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Abstract

The aim of the present study was to explore the most optimal configuration to numerically solve Distributed Activation
Energy Models (DAEMs). DAEMs are useful in obtaining the kinetic parameters in non-isothermal kinetic studies using a
thermogravimetry analyzer (TGA). Compared to other kinetic models, DAEMs provide an additional kinetic parameter that
quantifies the extent of the reaction (o) for each reaction’s mean activation energy (E"). Although DAEMs are efficacious in
kinetic studies, solving DAEMs numerically is challenging. The DAEM equation includes double integration with respect to
activation energy and temperature, which involves various numerical discretizations. Previously, many researchers utilized
a DAEM to explicate complex reactions such as lignocellulosic biomass pyrolysis. However, most of them have yet to propose
a numerical approach to solve DAEMs. Therefore, by exploring multiple numerical calculation configurations, here we
present a general structure to numerically solve nth order and first-order DAEMs. The exploration includes determining the
optimal integration limit of activation energy and the discretization of activation energy and temperature integration. From
the investigation, we came up with a configuration that limits the integration of activation energy from E-30 to E+30.
Meanwhile, the number of integration points for temperature and activation energy must be 51 and 21, respectively. By
using this configuration, DAEM can be utilized optimally in kinetic studies.
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Introduction

Pyrolysis is a thermal processing reaction to convert feedstocks to gaseous, liquid, and solid products [1,2]. It is
usually conducted in an oxygen-free vessel such as a fixed-bed reactor [3], fluidized-bed reactor [4],
thermogravimetry analyzer (TGA) with continuous supply of inert gas [5], or custom-made pyrolizer [6]. Among
these options, TGA is one of the most commonly used instruments to predict the kinetic parameters of pyrolysis
[7]. TGA operates non-isothermally under a linearly changing temperature program. The linear increase of
temperature combined with weight loss data aids researchers in developing a kinetic model of the pyrolysis
reaction.

In general, kinetic studies of thermogravimetric reactions such as pyrolysis can be divided into two methods:
model-free and model-fitting. Model-free, or iso-conversional, methods are typically implemented in the form
of the Kissinger-Akahira-Sunose (KAS) [8], Ozawa-Flynn-Wall (OFW) [9], and Friedman [10] methodologies. These
were developed around 1960 from the assumption that at a certain degree of conversion, a reaction has a
certain value of activation energy. On using the model-free methodology, the researcher needs to provide data
for multiple heating rates. Most commonly, researchers employ data from three to five different heating rates
[11-14] to achieve reliable kinetic parameters [15]. By using these data, the activation energy trend can be
obtained by regressing the temperature and the heating rate value at a certain degree of conversion [16] or at
the maximum reaction rate, as in Coats-Redfern’s methodology [17]. However, the model-free method also
comes with limitations. To begin with, the methodology provides a trend of kinetic parameters that only give us
an indication of the occurrence of a multi-stage reaction [15,18]. From this first limitation, it is impossible for
researchers to deconvolute the multi-stage reaction. Secondly, the model-free methodology can only be
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implemented with a system that neglects heat transfer. In a system with rapid change in temperature or a
sample with a large volume, heat transfer should be accounted for and cannot be neglected. A model-free kinetic
analysis in this kind of system will produce an invalid result. This is because the heat transfer phenomenon will
be compensated by the calculated kinetic parameters.

To properly model a complex multi-stage reaction such as pyrolysis, a model-fitting method provides more room
for exploration, especially for complex reactions. The model-fitting method basically requires the user to
propose an initial assumption in the form of a proposed model to be fitted to the experimental data. There are
various types of models that can be fitted to the experimental data — from the classical power law model to
DAEM. However, applying the conventional power law model to a complex reaction such as lignocellulosic
biomass pyrolysis is insufficient. Since biomass has different kinds of atomic bonds in it, using the power law
model to explicate the pyrolysis of biomass will eventually require multiple independent equations to represent
each reaction sequence.

In most recent studies, the model-fitting kinetic study of biomass pyrolysis employed DAEM [19]. DAEM is
commonly found in pyrolysis kinetic studies and has proven to be a powerful tool to simplify and deconvolute
the complex multi-stage reaction of biomass [18,20-23] or coal [24]. In these studies, the kinetic analysis was
performed by coupling non-linear regression to obtain the most suitable parameter values. In the analyses, it is
common to use the sum squared of errors/residuals (SSE), the sum squared due to regression (SSR), or the
coefficient of determination (R?) to evaluate the suitability of the result. However, there are no limits to how
low or high the value to consider the validity of the analysis.

Although DAEM provides many possibilities to study the kinetics of a reaction, DAEM has an intricate
mathematical form that makes it hard to solve analytically. In 2002, a numerical algorithm was developed to
solve DAEM directly [24]. The algorithm provided a strategy to solve DAEM with direct numerical calculation.
However, the methodology still lacks in detail, especially in the calculation configuration. In solving DAEM with
numerical calculation, one needs to determine the number of numerical integration points and integration range
of activation energy and temperature. In the previous algorithm, the upper limit of activation energy was set at
500 kJ molt with fifty integration interval steps [24]. However, this approach is not efficient since most activation
energy of thermogravimetric pyrolysis lies between 100 to 270 kJ mol™* [18,20,25]. In more detail, a large interval
will produce a skewed curve and an inaccurate result. Meanwhile, a large integration range will present an
extraneous calculation that is far outside the common activation range of lignocellulosic biomass pyrolysis. In
addition, the number of temperature integration points and the range have not been explained explicitly in the
same publication [24].

Overall, the numerical solution of DAEM has been previously explored by other researchers. However, they did
not provide a detailed strategy to solve it. Hence, to provide a better insight into directly solving DAEM with a
numerical calculation, this work aimed to provide a more detailed strategy to solve DAEM by investigating many
configurations. In this work, we investigated the influence of temperature data points, the number of numerical
integration points for activation energy and temperature, as well as the influence of the integration range for
the activation energy. A comparison between each calculation configuration is presented in the form of the
statistical parameters and simulation time required to solve the calculation. Furthermore, we also explored the
effect of various heating rates on the shape of the Derivative Thermogravimetric (DTG) curve that is produced
from direct numerical solution of DAEM. From this exploration of the DAEM calculation configuration, we hope
to provide a better understanding of the application of DAEM in future kinetic studies of thermogravimetric
lignocellulosic biomass pyrolysis.

Materials and Methodology

Materials

In this work, the calculation was conducted on Spyder (Python 3.9) that was released under Anaconda
Distribution. All simulations were conducted using an Apple MacBook Air (M1, 2020) MGN63ID/A with 8 GB of
Unified Memory and a Solid-State Drive of 256 GB.
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Equation of Distributed Activation Energy Model (DAEM)

DAEM has been widely used and there are multiple examples of its derivation and mathematical proof in the
literature. Overall, there are two different forms of DAEM, as shown in Egs. (1) and (2):
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The first equation applies to reactions with order of reaction other than one, whereas the second is applicable
to first-order reactions. In addition, to support both equations, it is pivotal to integrate a certain form of selected
distribution function. Many publications on kinetic analysis with DAEM used a common Gaussian function in Eq.
(3). Therefore, this work will focus on the use of a Gaussian function as an example of a distribution function in
DAEM.

Numerical Approach Strategy

Solving DAEM can be done by multiple approaches. The first approach is by using a model-free methodology.
This approach was further developed some years ago under the name of Miura-Maki approximation [26-28].
The latter is carried out by direct numerical calculation. Solving the DAEM with numerical calculation needs a
certain kind of strategy to tackle the double integration with respect to temperature and activation energy. In
this work, to familiarize and simplify our methodology, we implemented a trapezoidal rule in Eq. (4) to solve the
integration.

Lar fOdx =220 [ (xg) + 2 £ (ry) + -+ 2 f(na) + £ ()] (4)

In Eq. (4), the integral equation is solved by discretization, which requires the user to predetermine the number
of increments. In terms of DAEM, the discretization should be done for the integration to temperature and
activation energy. These integrations are conducted simultaneously and are a kind of strategy to solve it.
Therefore, we developed an algorithm to address this challenge.

Figure 1 shows the overall algorithm to numerically solve DAEM. This algorithm is also supported by a sub-
routine algorithm for an integration to temperature, as shown in Figure 2. To begin with, the algorithm is started
by setting the kinetics parameters that are needed to calculate the kinetic study. In this work, we used a pre-
exponential factor with a value of 1.67 x 10%3 s, activation energy at 170 kJ mol?, and a standard deviation of
the activation energy of 5 kJ mol. Furthermore, for the heating rate we assumed the value to be 5 K mint,

The next step is to determine and discretize the activation energy integration range. For this, we introduce an
adaptive lower and upper integration limit:

Eqpan=[E—f'0 E—f-0+AE .. E+f-0—AE E+f 0] (5)

As shown by Eq. (5), the lower limit is valued at mean activation energy subtracted by a certain factor multiplied
by the standard deviation of the activation energy, while the upper limit is valued at mean activation energy plus
a certain factor multiplied by the standard deviation of the activation energy.

In the third step, we need to determine which kind of DAEM equation we are going to use. In this stage, we use
two kinds of conditions, i.e., a first-order DAEM as well as a n™ order DAEM with 2 as the reaction order.
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Figure 1 Overall algorithm of numerical method for solving 1st order and nth order DAEM.

The next stage is to calculate the DAEM with the trapezoidal integration methodology. In this stage, we need to
set a certain activation energy value. The value will later be used to do a calculation in the DT subroutine to
discretize the temperature integration range, as expressed in Eq. (6):

Topan = [473.15 47315+ AT .. Topy — AT Tyl (6)

The lower limit of the temperature integration range was set at 200 °C (473.15 K). Meanwhile, the upper limit
was capped at the temperature at which the rate of reaction is calculated. The results from this stage were
summed up and multiplied by the delta value of the temperature integration point and divided by two; this
calculation is called trapezoidal integration. The calculation was continued by at subsequent value of activation
energies. The results were later calculated by the same trapezoidal integration to yield the intended value of the
reaction rate.
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Figure 2 Sub-routine algorithm of numerical method for solving 1t order and nth order DAEM.

Statistical Comparison

The different configurations of the numerical methods presented in this work were compared to give an insight
of their accuracy. The comparisons were conducted by using the sum squared of errors, a standardized and well-
known statistical parameter in Eq. (7):

55 = 2[5l =5l ) | 7

ar
The calculation of SSE was conducted by subtracting the current reaction rate value that is being reviewed with
a value that has been calculated by using a base configuration. The base configuration uses 251 temperature
points, 251 temperature integration points, 251 activation energy integration points, and a value of 10 for the
activation energy standard deviation factor for its integration limits.

da

base AT

Results and Discussion

Influence on the Number of Integration Points

Reviewing the number of integration points in DAEM can be divided into three parts. The first one is the number
of observed temperature points where the reaction rate is measured, the second is the amount of discretization
of the activation energy integration limit, and the last is the discretization of the temperature integration limit.
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Figure 3 DTG and SSE curve of (a), (b) 1%t order DAEM and (c), (d) 2" order DAEM at various temperature data
points.

In this first part, we varied the number of temperature data points to calculate the reaction rate with DAEM.
Figure 3Error! Reference source not found.(a) and 3(c) show that using 11 and 21 data points resulted in a
disproportionate graph. This result is also highlighted in Figure 3(b) and 3(d) where the SSE values are much
higher relative to the other three alternatives. Hence, using 51 data points can be considered adequate to yield
a proportional DTG curve. A higher number of data will increase the duration of the simulation as can be seen
in Table 1. Nevertheless, an increase from 11 to 51 or even 101 data is considerably minimum. Therefore, using
a higher number of temperature data points such as 51 and 101 is a good compromise between accuracy and
simulation time.

Table 1 SSE and simulation time at various temperature data points.

Number of First-order DAEM nth-order DAEM
Data; n SSE Simulation Time (s) SSE Simulation Time (s)
11 6.50 x 10 1.06 1.91x 1051 1.06
21 4.36 x 10 2.03 1.27 x 10%1 2.01
51 1.15x 107 4.87 3.31x10% 4.86
101 7.19 x 10° 9.69 2.07 x 101 9.66
151 1.42x 10° 14.38 4.09 x 1010 14.38
251 - 23.94 - 24.00

In the second part, the number of activation energy integration points was varied. Figure 4(a) and (c) illustrate
that the use of eleven points of integration generated an inordinate DTG curve. Comparably, the use of the same
number of integration points also generated a much higher SSE than the other alternatives in Figure 4(b) and
4(d). Consequently, using 21 data points can be considered adequate to yield a satisfying DTG curve.
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Figure 4 DTG and SSE curve of (a), (b) 1%t order DAEM and (c), (d) 2" order DAEM at various activation energy
integration points.

Using a higher number of data will increase the duration of the simulation, as can be seen in Table 2. The same
as found in the first part of this section, the increase of the simulation time from 11 to 101 data is considerably
minimum. Hence, to achieve a good compromise between the value of SSE and the duration of the simulation,
the use of 21 or 51 integration points for the activation energy is sufficient.

Table 2 SSE and simulation time at various activation energy integration points.

Number of Integration Point; n First-order DAEM n®-order DAEM
’ SSE Simulation Time (s) SSE Simulation Time (s)
11 1.18 x 1041 1.18 1.22 x 1051 1.11
21 7.01x 109 2.23 7.53x1013 2.06
51 6.07 x 1023 4.84 1.29 x 1030 4.85
101 1.71x 1030 9.65 1.28 x 1030 9.55
151 4.38x 103! 14.24 3.28 x 1031 14.50
251 - 23.94 - 24.00

The last part of this subsection discusses the selection of temperature integration points. Figure 5(a) and 5(c)
show that the use 11 and 21 integration points resulted in a DTG curve that slightly deviates from the correct
value. This also resulted in a much higher SSE than the other alternatives as can be seen in Figure 5(b) and 5(d).
Thus, using 51 points of data can be considered adequate to yield a satisfying DTG curve.
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Figure 5 DTG and SSE curve of (a), (b) 15t order DAEM and (c), (d) 2"¢ order DAEM at various activation temperature
integration points.

In Table 3, the increase of the simulation time from 11 to 101 once again can be considered as minimum. By
weighing two factors, i.e., the value of SSE and the duration of the simulation, the use of 51 or 101 temperature
points of integration are sufficient.

From the exploration of the temperature data points and the number of integration points for activation energy
and temperature, it can be concluded that the minimum requirement to generate a satisfying DTG curve from
first-order and n™-order DAEMs is:

1. the number of temperature data points must be above 51,
2. the number of activation energy integration points must be above 21,
3. the number of temperature integration points must be above 51.

Table 3 SSE and simulation time at various temperature integration points.

. . First-order DAEM nth-order DAEM
Number of Integration Point; " " " "
n SSE Simulation SSE Simulation
Time (s) Time (s)
11 3.63x 1051 1.10 2.70 x 1051 1.05
21 2.52 x 1061 1.99 1.88 x 1061 1.98
51 6.24 x 1081 479 4.66 x 1081 4.85
101 3.00 x 1091 9.70 2.24 x 1091 9.48
151 3.44 x 1010 14.13 2.57 x 1010 14.33
251 - 23.94 - 24.00

However, to increase the accuracy of the rest of the subsections, we increase the value of these three
parameters by one degree, as follows:

1. the number of temperature data points = 101,
2. the number of activation energy integration points = 51,
3. the number of temperature integration point s =101.
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Influence of Adaptive Integration Limits

The integration limit of the activation energy is crucial to generate a suitable DTG curve from a DAEM. In the
original form of the DAEM, the integration limit of activation energy starts from 0 and ends at a value of . This
integration limit is unpractical and requires a lot of computational power. Therefore, to simplify the integration
of DAEM, we tried to implement an adaptive limit for activation energy integration.
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Figure 6 DTG and SSE curve of (a), (b) 1t order DAEM and (c), (d) 2" order DAEM at various activation energy
integration limits.

The adaptive integration limit for activation energy was based on the value of its mean activation energy and its
standard deviation value. Here, we varied it between the value of mean activation energy subtracted by the
standard deviation and five times its standard deviation. To compare between the alternatives, we still used the
value of ten times the standard deviation as the base calculation.

Figure 6(a) and 6(c) show the different shapes of the DTG curve at different integration limits. The value of one
and two times the standard deviation resulted in an off-shape DTG curve. As presented in Figure 6(b) and 6(d),
the SSE value of these two configurations was also much higher than that of the other integration setups.
Subsequently, the use of an integration limit for the activation energy minus three times the standard deviation
of the activation energy plus three times the standard deviation gave a satisfying result.

Influence of Heating Rates

After setting the optimal configuration to calculate the DAEM, we tried to explore the application of a DAEM in
thermogravimetric pyrolysis experiments. In a kinetic study of thermogravimetric pyrolysis, it is common to vary
the heating rate to obtain the kinetic parameters. This approach is usually found in model-free kinetic studies
[27,29,30]. However, in model-fitting kinetic studies, the search for the kinetic parameters often only involves
one heating rate [20,23,25]. Therefore, in this work, we investigated the effect of the heating rate on the shape
of the DAEM curve.
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In thermogravimetric pyrolysis, the heating rate has been proven to affect the shape of the reaction, where
thermogravimetric pyrolysis with a higher heating rate usually pushes the reaction peak to a higher temperature
[18,31]. The delayed reaction peak is commonly subjected to thermal lag or thermal hysteresis, where the
temperature of the sample is lower than the temperature measured by the instrument. This often found in low
thermal conductivity samples such as solid biomass [32,33].

The shift of the reaction peak in thermogravimetric pyrolysis under various heating rates can be modeled with
DAEM. In DAEM, the heating rate is found as the denominator of the preexponential factor as presented in Egs.
(1) and (2) Thus, higher heating rates must have reduced the value of the reaction rate. In Figure 7(a) and 7(b),
a DAEM with higher heating rates at the same kinetic parameters resulted in a shift of the reaction peaks towards
a higher temperature. At the same time, the peak of the reaction was also reduced by a certain magnitude.
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Figure 7 DTG curve of (a) 1%t order DAEM and (c) 2" order DAEM at various heating rates.

A decline in the reaction rate peak has been found in several previous studies, for instance, for the pyrolysis of
teak sawdust [18], cellulose [34, 35], poplar wood sawdust [36], and Chinese herb residues [30]. By comparing
the nature of DAEM and these findings in previous research, it can be expected that that the DAEM has the
ability to model the reaction curve of biomass thermogravimetric pyrolysis.

General Strategy to Obtain Reliable Kinetic Parameters

We have investigated and explored the use of DAEM in our previous modeling of thermogravimetric pyrolysis
experiment [18,20]. From the findings and this work, it can be concluded that the number of data points and
integration points, and the integration range are important to generate a proportional DAEM curve. In Figure
8(a) and 8(b), we can see that the use of an optimal configuration was able to produce a proportional DTG curve
compared to the base calculation configuration. From our measurement, the optimal calculation configuration
only needs 0.9 seconds to complete. This value is much lower than the base calculation configuration, which
needs about 24 seconds to complete. In a nutshell, using the optimal configuration for the numerical calculation
increases our calculation efficiency about 25-fold compared to using the base configuration with the same
accuracy.

In more detail, Figure 8(c) and 8(d) show the peak area of both calculation configurations. As presented in that
figure, there are slight differences in the reaction rate value between the base calculation and the optimal
calculation configuration. However, the differences can be considered miniscule and negligible. Therefore, the
optimal configuration that we found can be considered as a good way to directly compute DAEM with numerical
methods.
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Figure 8 DTG and DTG peak curve comparison of (a), (b) 15t order DAEM and (c), (d) 2" order DAEM at base and
optimal numerical calculation configuration.

This direct numerical calculation of DAEM with an optimal configuration can be directly implemented in a kinetic
study of thermogravimetric pyrolysis at various heating rates. As previously highlighted in Section 3.3 and Figure
7, it is possible to model thermogravimetric pyrolysis with DAEM under many different heating rates. This
approach is still limited since most model-fitting kinetic studies of biomass pyrolysis using DAEM were only
conducted by involving a single heating rate experiment [20,23,25]. In our previous study, we explored the
possibility of using multi-distribution DAEM on a kinetics study of teak sawdust, lignin, and cellulose at three
different heating rates [18]. From that work, we consider that multiple heating rates can provide more consistent
kinetic parameters. This simultaneously proves that small changes of the heating rate have minimal or no impact
on the type of reaction in thermogravimetric pyrolysis. Additionally, the addition of an extra parameter of extent
of reaction in DAEM has the potential to elucidate the role of metal [1] or non-metallic [2] catalysts in pyrolysis
to produce a more favorable product.

Conclusions

DAEM is one of many forms of model-fitting kinetic analysis of thermogravimetric pyrolysis of biomass. To model
the reaction rate or DTG curve for thermogravimetric pyrolysis, DAEM should be calculated in such a way that it
can produce an accurate and proportional result. In this paper, the optimal configuration to calculate DAEM is
given. It turned out that the optimal number of temperature data points should be at least 51 points, while the
number of activation energy and temperature integration points must be above 21 and 51 points, respectively.
Meanwhile, in terms of the activation energy integration limit, an adaptive integration limit should be applied.
The range is recommended to span from mean activation energy minus three times its standard deviation to
mean activation energy plus three times its standard deviation. By using this configuration, one can achieve a
proportional and suitable DAEM curve to fit experimental DTG curves.

The use of DAEM in multi-heating rate thermogravimetric pyrolysis was also highlighted in this work. A higher
heating rate will generate a proportional shift of the reaction peak towards a higher temperature, which has
been found in several other studies. Therefore, it is possible to implement DAEM in kinetic studies by using
multiple heating rates of thermogravimetric pyrolysis.
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