-(d)).

The operating variables with a significant effect on the bio-silica yield were X;
and X, (Figure 2(a)), whereas bio-silica purity was only influenced by X; (Figure
2(b)). A greater value of X; resulted in a higher yield and purity, whereas
increasing X, only increased the yield. There was a bio-silica yield change along
with a greater X3, but the value was statistically insignificant for yield and purity.
Hence, the acid concentration most strongly influenced the bio-silica yield and
purity. If the effect of interacting operating variables is significant, the main effect
cannot be interpreted without considering the effects of the interactions. A
significant interaction between the variables is represented by non-parallel lines.
The more non-parallel the lines are, the more notable the interaction effect’s
strength [43,44].
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Figure 2 Plots of the effects of the operating

In Figure 3(a), the X; X, interaction lines are
lines in X; X3 are parallel and coincide. Thus

variables on (a) yield and (b) purity.

arguably close to parallel, while the
, it can be said that X; X, interaction

had a slightly significant effect on the bio-silica yield and X; X3 interaction had
no effect on it. The crossing lines of X, X3 indicate that the yield enhancement
due to the interaction effect of X, X3 was weaker than the main effect of X,. This
tells us that interaction between Rsr and extraction time occurs and depends on
the extraction time value [44]. There was a bio-silica yield decrease of about 8-

10% under higher values of X, and X5. Conv
an insignificant change in purity, as can be
parallel and coincide.
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Figure 3 Plots for the effects of interacting operating variables on yield (a) and

purity (b).

The response contour plots for bio-silica yield and purity are shown in Figures 4
and 5. Figure 4(a)-(b) imply that for each constant value of X, and X3, increasing
X; from 0.1 to 1 increased the bio-silica yield, exceeding 90%. For X3 = 1 and at
every value of X;, a higher value of X, increased the bio-silica yield. The yield
slightly changed and even decreased with higher X, when X3 = 2, as can be seen
in Figure 4(c)-(d). After that, as noticed in Figures 4(e)-(f), the bio-silica yield
increased with a higher value of X, only for X3 = 1 and seemed to have a small
change for X3 = 2. Figure 5(a)-(f) indicate that only X; influenced the bio-silica
purity. Increasing X; from 0.1 to 1 increased the purity to about 96%. A higher
value of X,, X5 as well as the interaction effects between the variables gave an
insignificant change of purity.
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Figure 5 Response contour plot for bio-silica purity.

3.2 Quantitative Relation to the Extraction Operating Variables

The main and interaction plot of the operating variables above only indicates the
magnitude of an effect without knowing the increasing or decreasing values.
Statistical model development should still be performed to examine the
magnitude and order of the effect. Apart from the effect, knowing the quantitative
relationship between the response values and operating variables was also a goal
of this study. This quantitative relationship is represented by the coefficients of
each variable for both responses.

Figure 6 plots the T4, Of all operating variables, which shows their significance
order from the largest to the smallest. The red vertical dashed line at 2.07 is the
T-critical regime as the criterion for null hypothesis rejection [44]. In this case,
the statement for the null hypothesis is no difference in variance between one
variable and another. The effect significance order was obtained as explained
below.

When the bar length is below the T-critical regime (P-value > 5%), the null
hypothesis fails to be rejected, which means there is no significant effect from the
variables. Meanwhile, there is a significant effect on the variables when the bar
crosses or exceeds the T-critical regime (P-value < 5%) so the null hypothesis is
rejected [39,40,42,44]. Figure 6(a) shows that the bio-silica yield was influenced
by Xi;, X,X3, X,, and X;X, in order of decreasing significance. The other
variables affected the bio-silica yield insignificantly, which confirms the results
from Figures 2(a) and 3(a).
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Figure 6 T, of the operating variables for yield (a) and purity (b).

In Figure 6(b), X; is the only variable that strongly influenced the bio-silica
purity, in line with the explanation in Figures 2(b) and 3(b). The poor bio-silica
yield and purity under X; = 0.1 was provoked by the presence of significant
impurities that existed in the product’s pore structure. Increasing the acid
concentration removes these impurities and leads to an improvement in bio-silica
yield and purity [24,25,32,45-47].

The standard error for bio-silica yield (SE () and purity (SE ) was 0.418 and
1.02, respectively. The Ty,q;4e for each variable was then calculated with Eq. (4);
the results are listed in Table 3. Then, the variables which had a T,,4;,,. between
-2.07 and 2.07 or P-value > 5% could be set aside because there was no
statistically significant relationship between response and variable [48].
Moreover, the sum of squares of each eliminated variable was lower than the sum
of squares of the residual, which confirms the elimination decision based on the
Tyaiue and/or P-value [41,48].

Table 3 Developed model parameters for bio-silica yield (Y) and purity (B,).

Variable p K T vatue P-value Sum of Squares
Y P, Y P, Y P,
Constant 70.31 7835 168.28 76.52 0.000 0.000 - -
X1 13.86 17.56 33.17 17.15 0.000 0.000 4610.94 7403.30
X, 5.18 0.14 12.40 0.13 0.000 0.897 644.60 0.44
X3 -0.19  0.29 -0.46 029 0.650 0.778 0.90 2.08
X1 X, 1.30 -0.26 3.11 -0.26  0.007 0.800 40.51 1.67
X1X;3 -0.57 -0.14 -136 -0.14 0.193 0.894 7.75 0.46
X, X3 -5.53  -0.71 -13.24 -0.69 0.000 0.501 733.94 11.93
X1X, X5 -0.52  0.77 -1.24 0.75 0.233 0.462 6.45 14.32
Residual - - - - - - 67.03 25.16
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The bio-silica yield was affected by X, X,, X1X;, and X,X3, while only X
affected the bio-silica purity. A special case for the effect of X;X, on the bio-
silica yield was found. Even though the sum of squares was somewhat lower than
the residual, the effect was still acceptable because the P-value was below 5%.
Table 3 also shows that the coefficient of X, X3 had a minus sign, which implies
that the yield increased due to the effect of X, X3 was weaker than the main effect
of X,. These explanations are all consistent with the aforementioned.

The simplified statistical model between the response and the operating variables
has now been determined. The R? for both models was 0.9960 for the bio-silica
yield and 0.9958 for the bio-silica purity, as shown in Figure 7. Both models were
capable to predict the response, which is indicated by the R? value being close to
1 [7]. Then, both simplified models were validated. Figure 7 shows that the
model’s prediction appeared to be in good and reasonable agreement with the
experimental data. From all the explanations above, it can be said that as much
as 50% of the total experimental run could be eliminated in all experiments using
pretreatment under 0.1 mol/L HCI.

100 — 100
g Y = 7031+ 13.86 X, + 5.18 X, +‘ S o5 |P=783541756%, &
= 90 1 1.29X,X, —5.53 =~
2 1 1X2 X,X3 2 9 - ‘
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Predicted Bio-silica Yield (%) Predicted Bio-silica Purity (%)
(a) (b)

Figure 7 Simplified model validation check for bio-silica yield and purity.

3.3  Bio-silica SEM Result and Analysis

The bio-silica obtained from rice hull ash extraction is shown in Figure 8(a) and
the external morphology is shown in Figure 8(b) for 1000X magnification and in
Figure 8(c) for 5000X magnification. The bio-silica’s external morphology
mostly exhibits an irregular prism structure; only a few particles have a spherical
shape and the particles are discernible in the absence of agglomeration or
clustering [6,28,49]. Based on the 12.5 kV and a capturing distance of 9.6 mm,
the average silica particle size was found to be in the range of 5-20 microns. A
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non-homogenous and non-uniform particle morphology is strongly caused by a
brief hand-grinding process [32,49].

(a)

Figure 8 Bio-silica obtained from rice hull ash (a); external bio-silica
morphology under 1000X magnification (b) and 5000X magnification (c).

4 Concluding Remarks

Rice hull ash extraction to produce high purity bio-silica accompanied by a full
factorial design of the experiment was successfully investigated. The effects of
three variables, i.¢., acid concentration, Rg/r, and extraction time, on the bio-silica
yield and purity were investigated. Pretreatment with 1 mol/L acid resulted in
around 96% of bio-silica purity. Bio-silica yield reaching 97% was also majorly
affected by acid concentration, while another main factor that also had a fairly
significant effect was Rgr. There was a decreased bio-silica yield of about 8-10%
for extraction under Rgr 6 and 2-h extraction time, while simultaneously
increasing the acid concentration and Rg/r had a synergistic effect on the bio-silica
yield. This study confirmed that high purity bio-silica with a particle size of 5-20
microns was successfully produced from rice hull ash. Moreover, variable
screening was able to cut the industrial production cost and time by half.
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