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Highlights:  

 Implementation of discrete raytracing approach to address a non-LoS ToF problem in 
LBL navigation. 

 Estimation of Snell’s parameter through a root-finding algorithm.  
 Horizontal range computation using the estimated Snell’s parameter.  

 
Abstract. This paper presents an autonomous underwater vehicle (AUV) 
navigation scheme that pairs an inertial navigation system (INS) and a long 
baseline (LBL) acoustic positioning system. The INS is assigned to be the main 
navigation aid because of its faster rate. Meanwhile, the LBL provides position 
reference for compensation of the INS’ main inherent drawback, i.e., accumulating 
errors. However, the LBL has to deal with time-of-flight (ToF) measurements that 
may not be carried out under line-of-sight (LoS) circumstances. This is because 
the propagation speed of underwater acoustic waves is subject to the sound-speed-
profile (SSP) of the area in question. This paper’s contribution is to consider the 
SSP in ToFs while addressing the above scheme. Specifically, the discrete 
approach to raytracing was implemented. For a given ToF, the Snell’s parameter 
of the wave is estimated and subsequently used to compute the horizontal range. 
The ToF results are then used to estimate the xyposition of the AUV, while the z  

position is obtained from a depth sensor. It was shown by simulation that the 
estimators can provide navigation with accuracy <0.5 m2, as it manages to 
compensate for errors. Since the estimation of Snell’s parameter is prone to exhibit 
imaginary numbers, future work should consider a more robust method to tackle 
this problem. 

Keywords: long baseline; sensor fusion; sonar; sound speed profile; time-of-flight; 
underwater acoustics. 
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1 Introduction 

Pairing an inertial navigation system (INS) with a reference system is necessary 
to maintain navigation accuracy. This prerequisite stems from INS’ inherent 
tendency to accumulate errors over time [1]. In terrestrial and aerial applications, 
references are commonly provided by the global positioning system (GPS) [2]. 
This convenient system provides the position of a navigation subject based on the 
time-of-flight (ToF) measurement principle [3, p. 3]. However, GPS is virtually 
unavailable for autonomous underwater vehicle (AUV) navigation. This is due to 
the rapid attenuation of electromagnetic waves in water [4]. On the other hand, it 
was shown in [5] that underwater acoustic waves are less prone to attenuation and 
can travel at a range of hundreds of kilometers. Therefore, utilizing an acoustic 
positioning system instead for the aforementioned scheme for underwater settings 
is reasonable.  

Among acoustic positioning systems, the long baseline (LBL) system is arguably 
the most suitable replacement for GPS. Aside of its resemblance to GPS in terms 
of configuration and measurement principle, LBL offers high accuracy, 
observation redundancy, and a larger operating area [6]. However, LBL is 
inherently subject to issues related to underwater acoustic propagation, e.g., 
multipath and bending trajectories [7]. Introducing any of these uncertainties to a 
ToF measurement rescinds the line-of-sight (LoS) assumption, i.e., the trajectory 
in question is a straight line. Thus, the ToF would result in a biased range, i.e., a 
pseudorange. Since LBL computes the position based on several ToFs, the 
presence of these biases will deteriorate the navigation accuracy. Multipath 
trajectories are also a problem in GPS [8], but bending trajectories are mostly 
related to underwater applications. For this reason, it is sensible to focus more on 
the latter issue when discussing LBL. Under the guidance of Snell’s law, the 
propagation trajectory of a wave, the raytrace, will bend as its speed changes. On 
the other hand, the propagation speed of an underwater acoustic wave may vary 
during a ToF since it is a function of depth, salinity, and temperature [9]. 
Accordingly, its profile, known as the sound speed profile (SSP), is mostly unique 
for an area. In the literature (e.g., see [10]), the SSP is often represented as a curve 
of depth plotted against propagation speed.  

There has been notable interest from researchers in navigation to consider 
bending raytrace (and the SSP as their root cause). In [11], possible positions of 
a node were estimated by plotting the raytrace with a constant range interval. 
Furthermore, bending raytrace in a ToF measurement are discussed in [12] by 
approximating the SSP as an isogradient function, i.e., a linear function of depth. 
This approach also inspired more recent works [13-15], which investigated 
localization accuracy. While an isogradient approach is suitable for capturing the 
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SSP in deep seas (e.g. see [16, p. 5]), it could be argued that to capture the SSP 
in shallower seas (e.g. see [17, p. 6]) requires a higher polynomial approximation.  

On the other hand, different tightly coupled schemes for INS/LBL navigation 
have been reported in the literature. In a tightly coupled scheme, both sensor 
systems share a common filter [18, p. 251]. Its result provides an integrated 
navigation solution. This scheme offers more accuracy and robustness, as both 
systems complement each other. In [19], velocity and acceleration provided by 
an INS were included in the LBL state formulation. Other tightly coupled 
INS/LBL schemes are reported in [20, 21], where other sensors, i.e. Doppler 
velocity log (DVL) and magnetic compass pilot (MCP), were also included. It is 
worth noting that in all aforementioned approaches, the underwater sound speed 
was considered as a constant.     

This paper presents an INS/LBL scheme for AUV navigation. Its main 
contribution is to address ToF measurements and LBL positioning when the 
actual SSP is approximated with a polynomial function. It departs from the 
existing schemes by also considering uncertainty due to the bending trajectory of 
acoustic waves. As an extension to our previous works [22, 23], the formulation 
of SSP, ToF, and pseudorange are now stated in general form. Furthermore, the 
single pseudorange approach was applied to an LBL system with L  transponders. 
In the loosely coupled INS/LBL scheme, the position provided by the LBL is 
used as reference for error compensation in the INS. On the other hand, the INS 
compensation algorithm in [23] was expanded to errors exhibited in the 
accelerometer triad. The loosely coupled scheme was chosen for its simple 
implementation while still being considered sufficiently robust [18, p. 250]. 

2 Problem Statement 

An AUV was deployed to follow a predefined trajectory in a shallow sea. The 
trajectory was in reach of an LBL system formed by L  acoustic transponders 

with known and fixed positions, i.e.,  1 1 1 1

T

o o o ox y zr ,…,

 
oL

T

oL oL oLx y zr . To accomplish the aforementioned task, the AUV was 

equipped with an INS, acoustic hydrophone arrays as the LBL receiver, and a 
depth sensor. These sensors were integrated in a loosely coupled scheme [18, p. 
250], as shown in Figure 1. The inertial measurement units (IMU) in the INS 
consisted of accelerometer and gyroscope triads as the sensors. The dynamics of 
the LBL and INS subsystems are both described in discrete form, represented by 
sequences j  and k , respectively, with sampling periods lbl  and ins , 

respectively. At time t , the relationship between by j  and k  can be stated as:  
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 updk f j  , (1) 

where : lbl
upd

ins

f



 . Since it is typical that lbl ins  , Eq. (1) implies that the 

position reference from the LBL is only available to the INS at each updf j  

sequence, as shown in Figure 2.  

 

Figure 1 Loosely coupled scheme for INS/LBL integration. 

 

Figure 2 Evolution of the LBL and INS sequences within one time frame. 

At the thj sequence, the AUV at position           r
T

j x j y j z j  engages in a 

ToF measurement with transponder l ( 1, ,l L  ). Here, transponder l  transmits 
an underwater acoustic wave at angle   ol j , which will be received by the AUV 

at angle  l j , as illustrated in Figure 3. The SSP in the area can be approximated 

with an thS  order polynomial function of depth, i.e.:  

 
0

( )
S

s
s

s

c z b z


 , (2) 

where c(z)  denotes the speed of sound at depth z , while sb denotes depth of the 
ths  term of the polynomial, respectively. On the other hand, the wave propagates 

under the guidance of Snell’s law [24], i.e.: 
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 

 
 
    cos cosol l

l

ol l

j j
j

c z c z j

 
   , and ,

2 2

      
, (3) 

where  l j
 

denotes its respective Snell’s parameters. If (2) is considered, the 

raytrace will bend during propagation to maintain a constant ratio in Eq. (3). As 
a result, the raytrace length,  ls j , may differ from the range,  ld j . When this 

is the case, the LoS assumption does not hold in the ToF. 

 

Figure 3 ToF measurement between the LBL’s transponder and the AUV. 

The above scenario is based on several assumptions. Firstly, the inertial frame 
coincides with the body frame. Second, the placement of the hydrophones and 
depth sensor represents the AUV’s position in a local frame. Thirdly, the 
transponder’s identity and transmission time stamp are encoded into every 
transmitted acoustic wave [25]. Fourthly, the AUV is set to achieve deployment 
while maintaining constant pitch and roll and a small yaw rate ( 5 º/s). 
Accordingly, errors in the gyroscope triad during the course are less considered.   

2.1 Biases in ToF Measurements 

The dynamics of time-of-flight (ToF) measurement in the presence of biases for 
LBL navigation have been detailed in our previous work [26]. Hence, this 
subsection is written mostly as segue to the elaboration of pseudorange 
measurements in a polynomial SSP. Nonetheless, some departures in this paper 
are worth mentioning. Firstly, since information about  z j  can be obtained from 

the depth sensor, the ToF measurements will now be carried out only to provide 
a horizontal position reference, i.e., on the xy  axes. Secondly, Eq. (2) is now 

introduced to the dynamics to replace a constant sound speed. 

In the presence of a clock offset, the ToF measurement between the AUV and 
transponder l  can be written as: 
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        0l lj j j j      , (4) 

where  l j  denotes the ToF,  0 j  and  l j  are the transmission and 

reception time stamps of the acoustic wave, respectively, and  j  represents 

the offset of transponder l ’s clock toward the AUV’s clock. Here, both  0 j  

and  j  are assumed to be identical for all transponders. On the other hand, the 

dynamics of  j  can be written as [27]: 

 𝜙(𝑗 + 1) = 𝜙(𝑗) + 𝜏௖௟௢௖௞𝛼(𝑗) + 𝑤(𝑗),  (5) 

where  j  and clock  denote the clock skew and the offset sampling period, 

respectively, while  w j  is Gaussian noise. In [28],  j  is modeled as thP

order autoregressive filter, i.e. 

 
1

( ) ( 1) ( )
P

p
p

p a p p  


   ,     (6) 

where pa denotes the thp coefficient that will be estimated as ˆ
pa
 
while ( )p  

denotes Gaussian additive noise. By first defining      :
T

hor j x j x j   r and 

 :
T

l l lx yt , pseudorange measurement can then be stated as:  

           l hor l lr j j c z j j j    r t , (7) 

where  lr j denotes the horizontal pseudorange between the AUV and 

transponder l ,   c z j  is the term of (1) for  z j , and  l j  denotes the range 

uncertainty due to the motion of the AUV during the measurement. 

2.2 Raytracing   

In [29, p. 578],  l j  and  lr j  are computed incrementally as the wave in 

question travels from olz  to  z j . To follow this approach, the vertical range 

between olz  and  z j  is divided into N  layers with identical thickness,  l j , 

as shown in Figure 4. This can be expressed as: 

    ol j

l

z z j
j

N



 .  (8) 

Accordingly, it follows that 

                    1 1 2 1ol ll l l l N l N
z z j z j z j z j z k       , 
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where    l n
z j  ( 1, ,n N  ) is the depth of the thn layer, while  0 0l lz z j  and

   l N
z z j .  Noticing that  0 lz z j , the vertical range can be stated as:

 
 

      
1

N

ol l n
n

z j z z j


  . (9) 

 

Figure 4 Vertical range divided into layers with identical thickness. 

For a given  z j
 
in Eq. (9), the incremental traveling time and horizontal range 

equations in [29] can now be stated as:  

 

 
    

    
    

       
       

1
2

1
2

1
11

2 2

1

2 2

1
ln

1 1
,

1 1

N
l n

l
n

l nl n

l n l

l l n

c z j
j

d c z jc z j
dz

j c z j

j c z j










      
   
 



, (10) 

and: 

 
 

      
       

       

1
2

1
2

2 2

1
21

1

2 2
1

1
1

1

N

l m l n
n

ln l

l l n

r j j c z j
d

c z j k
dz

j c z j














     
   

  


, (11) 

respectively. It should be noted that Eqs. (10) and (11) apply for 

      2 2

1
1l l n

j c z j   , i.e., where the wave has not achieved its peak in Eq. (3). 
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Since     l n
c z j  can be computed at any depth using (1),  l j  will be the only 

unknown parameter in Eqs. (10) and (11). This implies that if  l j  can be 

obtained for a given  l j , then  lr j  can be also computed. 

If    1 , , Lr j r j  are available for 3L  transponders [3, p. 163], measurement 

for  hor jr  can be provided through a least squares solution [30, p. 219]: 

       1T T
hor j j


   r t t t ρ , (12) 

where: 

     2
1 2 1

TT T U
L L




     t t t t t  , 

and:  

  
   

   

2 2
2 1 1 1 2 2

2 2
1 1 1

1

2

T T

U

T T
L L L L L L

r j r j

j

r j r j  

     
   
      

t t t t

ρ

t t t t

  , 

where  1 / 2U L L   are the possible combinations of pseudorange differences 

[31], i.e.,    l mr j r j , ( 1m , ,L  but l≠m.).   

2.3 LBL State Space Representation  

To formulate a state space representation of the LBL, its state vector is specified 
as: 

 

 

 
 
 
 
 
 

 
 

 

1

2

3

4

5

2 1 2 1 1
6

5

6

6

: P U

P

P

P U

j

x j

j

x j

x j

j x j

x j

x j

x j

     





 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

x

x

x 





, 
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where  hor jv and  zv j  denote horizontal and vertical speed in a linear motion, 

while the AR filter in Eq. (6) is now stated in sequence j . The structure of the 

above state vector is very similar to the one defined in [26], except that  z j  and 

 zv j  are now excluded from the kinematics related to the ToF measurements. 

Accordingly, the state space representation of the LBL can now be stated as: 

 
       
     

1

1 1 1

j k j j

j j j

   


     

x A x w

y Cx d
, (13) 

where: 

 

2 2 2 2 2 2

1 2 1 2 1 1

2 2 2 2 2 2

1 2 1 2 1 1

1 2 1 2 56 1

2 1 2 1 1 66

2 1 73 1 75 76 77

0 0 0

1 0

0 0 0

( ) 0 1 0

0 0 1

( ) ( ) ( ) ( )

lbl P U

lbl P U

P U

P U

U

P P P P P P U

U U U

j

j j j j



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   
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   

  
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 
 
 
 
 

  
 
 
 
 
 

I I 0 0

0 0 0 0

0 I 0 0

A 0 0 0 0

0 0 A 0

0 0 0 0 0 A 0

0 0 A 0 A A A

, 

consisting of the following sub matrices: 

   1
56 0 0 P

clock  A   ,

1 2 1

66

ˆ ˆ ˆ ˆ

1 0 0 0

0 1 0 0

0 0 1 0

P P

P P

a a a a



 
 
 
  
 
 
  

A







    



,

     1 2 1 2 2
73

1 2 1

2
( 1) ( 1) ( 1) ( 1)

TT T

L L U
lbl

L L

j
r j r j r j r j

   



  
  

       

t t t t
A   , 

  

   

   

1 2 1 2

1 2
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1 1

1
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U
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

     
    
  
 

     
    

A   , 
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  
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U UL L

L L

r j r j r j r j
j

r j r j r j r j




  
        

A  

   2 1 2 1 1 P Uj      w   and   2 1 Uj  d   denote process and measurement noise 

vectors, respectively, and   

 
2 2 2 2 2 2

1 2 1 2 1 1

2 1 2 1 1

0 0 0

1 0 0
P U

P U

U U U U U U P U U

   

   

      

 
   
  

I 0 0 0

C 0 0 0 0

0 0 0 0 0 0 I

.  

2.4 Errors in the IMU 

To represent errors in the IMU [32], the measurement biases in the accelerometer 
triad are represented here by: 

 

              3 3 3:
T

b b b b
f f f fcs rw gp

k k k k     ε ε ε ε  , 

where    b
f cs kε ,    b

f rw kε ,    b

f gp kε  denote the constant, random-walk, and first-

order Gauss-Markov (GM) process biases, respectively. Their dynamics can be 
stated as:  

 

     b1b
f f f jk k k  ε F ε w  (14) 

where:   

 

 

   3 3 3 3 3 3

f

f gp

    

 
 

  
  

I 0 0

F 0 I 0

0 0 β

  , 
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while   3 3diag , ,f fxb fyb fzb    β   represents the GM process parameters 

associated with the accelerometer triad and  

  
 
 

 
  3 3 3

f frw gp

T
b b b
f k k k     w 0 w w  , 

denotes the noise vector of the accelerometer errors, where 
 
 

f rw

b kw  and 

 
 

f gp

b kw  represent random walk and Gauss-Markov process noise, respectively. 

Here,  

 

 
 

 
     1

f frw rw

b b b
ins f rw

k k k  w w η ,  

where 
 
 

f rw

b kη  is the vector of its related Gaussian noise. Furthermore,   

 
 
 

 
 2 2 22 2 2

f gp f gp

b b
fxb fxb fyb fyb fzb fzbk k        w η , 

where fxb , fxb , fbz  are variances associated with the accelerometer errors, 

while  
b
f gp

η  is a 3 1  vector of additional noise in the GM process.  

To formulate a state-space representation of INS errors in a local frame, it is 

defined that         3 3 9:
Tb

p v fk k k k     ε ε ε ε  , where  p kε  and  v kε  

denote the position and velocity errors in the local frame, respectively. 
Subsequently, the vector of the respective process noises is stated as: 

           3 3 3 3 3:
T

b b

f rw f gp
k k k       w 0 0 0 w w   . 

It can then be written that: 

 
     
     

1

1 1 1

k k k

k k k

   


     ε ε

ε Fε w

y Gε d
 (15) 

where: 

  
 

   3 3 9 3 3 9
ins

loc
ins b

f

k

k


     

 
   
  

I I 0

F 0 I R

0 0 F

 , 

 

   3 3 3 9   G I 0 0  , 
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and:   

  
   

   
   

1

1

1

ins zb ins yb

loc
b ins zb ins xb

ins yb ins xb

k k

k k k

k k

   
   
   

 
   
  

R , 

is a transformation matrix [18] that transforms the accelerations values from the 
body frame in the IMU to a local frame, while  xb k ,  yb k , and  zb k  are 

the three-dimensional angular speeds provided by the gyroscope triad.  

2.5 INS Mechanization 

To include the exhibited errors at the IMU to the INS mechanization, the 
acceleration is written as:

   

     
                  loc b b b b

b ins f f fcs rw rw
k k k k k k      a R f ε ε ε g , (16) 

where  b
ins kf  and g  denote specific forces and gravity, respectively. The INS 

mechanization can be defined as: 

 
        3 3 9:

T

ins ins ins insk k k k     x r v a 
 

where  ins kr  and  ins kv   denote the position and the velocity provided by the 

INS. Its dynamics can be stated as: 

      1ins ins insk k k x A x , (17) 

where:  

      3 3 9 3 3 9
ins

ins insk


     

 
   
  

I I 0

A 0 I I

0 0 I

 . 

2.6 Compensation Mechanism 

In a loosely coupled scheme [26], interaction between the INS and its references, 
i.e., LBL and the depth sensors can be written as:  

        1 2

T

P insk j x j k   ε x r , (18) 
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which will hold when updk f j  . This implies that compensation using Eq. (15) 

can be carried out only if Eq. (13) is available. When this is the case,  ins kr  and 

 ins kv  in Eq. (17) will be calculated using compensated values fed by Eq. (16).   

3 Proposed Solution 

It can be seen that solving Eq. (10) is a root-finding problem, i.e. to estimate 

 l j  such that the function    0lh j  , where: 

 

  
    

    
    

       
       

 

1
2

1
2

1
11

2 2

1

2 2

1
: ln

1 1

1 1

N
l n

l
n

l nl n

l n l

l

l l n

c z j
h j

d c z jc z j
dz

j c z j
j

j c z j












     
    
 



, (19) 

i.e., the subtraction of the right side of Eq. (10) with the left one. To solve Eq. 
(19) for    0lh j  , a standard regula falsi method [33] can be implemented. 

This method is chosen because it guarantees estimation convergence [34, p. 122]. 
A regula falsi flowchart for Eq. (19) is shown in Figure 5. Specifically, the lower 
and upper initial guesses are computed using the Snell equation in Eq. (3). On the 
other hand,  olc z  can be computed using the SSP equation in (2). It should also 

be noted that i  represents the ith iteration of the algorithm.    

 

Figure 5 Regula falsi flow diagram for  l j  estimation. 
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Meanwhile, it can be seen that both Eqs. (13) and (15) are linear systems with 
Gaussian noise. Therefore, a standard Kalman filter [35] was chosen as the 
estimator for both systems.  

To recap, a diagram block of the proposed loosely coupled INS/LBL scheme is 
shown in Figure 6. It can be seen that the INS modeled errors in Eq. (15) exhibit 
uncertainties in the  b

ins kf  measurements. Therefore, it may be necessary to add 

error compensation to the scheme besides the correction routine. Meanwhile, it 

should be noted that  b kω , i.e., the outputs of the gyroscope triad, are fed to T 

and to the modeled errors in the form of  loc
b kR .   

 

Figure 6 Block diagram of the proposed loosely coupled INS/LBL scheme. 

4 Simulation 

4.1 Numerical Setup 

SSP – The actual SSP and Matlab code for polyfitting and raytracing were taken 
from [36]. Specifically, depth interval 45 68z   m was chosen to represent 
the SSP’s nonlinearity. Similar to [22], choosing S  = 2 for Eq. (2) when curve 
fitting the actual SSP, gave 0 1529.78b  , 1 0.352b   and 2 0.00628b    with an 

error percentage of 0.025%. It follows that  c z = 21529.78 0.352 0.00628z z 
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, while its derivative with respect to z  in Eqs. (10) and (11) was   /dc z dz =

0.00.3 652 125 z .  

For the SSP’s corresponding raytracing, acoustic transponder l  was set to 
transmit waves with an aperture of 0° to 17.5°. Thus, solving Eq. (10) is 
essentially to find the unique value of  ol j  from this aperture. Accordingly, the 

lower and upper initial guesses for the regula falsi algorithm were set to  l j =

 cos17.5 / 68c  and  l j =  cos8 / 68c , respectively. The algorithm is 

expected to provide a solution after seven iterations. On the other hand, N in Eq. 
(10) was set to 60, while in Eq. (11) N was set to 250. 

The approximated SSP and its corresponding raytraces are shown in Figure 7. 
From the raytracing profile it can be seen that the ToF would not necessarily meet 
LoS condition. Furthermore, there is a shadow zone on the left side of the profile. 
This means that ToFs between transponder l  and the AUV would not occur inside 
this particular region.  

 

Figure 7 Second-order SSP and its corresponding raytracing. 

LBL – The LBL is formed by four transponders ( 4L  ), i.e., 1or =  60 45 68
T

m, 2or =  20 175 68
T

m, 3or =  175 175 68
T

m, and 4or =  165 60 68
T

m. It 

is considerably small, e.g., compared to the baseline setup in [19] (1000 × 1000 
m2) or our previous work [26] (1600 × 1600 m2). This size constriction is a result 
of introducing the SSP to design considerations. By inspecting Figure 7, it can be 
seen that an acoustic ray would reach its peak around 120 m. It should be recalled 
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that tracing beyond a peak is excluded by the constraint in Eqs. (10)-(11). 
Moreover, the size of the operating region is also reduced by shadow zones inside 
the LBL. In a technical sense, installing more transponders may be a solution 
when an application requires a larger LBL. A more fundamental approach to this 
limitation would be to relax the aforementioned constraint. 

Meanwhile, the AR filter in Eq. (6) was parameterized for P  = 5, where its 
estimated values, i.e.,  1 5

ˆ ˆa , ,a =  0 9271 0 4163 0 07843 0 387 0 03118. . . . .   

were taken from [28]. Furthermore, the initial values for clock offset and skew 
were set to  0  = 0.03 s and  0  = 3·10-4 s/s, respectively, and its period was 

set to clock = 10 s.  

INS – The update rate of the INS was set to 64 Hz, i.e., ins = 0.015625 s. The 

initial biases in the IMU were set to    0b
f cs

ε =  0.1 0.1 0.1
T

m/s2,    0b
f rw

ε =

   0b
f gp

ε =  0 0 0
T

m/s2, while the GM parameters were set to fβ = 3 3I . Since 

the AUV was set to move with simple maneuvers, the gravity biases supposedly 
added to  

b
f csε  were assumed to cancel each other out with g .  

4.2 Simulation Scenario 

The AUV was launched from START =  125 125 51
T

m and expected to 

reach FINISH =  100.34 100.38 46.8
T

m in 200 s, i.e., at j  = 200 and k

= 12,800. It would follow a helix shaped trajectory, as represented by the solid 
green line in Figure 6. During the given time, it was expected that the dynamics 
of the INS/LBL could be evaluated. On the other hand, the AUV would move in 
a circular motion in the horizontal plane (the xy  axes) to follow the trajectory. 
This means that the gyroscope triad mentioned in Eqs. (15) and (16) would 
contribute to the navigation.  

To achieve this objective, the AUV initial sway (pitch) and heave (yaw) were set 
to 11.26º and 5º, respectively, while its initial surge (roll) was not addressed, as 
its dynamic model is unknown. Nonetheless, the sway and surge would remain 
constant during deployment. The maneuvering of the AUV would then depend 
on a constant vertical and angular speed, which was set to -0.021 m/s and 

     xb yb zbk k k     =  0 0 0.087  rad/s, respectively.    
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Figure 8 The AUV trajectory tracked by the LBL and INS estimators. 

4.3 Results and Discussion 

As shown in Figure 6, both estimators in the LBL and INS managed to closely 
track the AUV’s trajectory. A closer inspection of the LBL errors from the AUV’s 
actual position during the course is shown in Figure 9. In terms of the acoustic 
positioning system [6], the LBL provided good accuracy, as errors in each axis 
were less than 1 m or 1 m2 on the horizontal axes.

  

 

Figure 9 LBL errors from the AUV’s actual position. 

The INS errors from the AUV’s position are shown in Figure 10. The similarity 
to the LBL errors in Figure 9 indicates that the estimator in the INS managed to 
compensate for the errors. This could be achieved even though corrections from 
the LBL were only available every 64k j  . The INS errors from the actual 

velocity in Figure 11 also indicate this.  
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Figure 10   INS errors from the AUV’s actual position. 

 

Figure 11 INS errors from the AUV’s actual velocity. 

As described in Figure 6, the proposed scheme also compensated errors at the 
IMU level. This is a departure from our previous work [23], which only dealt 
with correction in the INS mechanization. The compensation of these modeled 
errors is shown in Figure 12, i.e., constant, random walk, and Gauss-Markov 
errors, respectively.  
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(a) (b) 

 
(c) 

Figure 12   Error compensation at the accelerometer triad: (a) constant, (b) 
random walk, (c) Gauss-Markov. 

The INS/LBL performance is indicated by the average standard of deviation, as 
shown in Table 1. Superscript (~) above a variable in Table 1 indicates that it is 
an estimated value. The values were obtained by repeating the above simulation 
more than 1,000 times. From deviations of lblr  at the xy  axes, it is shown that the 
LBL could provide navigation with horizontal accuracy less than 0.5 m2. On the 
other hand, it was also shown that the deviations of the estimated positions in 
LBL and INS were very similar. Therefore, it can be argued that INS performance 
largely depends on the accuracy of the references provided by the LBL. 

Table 1 INS/LBL estimation and compensation performance. 

Estimated Variables Average Standard of Deviation  

lblr  [0.21  0.61   97·10-5]T m 

insr  [0.21  0.61   51·10-4]T m 

insv  [27·10-3    62·10-3     8·10-3]T m/s 

 
b
f csε  [64·10-4    83·10-4   71·10-4]T m/s2 

 
b
f rw

ε  [43·10-4    43·10-4   42·10-4]T m/s2 

 
b
f gpε  [98·10-6     10-4    97·10-6]T m/s2 
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5 Conclusions 

Compensation of errors in a loosely coupled INS/LBL navigation scheme was 
presented. The navigation scheme considers ToF measurements, where the wave 
propagation speed is subject to a polynomial SSP. For a given ToF, its Snell’s 
parameter is estimated through an incremental approach and a root-finding 
algorithm. The same approach is also implemented to compute its corresponding 
pseudorange. At the INS, compensation is carried out at the IMU, while 
correction is applied to the mechanization. By simulation, it was shown that the 
LBL managed to provide a position reference to the INS with horizontal accuracy 
less than 0.5 m2. Using the LBL reference, the INS managed to correct and 
compensate for errors and provided navigation with position accuracy close to 
the LBL references, i.e., [0.21 0.61 51·10-4]T m.  

Future works should consider scenarios that include drift in orientation due to 
gyroscope biases. On the other hand, a more robust root-finding method should 
be considered, as the estimation of Snell’s parameter in Eq. (19) is prone to 
exhibit imaginary numbers. Moreover, the soundness of the proposed solution 
needs to be tested further through physical realization and experiments.  
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