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Highlights:  

 The developed system does not require any particular configuration of camera and 
marker in recording the swimming motion. 

 The developed system could capture the joint motion of an asymmetrical swimming 
stroke with insignificant error.  

 The human body was modeled as a 15-segment model. 
 An adaptive Gaussian Mixture Model was employed in the image segmentation step. 
 The obtained joint motion was further analyzed by Swimming Human Simulation 

Model (SWUM) software to obtain the fluid forces. 

Abstract. This work presents the development of a markerless optical motion 
capture system of the front-crawl swimming stroke. The system only uses one 
underwater camera to record swimming motion in the sagittal plane. The 
participant in this experiment was a swimmer who is active in the university’s 
swimming club. The recorded images were then segmented to obtain silhouettes 
of the participant by a Gaussian Mixture Model. One of the swimming images was 
employed to generate a human body model that consists of 15 segments. The 
silhouette and model of the participant were subjected to an image matching 
process. The shape of the body segment was used as the feature in the image 
matching. The model was transformed to estimate the pose of the participant. The 
intraclass correlation coefficient between the results of the developed system and 
references were evaluated. In general, all body segments, except head and trunk, 
had a correlation coefficient higher than 0.95. Then, dynamics analysis by SWUM 
was conducted based on the joint angle acquired by the present work. The 
simulation implied that the developed system was suitable for daily training of 
athletes and coaches due to its simplicity and accuracy. 

Keywords: asymmetrical swimming stroke; front crawl; image matching; image 
processing; markerless optical motion capture. 
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1 Introduction 

Human swimming is a motion in water that generates propulsive force. Since 
humans are not born with the ability to swim naturally, this kind of motion is 
utterly complex. In sport, swimming competitions have been organized since the 
19th century and possibly for many centuries before that. Swimmers in 
competition should obtain maximum speed and reduce drag force from the water 
as much as possible. Hence, swimming athletes require years of training, 
especially in movement coordination, to minimize energy use. 

In swimming training for competition preparation, swimming motion has to be 
measured and analyzed. Measurement of swimming motion can be conducted by 
using an optical motion capture system. In an optical motion capture system, the 
swimming motion performed by the subject is recorded using a camera to obtain 
the joint trajectories. The joint trajectories are analyzed further to obtain 
kinematic and kinetic parameters of swimming motion, which are very useful in 
athletes’ daily training. 

Currently, a marker-based technique of optical motion capture is the most 
common technique used in motion analysis because of its relatively high accuracy 
[1-2]. The marker-based optical motion capture system is widely used in human 
movement analysis, mainly in gait analysis [3-4]. Moreover, the marker-based 
optical motion capture system is also used in swimming movement analysis. 
Monnet, et al. analyzed the feasibility of this system in measuring three-
dimensional hand kinematics during swimming [5]. However, the marker-based 
technique has some limitations despite its accuracy; for example, the markers 
attached to the subject could affect the subject’s movements. In addition, the 
experimental environment has to be controlled so that the time required for 
marker placement could be excessive [6]. Another limitation of the marker-based 
technique is the difficulty of discriminating the markers and mislabeling of the 
markers in automatic tracking. These problems could be solved by utilizing 
different colored LED markers. However, the color of LED cannot be 
distinguished underwater [7]. 

To overcome the limitation of the marker-based technique, markerless optical 
motion capture systems have been developed. In a markerless optical motion 
capture system, subjects do not have to use markers so that the process of the 
experiment can be more straightforward and manageable. Therefore, in the last 
decade, the development of markerless motion capture systems has been a highly 
active research area. This motion analysis method has been applied broadly in 
gait analysis [8-9]. Recently, a system has been introduced that can detect human 
joint motion without any markers required, using a neural network approach 
called OpenPose [10]. 
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Although markerless gait analysis has been studied extensively, markerless 
optical motion capture systems for underwater application have not been 
investigated widely. While OpenPose is robust in detecting joint motion, there is 
no evidence that it can be used for underwater application. In 2011, Ceseracciu, 
et al. developed a markerless optical motion capture system to analyze the front-
crawl stroke utilizing six cameras [11]. However, the complexity of the six 
camera locations was a main drawback of the research. Then, Ferryanto & 
Nakashima developed a markerless system to investigate the dynamics of the 
butterfly stroke for daily training use in 2017 [12]. The developed method could 
be used to study any bilaterally symmetric motion. However, the application of 
the developed system for asymmetrical swimming strokes was still in question. 
The main reason for this limitation is the number of links in the human body 
model, and it cannot distinguish the right and left sides of the body segment. 
Hence, the main objective of the present work was to improve the developed 
system so it can be used to obtain joint angle and dynamics parameters for 
asymmetrical swimming strokes. The improvement of the present study was the 
adjustment of the human body model and the inclusion of an algorithm to identify 
the right and left body segments. As a case study, the front-crawl stroke motion 
was investigated in the experiment for markerless analysis. The main contribution 
of the developed system is to decrease the required time to analyze the swimming 
movement, especially asymmetrical strokes. Compared to manual digitizing, 
which can take several days, the system could obtain the front-crawl kinematics 
data in just one hour. 

2 Methodology 

In the present work, an experiment to obtain the motion of front-crawl swimming 
was conducted. The participant in this experiment was a 23-year-old male 
swimmer who was active in the university’s swimming club, with a height of 
170.5 cm and a weight of 56.5 kg. The swimming speed in this experiment was 
1.13 m/s. An underwater camera Nikon Coolpix AW110 with a resolution of 
1280 x 760 pixels and a rate of 60 frames per second was located 4.5 m from the 
right side of the participant and 0.75 m below the water surface. No special 
lighting equipment is required in the image acquisition. The camera should be 
able to capture a minimum of two strokes of swimming in the sagittal plane. 
Figure 1 shows the swimming images recorded by the camera. Since the front-
crawl stroke is defined by the arm movement, one swimming stroke cycle was 
defined by observing the swimming images. The pose of the participant silhouette 
at t = 0.00 and t = 1.00 should be identical to the indicator of one swimming cycle.   

After recording the swimming motion, the next procedure was image 
segmentation, human body model generation, image matching, and identification 
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of right and left limb. A detailed description of each step will be presented in the 
following section. 

 
Figure 1 RGB swimming images. Each frame was described in non-dimensional 
time normalized by the cycle time. 

2.1 Human Body Model Generation 

Since human movement has many degrees of freedom, a human body model is 
required. The model contains a priori information about the participant’s body 
shape to be matched with real images of the participant [13-14]. As a result, the 
movement of the participant’s body segments could be obtained.  

Human body models can be generated from a morphological description of the 
human body’s anatomy [15]. The best way to generate a model is from direct 
measurement of the participant’s outer body surface. Therefore, the model in this 
research was extracted from a swimming frame that included all body segments. 
Manual image segmentation was conducted to exclude the participant’s body 
segments from the environment. There were 15 body segments, which were 
numbered i = 1 to 15 in the present model, i.e., head, trunk, hip, right and left 
thigh, right and left shank, right and left foot, right and left upper arm, right and 
left forearm, and right and left hand, as presented in Figure 2. 

 
Figure 1 The generated model to assist the image matching process. The * marks 
indicate joints between two segments. 

Joint positions should also be defined in the model as the center of rotation of 
each body segment. The joint positions can be obtained from the centroid of the 
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intersection of two segments. The * mark indicates the positions of all joints in 
the present model in Figure 2. 

2.2 Image Segmentation 

In this procedure, the silhouette of the participant was obtained to be used for the 
image matching step. The input for the image segmentation procedure were RGB 
images that were extracted from the recorded video of the participant swimming. 
The image segmentation process for swimming application is made more 
challenging due to bubbles resulted from the flutter kick. Therefore, in the present 
work, the image segmentation was conducted using an adaptive background 
Gaussian Mixture Model (GMM) [16].  

In the application, the blue channel of RGB was used in the image segmentation 
procedure since the participant’s silhouette has the most contrast against the 
background in the blue channel. Then, the intensity value of the bubbles was 
modeled as a GMM component, so that the bubbles could be interpreted as 
background. To enhance the image quality, a morphological operation was 
applied. The results of image segmentation are presented in Figure 3. The higher 
accuracy of the image segmentation increases the accuracy of the developed 
system. One of the methods to enhance the system’s accuracy is to increase the 
participant’s contrast with the environment. Hence, the accuracy of the image 
segmentation could be improved. 

 
Figure 2 Silhouettes of the participant resulted from the image segmentation 
process. Each frame is in non-dimensional time. 

2.3 Image Matching 

The following procedure after generating the human body model and 
reconstructing the swimming image was to match the model to the swimming 
images to track the participant’s movement. All body segments in the model are 
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transformed to align with the human body in the swimming images. The outcome 
of the image matching procedure is the participant’s pose estimation, i.e., the 
rotation angle of each body segment.  

In developing the image matching algorithm, proper features must be selected. 
The features in the image matching are objects that can be used to establish 
correspondence between two images [17], i.e., the human body model and the 
swimming images. The features must be easily detectable in both the model and 
the swimming images [18]. In general, the feature applied in the present matching 
algorithm is the shape of the human body in the model and swimming images. 
The shape of the human body was selected as the feature in this study because it 
is independent of changes in illumination [19].  

The features detected in the model were then mapped to the swimming images 
by maximizing the similarity measure. The similarity measure used in this study 
was the intensity value between the mapped model and the swimming images. 
Thus, the intensity value of each pixel of the swimming images and the 
transformed model was investigated. If they had the same intensity value, then 
the similarity increased. This similarity measure was assessed only for the area 
below the water surface because the silhouette was only in this area.  

The body segments were assumed to be rigid, with no change in shape occurring. 
Then all the body segments of the model were transformed using both 
translational and rotational parameters. The algorithm of image matching here 
was adapted from the algorithm in Ferryanto & Nakashima’s work [12]. Initially, 
the trunk of the model (i = 2) was translated and rotated by parameters t = [tx ty]T

 

and θ2. Then, the other segment bodies were translated according to the location 
of the trunk to preserve the kinematic links. After the joints were connected, the 
other body segments were rotated by angle θi about each proximal joint.  

Mathematically, the model could be expressed as m = {x௜}௜ୀଵ
ଵହ , where x௜ denotes 

the pixel coordinate belonging to i-th body segment. The transformation of the 
model was written as 

 xതଶ = R(𝜃ଶ)xଶ + 𝑡 for i = 2                                                                   (1) 

 xത௜ = R(𝜃௜)x௜ for i = 1, …, 15 ≠ 2                                                         (2) 

where xത௜ denotes the pixel coordinate of the transformed i-th segment and R(𝜃௜) 
is the rotation matrix with angle 𝜃௜. Hence, the transformed model could be 
written as mഥ = {xത௜}௜ୀଵ

ଵହ . To obtain maximum pixel similarity between the 
transformed model and the swimming data, all transformation parameters T = [tx 
ty θi]T were optimized by Eq. (3). 
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 T = argmin
୘

|mഥ − d|                                                                             (3) 

where d denotes the silhouettes in the swimming images. The term 
argmin

୘
|mഥ − d| is the value of T that minimizes |mഥ − d| [19].  

The transformation parameters T in Eq. (3) were evaluated by an optimization 
procedure. Particle swarm optimization [20] was conducted to obtain the 
transformation parameter for segment i = 1 to 9 with the bound from -30 degrees 
to 30 degrees, excluding trunk and hip. Since the trunk and hip motion in the 
front-crawl stroke are limited, the lower and upper bound for both segments were 
taken as -15 degrees and 15 degrees, respectively.  

Genetic algorithm optimization [21] was used to obtain the upper limb’s rotation 
angle, i.e., segments i = 10 to 15, by solving Eq. (3). To decrease the degree of 
freedom in searching the optimum rotation angle of the upper limbs, the 
optimization by the genetic algorithm was bounded and constrained. The upper 
limb’s motion was constrained by the speed of each upper limb and the rotation 
angle of the upper limb relative to their proximal limb.  

2.4 Identification of Right and Left Limb 

The result of the image matching algorithm was the rotation angle of all segments 
with right or left side unknown. Therefore, an additional algorithm to identify the 
right and left parts of the body was required. In identifying right and left limbs, 
the least distance approach was attempted. The least distance approach 
determined the right of the left limb based on the angle and angular velocity 
difference between two consecutive frames. The reason for this approach is that 
the body segments should move continuously in the front-crawl stroke. Hence, it 
is unlikely that the upper limbs rotate too fast or change direction suddenly.  

3 Result and Discussion 

In this section, the result of the developed markerless optical motion capture was 
validated. The validated rotation angles of the body segments and the body 
geometry were then used for dynamics analysis by Swimming Human Simulation 
Model (SWUM) to obtain the kinetic parameters of swimming. SWUM is 
software for dynamic analysis of swimming movements developed by 
Nakashima, et al. [22].  

3.1 Image Matching 

The accuracy of the image matching was measured by comparing the rotation 
angle obtained from the developed algorithm to the reference of the rotation 



 Ferryanto, et al. 
. 

898 

angle. As the reference for evaluating the image matching algorithm, the 
predefined human body model was manually aligned to the swimming images’ 
silhouettes. In this procedure, alignment was conducted manually with the help 
of an especially developed graphical user interface (GUI). For reproducibility, 
another operator tested the developed GUI. Firstly, all segments were translated 
and rotated so that the trunk in the model was aligned perfectly with the 
silhouettes. Then, the transformation was continued to the other segments so that 
all segments were matched perfectly with the silhouettes of the participant in the 
swimming images. An example of the rotation angle obtained from manual 
matching and Eq. (3) is presented in Figure 4. As can be seen in Figure 4, the 
waveform of the rotation angle looks jagged, although a camera with 60 frames 
per second was used in the experiment. This jagged waveform means that not all 
the images were analyzed in the present study. Furthermore, the analyzed images 
were one-third of all images taken alternately to reduce the computational time. 

Several body segments are above the water surface in the manual matching 
process, especially the head, feet, upper arms, forearms, and hands. The rotation 
angle of these segments was predicted by smoothing spline curve fitting [23]. The 
accuracy of the predicted rotation angle of segments above the water surface is 
not important because there is no interaction force between the body and the 
water. Therefore, it has no effect on the kinematic and kinetic parameters of front-
crawl swimming.  

 
(a) 

 
(b) 

Figure 3 Rotation angle obtained from the developed system for body segments: 
(a) right thigh, and (b) right upper arm. 

In comparing the rotation angle obtained from the developed algorithm to the 
reference of the rotation angle, an intraclass correlation coefficient, ICC, and root 
mean squared error, RMSE, were calculated. The intraclass correlation coefficient 
measures the reliability of the developed system based on the analysis variance 
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and the estimation of variance between the rotation angle obtained from the image 
matching algorithm and the references [24]. The calculated ICC and RMSE are 
summarized in Table 1 for all body segments.  

Table 1 The value of ICC and RMSE for all body segments. The RMSE in 
parentheses indicates an error of the body segment excluding the recovery phase. 

i Body Segment 
Intraclass Correlation 

Coefficient, ICC 
Root Mean Squared 

Error, RMSE (o) 
1 Head 0.629 3.49 
2 Trunk 0.812 0.46 
3 Hip 0.941 0.26 
4 Right thigh 0.984 0.83 
5 Left thigh 0.994 1.06 
6 Right shank 0.997 0.88 
7 Left shank 0.991 1.33 
8 Right foot 0.974 3.30 
9 Left foot 0.978 4.55 
10 Right upper arm 0.998 6.74 
11 Left upper arm 0.999 1.70 
12 Right forearm 0.969 28.30 (1.85) 
13 Left forearm 0.914 48.17 (2.13) 
14 Right hand 0.983 19.95 (14.21) 
15 Left hand 0.966 29.65 (14.28) 

The ICC values presented in Table 1 indicate that the developed algorithm in the 
present work produced acceptable results with the markerless optical motion 
capture system for daily training application. The developed system could also 
obtain the rotation angle of left body segments with a high correlation coefficient, 
even though the camera was placed on the participant’s right side. The rotation 
angles of the left body segments were obtained from the image matching between 
the transformed model and the participant’s silhouette. Since the silhouette of the 
left segments is visible in the images, the image matching algorithm could still 
be evaluated. The ICC was mostly larger than 0.95, except for the head and trunk. 
The head segment had a lower correlation coefficient because this segment was 
mainly outside the water. Hence, the head segment was not captured by the 
underwater camera. In addition, the trunk also had a lower correlation coefficient 
due to its insignificant movement in swimming. This is because, when the motion 
of the segment was very small, the fluctuation of the angle did not become a 
meaningful one but merely a measurement error.  

Based on the RMSE value presented in Table 1, the rotation angle error obtained 
from the present system compared to those from manual matching was relatively 
minor. Therefore, it could be seen that the image matching algorithm was 
executed with good performance. In addition, the RMSE value in parentheses 
indicates an error when the recovery phase was excluded in the calculation. The 
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forearm and hand are above the water surface in the recovery phase, so the camera 
cannot capture them. Hence, their rotation angles were predicted by a curve fitting 
algorithm that resulted in a relatively large RMSE. However, this error did not 
affect the dynamics analysis because no propulsive force is produced in the 
recovery phase. In addition, the RMSE of the hand was comparatively large, 
although the rotation angle obtained from the curve fitting algorithm was 
excluded. The errors were caused by the blurred image, especially in the hand 
area, so the silhouette of the participant’s hand was not segmented perfectly. 

3.2 Dynamics Analysis by SWUM 

For dynamic analysis using SWUM, the linear velocity at the center of gravity 
(CoG) of the participant was required as input. The linear velocity at the CoG 
was obtained from the world coordinates of the CoG after camera calibration with 
the Direct Linear Transformation method [25]. Apart from these data, body 
geometry and joint motion for each segment of the subject’s body were also 
needed. The participant’s height and weight in this study were 170.5 cm and 56.5 
kg. 

The human body model in the SWUM software originally consisted of 21 
segments. The rotation angle of each segment was inputted separately. In this 
study, the human body was modeled as 15 segments. Thus, several body 
segments were combined in SWUM into one body segment. Thus, the SWUM 
software’s rotation angle of the combined body segments was the same. For 
example, there is an upper and lower hip in the SWUM software. In the present 
study, the upper and lower hip was modeled by only one segment, i.e., the hip. 
Therefore, the inputted rotation angles of the upper and lower hip were identical. 

An adjustment for the joint motion of each segment of the body to be included in 
SWUM was required. The joint motion obtained in this research was only in the 
sagittal plane. However, the front-crawl swimming stroke is a three-dimensional 
movement, especially the movement of the hands. The participant’s hand in the 
front-crawl stroke has in an out sweep cycle. Therefore, the upper arm, lower 
arm, and hand rotation angles for the frontal and transverse planes needed to be 
defined, which was done using the joint motion available on  
http://www.swum.org/swumsuit/index.html. The inclusion of movement in the 
frontal and transverse plane from the available joint motion was conducted to 
show the capability of the system. Although the joint motion in the frontal and 
transverse plane was obtained from different swimmers, the calculation result is 
still useful for feedback to athletes and coaches since the sagittal plane motions 
are considered the most important in swimming. However, the user of this system 
does not always have to combine the obtained motion with different swimmers’ 
motions. For example, the user can film the swimmer’s motion from the front to 
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obtain the frontal and transverse motions first. Then, for daily training, the user 
can save time by using the pre-acquired frontal and transverse motions and 
combine them with sagittal motion observed on the training day. 

The results of the dynamics analysis by SWUM are presented in Figure 5, 
respectively. Figure 5 shows the simulation result of the front-crawl stroke. The 
red line represents the vector of fluid forces acting on that segment. The 
propulsive force of swimming in the present work was mostly contributed by the 
upper limbs. The right upper limbs contributed around t = 0.167 to 0.5 to the 
propulsive force and the left upper limbs produced the same propulsive force at 
another time.  

 
Figure 4 Result of the dynamics analysis by SWUM. The red line indicates the 
vector of fluid forces. Each frame is in non-dimensional time.   

The interaction between the water and the participant’s body segments resulted 
from the analysis of the dynamics by SWUM is important for the athlete and the 
coach. By investigating the propulsive forces, they can evaluate the athlete’s 
movement and learn a strategy to increase the athlete’s performance. Hence, the 
system developed in the present work is suitable for coaches and athletes for daily 
training use due to its simplicity in data acquisition of swimming movement. The 
present study’s total computational time to analyze the front-crawl stroke was 
around one hour. The stroke investigated in the present study was the front-crawl 
stroke, but the current system can also be used to evaluate the other asymmetrical 
swimming strokes. In addition, the developed system is helpful in analyzing 
swimming motion of any level of swimmer, including top-level swimmers. One 
of the limitations of the present study is that the system could be improved to 
analyze in real-time, which could be the subject of future investigation. 
Moreover, the system should be validated for full-strength swimming, which may 
generate more bubbles. 
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4 Conclusion 

The development of a markerless optical motion capture system for the front-
crawl swimming stroke was presented. The system uses an underwater camera to 
acquire the motion of swimming. No configuration, such as lighting or marker 
attachment, is required. The system consists of image segmentation, model 
generation, image matching, and identification of right and left limb procedures. 
To validate the rotation angle of all body segments, the intraclass correlation 
coefficient (ICC) between the result and reference was investigated. It showed 
acceptable reliability of the system. The joint motion and body geometry of the 
participant was then used to obtain dynamics parameters of swimming using the 
SWUM software. From this result, coaches can evaluate the athlete’s movement 
and learn a strategy to increase the athlete’s performance. Hence, the developed 
system is suitable for coaches and athletes for daily training use due to its 
simplicity in data acquisition of swimming motion. 
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