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Highlights:  

 A new representation of the pore structure was proposed.  
 An analytical fractal capillary pressure model was derived. 
 Model validation using experimental data was conducted. 

Abstract. Capillary pressure is a crucial input in reservoir simulation models. 
Generally, capillary pressure measurements are expensive and time-consuming; 
therefore, there is a limitation on the number of cores tested in the laboratory. 
Accordingly, numerous capillary pressure models have been suggested to match 
capillary pressure curves and overcome this limitation. This study developed a 
new fractal capillary pressure model by depicting the porous system as a bundle 
of tortuous triangular tubes. The model imitates the pores’ angularity, providing a 
more accurate representation of the pore system than smooth circular openings. 
Moreover, triangular tubes allow the wetting phase to be retained in the tube’s 
corners. A genetic algorithm was employed to match the capillary pressure curves 
and obtain the proposed model’s parameters. Capillary pressure data of eight low-
permeability sandstone samples from the Khatatba formation in the Western 
Desert of Egypt were utilized to test the proposed model. The results revealed that 
the developed model reasonably matched the laboratory-measured data. 

Keywords: capillary pressure curves; fractal model; fractal porous media; genetic 
algorithm; pore structure modeling. 

1 Introduction 

Capillary pressure is a rock-fluid property critical for several recovery processes 
[1]. Capillary pressure governs the reservoir’s fluid distribution and determines 
the amount of hydrocarbon remaining after primary recovery. Moreover, 
capillary pressure is important in CO2 flooding as it controls trapping mechanisms 
such as the residual trapping [2,3]. The capillary pressure should be correctly 
represented in reservoir simulations to assess the reserves accurately. For 
instance, a 5% inaccuracy in capillary pressure data results in a difference of 
millions of barrels in estimated reserves. Capillary pressure is commonly 
quantified as a function of saturation in the laboratory; however, laboratory 
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measurements are costly and time-consuming. Therefore, capillary pressure 
models are necessary to overcome these limitations [4]. Recently, multiple 
attempts have been made to estimate capillary pressure curves by constructing 
pore network models using rock images [5,6]. 

Numerous studies have demonstrated the fractal properties of porous media [7,8]. 
Fractal theory has found several applications in reservoir engineering, including 
modeling of permeability [9,10], capillary pressure [11-13], and electrical 
conductivity [14,15]. Li in [16] developed a capillary pressure model for 
heterogeneous and fractured rocks that reduced to Brooks and Corey’s model at 
specified fractal dimension values, Df. Cai, et al. in [17] investigated spontaneous 
imbibition in gas saturated rock using fractal theory and the capillary tube model. 
Gao, et al. in [18] suggested a fractal representation for the J-function that 
incorporates the Leverett J-function and fractal theory. Saafan & Ganat in [11] 
derived a capillary pressure model from modeling the porous system as straight 
equilateral triangle tubes.  

The previous fractal models simplified the pore structure by depicting it as a 
bundle of cylinders. However, the actual pore geometries exhibit angularity, 
allowing the wetting phase to persist in pore corners. As a result, representing 
pores as triangle tubes is more appropriate. The primary goal of this study is to 
propose a novel fractal capillary pressure model using a unique representation of 
a porous medium to overcome the shortcomings of the existing simplifications. 
This study simulated the pore morphology as tortuous triangular tubes, and their 
numbers follow a fractal scaling law. The capillary entry pressure was expressed 
in terms of the inscribed radius of the triangular pores utilizing the MSP approach. 
Additionally, an analytical capillary pressure model was developed using the 
newly proposed system representation. A genetic algorithm was used for 
matching laboratory measure capillary pressure data and obtaining the fractal 
model parameters. Eight low-permeability samples from the Khatatba formation 
in the Western Desert of Egypt were utilized for validating the proposed model. 
The results indicated that the constructed model reasonably matched the capillary 
pressure data of the low-permeability samples. 

2 Methods 

2.1 Pore System Representation 

Porous media exhibit a sophisticated pore structure, in which the pores have a 
broad irregular shape. The pore shape factor, G, is utilized to represent the pore 
morphology and is determined from [19]: 
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 𝐺 =
஺

௉మ (1) 

where A denotes the pore’s area, and P denotes its perimeter.  

A circular pore has a shape factor of 1/4π, while a square pore has a shape factor 
of 1/16. For triangular pores, G is less than or equal to √3/36. Wu, et al. 
determined a sample’s pore shape factor using micro-CT analysis, as illustrated 
in  Figure 1 [20]. The shape factor distribution in Figure 1 demonstrates that 
modeling the pore structure with circular tubes did not accurately depict the pore 
structure of this core sample. On the other hand, most pores have pore shape 
factors that can be represented as tubes with equilateral triangular cross-sections 
and G = √3/36. The pore system is represented in this work as tortuous equilateral 
triangular tubes, as shown in Figure 2. 

 

Figure 1 Pore shape factor from the micro-CT analysis [20]. 

 

Figure 2 Pore structure representation. 
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2.2 Entry Capillary Pressure in Triangular Tubes 

The Mayer-Stowe-Princen (MSP) method is used to determine the capillary entry 
pressure of a particular tube for a water-oil system as [21]: 

 ∑ 𝑃௜𝑑𝑉௜௜ୀ௢,௪ = ∑ 𝜎௜௝𝑑𝐴௜௝௜௝ୀ௢௪,௢௦,௪௦  (2) 

where dVi is the change in volume of phase i, σij and dAij are the interfacial 
tension and the change of interfacial area between phases i and j. Eq. (2) is 
expanded in the following form: 

 𝑃௢𝑑𝑉௢ + 𝑃௪𝑑𝑉௪ = 𝜎௢௪𝑑𝐴௢௪ + 𝜎௢௦𝑑𝐴௢௦ + 𝜎௪௦𝑑𝐴௪௦ (3) 

For a rigid solid phase, the following equations are satisfied: 

 𝑑𝑉௦ = 𝑑𝑉௢ + 𝑑𝑉௪ = 0 (4) 

 𝑑𝐴௦ = 𝑑𝐴௢௦ + 𝑑𝐴௪௦ = 0 (5) 

Using Young’s equation, the interfacial tension between the distinct phases is 
related to the contact angle as: 

 𝜎௢௦ − 𝜎௪௦ = 𝜎௢௪ cos 𝜃௥ (6) 

where θr is the receding contact angle. From Eqs. (3)-(6), the threshold capillary 
pressure is expressed as: 

 𝑃௖ = 𝑃௢ − 𝑃௪ =
ఙ೚ೢ(ௗ஺೚ೢାୡ୭ୱ ఏೝ ௗ஺೚ೞ)

ௗ௏೚
 (7) 

Figure 3 shows the remaining water at the corners of an invaded triangle tube. 
The threshold capillary entry pressure is calculated from: 

 𝑃௖ =
ఙ೚ೢ ୡ୭ୱ ఏೝ

ோ
൫1 + 2√𝜋𝐺൯𝐹ௗ (8) 

where Fd is expressed as: 

 𝐹ௗ =
ଵାටଵି

రಸ಴

೎೚ೞమഇೝ

ଵାଶ√గீ
 (9) 

For a circular capillary, Fd = 1 and G = 1/(4π), hence Eq. (8) is reduced to Pc = 
2σ cos(θr)/R. For a triangular tube, C is given by: 

 𝐶 = ∑ ቂcos 𝜃௥
ୡ୭ୱ(ఏೝାఉ೔)

ୱ୧୬ ఉ೔
− ቀ

గ

ଶ
− 𝜃௥ − 𝛽௜ቁቃ௡

௜ୀଵ  (10) 

where β denotes corner half-angles, and n denotes the number of corners, 
satisfying:  

 𝛽௜ <
గ

ଶ
− 𝜃௥ (11) 

The remaining water in the tube corners (Figure 3) is computed as [22]: 
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 𝐴௪௥ = 𝐶 ቀ
ఙ೚ೢ

௉೎
ቁ

ଶ
 (12) 

 

Figure 3 Remaining water in the corners of an invaded triangle tube [11]. 

2.3 New Capillary Pressure Model 

The number of triangle tubes with radii larger than or equal to R required for 
filling a fractal porous media is [9]:  

 𝑁 = ቀ
ோ೘ೌೣ

ோ
ቁ

஽೑

 (13) 

where Rmax is the greatest capillary’s inscribed radius. The number of capillary 
tubes, dN, between two radii is found by differentiating Eq. (13) as: 

 𝑑𝑁 = −𝐷௙  𝑅௠௔௫

஽೑  𝑅ି஽೑ିଵ 𝑑𝑅 (14) 

The tortuous length of a capillary is represented as [9]: 

 𝐿௧ = 2ଵି஽೟𝑅ଵି஽೟𝐿଴
஽೟ (15) 

where L0 denotes the straight capillary length, and Dt denotes the tortuosity fractal 
dimension, typically between 1 and 2. The total volume of the pores (Figure 2) is 
computed as: 

 𝑉௣ = ∫ 𝐴𝐿௧
ோ೘ೌೣ

ோ೘೔೙
(−𝑑𝑁) (16) 

where A is the cross-sectional area of a tube and is expressed as [19]: 

 𝐴 =
ோమ

ସீ
 (17) 

Using Eqs. (14), (15), and (17), the integration of Eq. (16) is represented as: 

 𝑉௣ = 𝛼 𝑅௠௔௫

஽೑  ቀ𝑅௠௔௫

ଷି஽೑ି஽೟ − 𝑅
௠௜௡

ଷି஽೑ି஽೟
ቁ 𝐿଴

஽೟ (18) 

where α is expressed as: 

 𝛼 =
஽೑

ଶವ೟శభ ீ ൫ଷି஽೑ି஽೟൯
 (19) 

The remaining water volume in the entire system is computed from: 
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 𝑉௪ = ∫ 𝐴𝐿௧(−𝑑𝑁)
ோ

ோ೘೔೙
+ ∫ 𝐴௪௥𝐿௧(−𝑑𝑁)

ோ೘ೌೣ

ୖ
 (20) 

where R is the smallest tube’s radius that will be invaded at a given Pc, as in Eq. 
(8). The first integration in Eq. (20) denotes the water remaining in uninvaded 
tubes and is calculated as: 

 ∫ 𝐴𝐿௧
ோ

ோ೘೔೙
(−𝑑𝑁) = 𝛼 𝑅௠௔௫

஽೑  ቀ𝑅ଷି஽೑ି஽೟ − 𝑅
௠௜௡

ଷି஽೑ି஽೟
ቁ 𝐿଴

஽೟ (21) 

The second integration in Eq. (20) is the residual water in the invaded tubes’ 
corners, as illustrated in Figure 3, and is computed as: 

 ∫ 𝐴௪௥𝐿௧
ோ೘ೌೣ

ୖ
(−𝑑𝑁) =

ଶభషವ೟஼ ௥మ஽೑ ோ೘ೌೣ

ವ೑
 ൬ோ

భషವ೑షವ೟ିோ೘ೌೣ

భషವ೑షವ೟
൰௅బ

ವ೟

஽೑ା஽೟ିଵ
 (22) 

Finally, the water saturation (Sw) at a particular capillary pressure is determined 
by dividing Eq. (20) by Eq. (18). 

𝑆௪ =
ோ

యషವ೑షವ೟ିோ
೘೔೙

యషವ೑షವ೟
ା 

మభషವ೟಴ ೝమವ೑ ೃ೘ೌೣ

ವ೑
 ቆೃ

భషವ೑షವ೟షೃ೘ೌೣ

భషವ೑షವ೟
ቇ

ഀ ቀವ೑శವ೟షభቁ

ோ೘ೌೣ

యషವ೑షವ೟
ିோ

೘೔೙

యషವ೑షವ೟
 (23) 

Using Eq. (8), Eq. (23) is expressed in terms of Pc as: 

𝑆௪ =

⎩
⎪⎪
⎨

⎪⎪
⎧

                                          1                                                𝑖𝑓 𝑃௖ < 𝑃௘

                    
ఌ ௉೎

షమ൬௉೎,೘ೌೣ

ವ೑శವ೟షభ
ି௉೐

ವ೑శವ೟షభ
൰

௉೐

ವ೑శವ೟షయ
ି௉೎,೘ೌೣ

ವ೑శವ೟షయ                        𝑖𝑓 𝑃௖ > 𝑃௖,௠௔௫ 

௉೎

ವ೑శವ೟షయ
൜ଵାఌ൤ଵିቀ

ು೐
ು೎

ቁ
ವ೑శವ೟షభ

൨ൠି௉೎,೘ೌೣ

ವ೑శವ೟షయ

௉೐

ವ೑శವ೟షయ
ି௉೎,೘ೌೣ

ವ೑శವ೟షయ      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (24) 

where Pe and Pc,max are the entry pressures of the largest and smallest tubes, 
respectively. Also, ε is expressed as: 

 𝜀 =
ଶభషವ೟  ீ ஼ ൫ଷି஽೑ି஽೟൯

௖௢௦మఏೝ ൫ଵାଶ√గீ൯
మ

ி೏
మ ൫஽೑ା஽೟ିଵ൯

 (25) 

2.4 Genetic Algorithm (GA) 

Genetic algorithms apply Darwin’s theory of evolution in optimization problems 
[23] and employs iterative approaches to move through generations of 
chromosomes (Figure 4) [24].  
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Figure 4 Process flow diagram of the genetic algorithm. 

Natural selection ensures that only the fittest individuals survive and reproduce, 
passing their genes to the following generation. The most frequently utilized 
selection strategy in GA is roulette wheel selection. GA uses crossover to 
exchange information between parents to generate new offspring. The crossover 
procedure begins by randomly selecting a crossover point between the two 
parents. The parents’ chromosomes are split and exchanged to make two 
offspring. Moreover, the mutation operator works by changing the values of 
genes from ones to zeros and vice versa, thereby improving the GA’s 
performance and mitigating the problem of getting trapped in a local optima. 

The GA was used to match the capillary pressure for the newly developed fractal 
model given by Eq. (24). Table 1 illustrates the search space of the model 
parameters used by the GA. 

Table 1 GA search space of the different model parameters. 

Parameter 
Minimum 

value 
Maximum  

value 
Df 1 2 
Dt 1 2 

Pe (psi) 0.01 50 
Pc,max (psi) 103 106 
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3 Results and Discussion 

The capillary pressure measurements of eight low-permeability core samples 
from the Khatatba formation in Egypt’s Western Desert were utilized to validate 
the developed model. Figure 5 shows the laboratory-measured capillary pressure.  

 

Figure 5 Capillary pressure data of the eight-core samples. 

The GA was utilized to match the capillary pressure curves, and the matched 
parameters for the eight-core samples are shown in Table 2.  

Table 2 Search space of the different parameters. 

Sample Df Dt Pe (psi) Pc,max (kpsi) 
H1 1.291 1.340 0.761 99.37 
H2 1.520 1.258 2.431 99.87 
H3 1.572 1.251 1.177 85.96 
H4 1.502 1.366 1.295 69.95 
H5 1.683 1.105 0.473 98.74 
H6 1.475 1.344 0.804 99.66 
H7 1.565 1.301 1.935 39.68 
H8 1.283 1.642 1.526 3.89 

The average absolute relative error (AARE) for the calculated water saturation is 
presented in Table 3. From error analysis, the capillary pressure curves of samples 
H1, H2, H3, H4, H5, H6, H7, and matched the experimental data with AARE of 
9.89, 4.09, 2.33, 1.08, 7.02, 1.54, 1.07, and 1.77%, respectively. 

Table 3 Error analysis in the calculated water saturation. 

Sample ARE Sample ARE 

H1 9.89 H5 7.02 
H2 4.09 H6 1.54 
H3 2.33 H7 1.07 
H4 1.08 H8 1.77 
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Finally, the developed model results versus the laboratory measurements are 
shown in Figure 6.  

 

Figure 6 Matched capillary pressure curves of the eight-core samples. 
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Moreover, as shown in Figure 7, the error factor lines for matched versus 
measured water saturation of the eight samples were ±0.08. As a result of the 
above investigation, the created fractal model consistently matches the capillary 
pressure curves. 

 

Figure 7 The matched versus measured Sw of the eight samples. 

4 Conclusions 

The capillary pressure is commonly measured in the laboratory, which is costly, 
challenging, and accompanied by measurement uncertainties, particularly for 
low-permeability samples. Hence, the number of cores examined in the 
laboratory is restricted. Capillary pressure models are thus required to overcome 
these restrictions. 

This paper introduced a pore structure representation that uniquely described the 
porous media as a bundle of tortuous triangular tubes. Representing the pore 
system as a bundle of circular tubes does not depict the pore structure of actual 
rock, and no wetting phase is retained in the pores. The new representation is 
more appropriate to the actual pore structure and accounts for the residual water 
saturation in the corners of the pores. Moreover, a capillary pressure model was 
developed based on fractal theory. The GA was employed to match experimental 
capillary pressure data and obtain the fractal parameters. Based on the findings, 
the proposed model reasonably matched the capillary pressure curves of eight 
low-permeability samples. 
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