Thermodynamic Study on Decarbonization of Combined Cycle Power Plant


  • Azaria Haykal Ahmad Mechanical Engineering Department, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung Jalan Ganesha 10, Bandung 40132, Indonesia
  • Prihadi Setyo Darmanto Thermal Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
  • Firman Bagja Juangsa Thermal Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia



carbon capture, co-firing, combined cycle, hydrogen, natural gas


Integrating hydrogen firing and a carbon capture plant (CCP) into a natural gas combined cycle (NGCC) power plant is a promising strategy for reducing CO2. In this study, process simulation in Aspen PLUS of hydrogen co-firing in a 40 MW turbine gas combined cycle power plant was done at an identical gas turbine inlet temperature from to The evaluated cases were hydrogen co-firing with CCP (H2 Co-firing + CCP) and hydrogen co-firing without CCP (H2 Co-firing). The results showed a 6% CO2 emission reduction per 5% increase in hydrogen, albeit with increased NOx emissions. H2 Co-firing experienced a decrease in net power with rising hydrogen co-firing, while H2 Co-firing + CCP saw an increase but remained below Case 2 due to the energy penalty from the carbon capture plant. The capital cost of H2 Co-firing + CCP exceeds that of H2 Co-firing due to CCP usage, impacting gross revenue. The sensitivity analysis indicated that the cost of hydrogen has higher sensitivity compared to the cost of CCP. Lowering hydrogen prices is recommended to effectively reduce CO2 emissions in NGCC.


Download data is not yet available.


Pegels, A. & Altenburg, T., Latecomer Development in a ?Greening? World: Introduction to the Special Issue, World Development, 135, 105084, 2020. doi: 10.1016/j.worlddev.2020.105084.

EPA, Global Greenhouse Gas Emissions, United States Environmental Protection Agency, 2016.

Zhongyang, L. & Michalis, A., Low-Rank Coals for Power Generation, Fuel and Chemical Production, Woodhead Publishing, 2017.

IEA, Electricity, Fuels & Technologies, 2021. (10 Feb 2022).

Davis, S.J., Lewis, N.S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I.L., Benson, S.M., Bradley, T. et al., Net-Zero Emissions Energy Systems, Science, 360(6396), 2018. doi: 10.1126/science.aas9793.

Pasek, A.D., Gultom, K.W., & Suwono, A., Feasibility of Recovering Energy from Municipal Solid Waste to Generate Electricity, Journal of Engineering and Technological Science, 45(3), pp. 241-256, 2013. doi: 10.5614/j.eng.technol.sci.2013.45.3.3.

Farhadi, P., Sedaghat, M., Sharifi, S. & Taheri, B., Power Point Tracking in Photovoltaic Systems by Sliding Mode Control, 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 781-785, 2017. doi: 10.1109/ATEE.2017.7905097.

Taheri, B., Foroud, A.A. & Jabari, F., Design and Performance Optimization of a Tri-Generation Energy Hub Considering Demand Response Programs, Energy Science & Engineering, 11(2), pp. 675-684, 2023. doi: 10.1002/ese3.1353.

IEA, The Future of Hydrogen, International Energy Agency (IEA), 2019. doi: 10.1787/1e0514c4-en.

Nikolaidis, P. & Poullikkas, A., A Comparative Overview of Hydrogen Production Processes, Renewable and Sustainable Energy Reviews, 67, pp. 597-611, 2017. doi: 10.1016/j.rser.2016.09.044.

Mler, K.T., Jensen, T.R., Akiba, E. & Li, H.W., Hydrogen - A Sustainable Energy Carrier, Progress in Natural Science: Materials International, 27(1), pp. 34-40, 2017. doi: 10.1016/j.pnsc.2016.12.014.

Husin, H., Pontas, K., Sy, Y., Syawaliah & Saisa, Synthesis of Nanocrystalline of Lanthanum Doped Natao3 and Photocatalytic Activity for Hydrogen Production, Journal of Engineering and Technological Science, 46(3), pp. 318-327, 2014. doi: 10.5614/j.eng.technol.sci.2014.46.3.6.

Andersson, M., Larfeldt, J., Larsson, A. & Studie Har Finansierats, Co-Firing with Hydrogen in Industrial Gas Turbines (Sameldning med vgas i industriella gasturbiner), SGC Rapport 2013:256 Svenskt Gastekniskt Center AB, Malm Sweden, 2013.

Nose, M., Kawakami, T., Araki, H., Senba, N. & Tanimura, S., Hydrogen-Fired Gas Turbine Targeting Realization of CO2-Free Society, Mitsubishi Heavy Industries Technical Review, 55(4), pp. 1-7, 2018.

Inoue, K., Miyamoto, K., Domen, S., Tamura, I., Kawakami, T. & Tanimura, S., Development of Hydrogen and Natural Gas Co-firing Gas Turbine, Mitsubishi Heavy Industries Technical Review, 55(2), pp. 1?6, 2018.

Ito, T., Utilization of the Hydrogen Energy Carrier in Large Scale Power Plant, MIT Energy Initiative SPRING Symposium: Can Hydrogen become part of Climate Solutions?, 2019

Longden, T., Beck, F. J., Jotzo, F., Andrews, R. & Prasad, M., ?Clean? Hydrogen? ? Comparing the Emissions and Costs of Fossil Fuel Versus Renewable Electricity Based Hydrogen, Applied Energy, 306(Part B), 118145, 2022. doi: 10.1016/j.apenergy.2021.118145.

Alhwayzee, M., Kadhim, H.J. & Rashid, F.L., Aspen Plus Simulation for Performance Improving of Al-Khayrat Power Plant Using Heat Recovery Steam Generation (HRSG) System, Journal of Mechanical Engineering Research and Development, 44(4), pp. 400-411, 2021.

Moran, M.J., Saphiro, H.N., Boettner, D.D. & Bailey, M.B., Fundamentals of Engineering Thermodynamics, ed 8, Wiley, 2014.

Girsang, R.O., Performance Analysis of PLN Sektor Keramasan Combine Cycle Power Plant Using Cycle Tempo Software, Bachelor Thesis, Mechanical Engineering, Institut Teknologi Sepuluh Nopember, 2016.

Sulistiyo Aji, S., Kim, Y.S., Ahn, K.Y. & Lee, Y.D., Life-Cycle Cost Minimization of Gas Turbine Power Cycles for Distributed Power Generation Using Sequential Quadratic Programming Method, Energies, 11(12), 3511, 2018. doi: 10.3390/en11123511.

Pei, X., He, B., Yan, L., Wang, C., Song, W. & Song, J., Process Simulation of Oxy-Fuel Combustion for a 300 MW Pulverized Coal-Fired Power Plant Using Aspen Plus, Energy Conversion and Management, 76, pp. 581-587, 2013. doi: 10.1016/j.enconman.2013.08.007.

Odeh, A.O., Okpaire, L.A. & Oyedoh, E.A., Process Simulation of Oxy-Fuel Combustion for a 120 MW Coal-Fired Power Plant Using Aspen Plus, International Journal of Natural Sciences Research, 9(1), pp. 26-38, 2021. doi: 10.18488/journal.63.2021.91.26.38.

Zikowski, P., Madjeski, P., Amiri, M., et al., Thermodynamic Analysis of Negative CO2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software, Energies, 14(19), 6304, 2021. doi: 10.3390/en14196304.

Juangsa, F.B. & Aziz, M., Integrated System of Thermochemical Cycle of Ammonia, Nitrogen Production, and Power Generation, International Journal of Hydrogen Energy, 44(33), pp. 17525-17534, 2019. doi: 10.1016/j.ijhydene.2019.05.110.

Xu, Y., Wang, H., Liu, X., Zhu, J., Xu, J. & Xu, M., Mitigating CO2 Emission in Pulverized Coal-Fired Power Plant via Co-Firing Ammonia: A Simulation Study of Flue Gas Streams and Exergy Efficiency, Energy Conversion and Management, 256, 115328, 2022. doi: 10.1016/j.enconman.2022.115328.

Meziane, S., & Bentebbiche, A., Numerical Study of Blended Fuel Natural Gas-Hydrogen Combustion in Rich/Quench/Lean Combustor of a Micro Gas Turbine, International Journal of Hydrogen Energy, 44(29), pp. 15610-15621, 2019. doi: 10.1016/j.ijhydene.2019.04.128.

Singh, B., Strman, A.H. & Hertwich, E.G., Comparative Life Cycle Environmental Assessment of CCS Technologies, International Journal of Greenhouse Gas Control, 5(4), pp. 911-921, 2011. doi: 10.1016/j.ijggc.2011.03.012.

Bandyopadhyay, A., Carbon Capture and Storage CO2 Management Technologies, Apple Academic Press, Inc, 2014. doi: 10.1201/b16845.

Finney, K.N., Akram, M., Diego, M.E., Yang, X. & Pourkashanian, M., Bioenergy with Carbon Capture and Storage: Using Natural Resources for Sustainable Development, ed 1, Academic Press, 2019. doi: 10.1016/B978-0-12-816229-3.00002-8.

IEA-ETSAP, Industrial Combustion Testing, IEA-ETSAP, 2010. doi: 10.1201/ebk1420085280.

James, R., Zoelle, A., Keairns, D., Turner, M., Woods, M., & Kuehn, N., Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, NETL Report Pub-22638, NETL, 2019.

Republic of Indonesia, Law Number 7 of 2021 concerning Harmonization of Tax Regulations, 2021. (Text in Indonesian)

Minister of Energy and Mineral Resources of the Republic of Indonesia, Decree of the Minister of Energy and Mineral Resources of the Republic of Indonesia Number 55 K/20/MEM/2019 concerning the Amount of Basic Costs for Providing Power Generation for PT Perusahaan Listrik Negara (Persero), 2018. (Text in Indonesian)

Pieri, T. & Angelis-Dimakis, A., Model Development for Carbon Capture Cost Estimation, Clean Technologies, 3(4), pp. 787-803, 2021. doi: 10.3390/cleantechnol3040046.

Wang, S., Yang, H., Shi, Z. et al., Renewable Hydrogen Production from the Organic Fraction of Municipal Solid Waste through a Novel Carbon-Negative Process Concept, Energy, 252, 124056, 2022. doi: 10.1016/

Gas Turbine World, GTW Handbook, Globe Pequot Press, 2019.

Pyo, M. J., Moon, S.W. & Kim, T.S., A Comparative Feasibility Study of the Use of Hydrogen Produced from Surplus Wind Power for a Gas Turbine Combined Cycle Power Plant, Energies, 14(24), 8342, 2021. doi: 10.3390/en14248342.

Seebregts, A.J., Gas-Fired Power, IEA ETSAP - Technological Brief E02, IEA-ETSAP, 2010.

Shih, H. & Liu, C., A Computational Study on the Combustion of Hydrogen/Methane Blended Fuels for a Micro Gas Turbines, International Journal of Hydrogen Energy, 39(27), pp. 15103-15115, 2014. doi: 10.1016/j.ijhydene.2014.07.046.

Sitanggang, R.B., Natural Gas Cofiring in Combined Cycle Gas Turbine, Journal of Applied Engineering Science, 21(2), pp.1-8, 2023. doi: 10.5937/jaes0-41926.

Zhang, F., Chen, G., Wu, D., Li, T., Zhang, Z. & Wang, N., Characteristics of Ammonia/Hydrogen Premixed Combustion in a Novel Linear Engine Generator, Proceedings of The First World Energies Forum?Current and Future Energy Issues, 58(1), 2020. doi: 10.3390/wef-06925.

Khateeb, A.A., Guiberti, T.F., Zhu, X., Younes, M., Jamal, A. & Roberts, W.L., , Stability Limits and Exhaust NO Performances of Ammonia-Methane-Air Swirl Flames, Experimental Thermal and Fluid Science, 114, 110058, 2020. doi: 10.1016/j.expthermflusci.2020.110058.

Glarborg, P., Miller, J.A., Ruscic, B. & Klippenstein, S.J., Modeling Nitrogen Chemistry in Combustion, Progress in Energy and Combustion Science, 67, pp. 31-68, 2018. doi: 10.1016/j.pecs.2018.01.002.

Khateeb, A.A., Guiberti, T.F., Wang, G., Boyette, W., Younes, M., Jamal, A. & Roberts, W.L., , Stability Limits and NO Emissions of Premixed Swirl Ammonia-air Flames Enriched with Hydrogen or Methane at Elevated Pressures. International Journal of Hydrogen Energy, 46(21), pp. 11969-11981, 2021. doi: 10.1016/j.ijhydene.2021.01.036.




How to Cite

Ahmad, A. H., Darmanto, P. S., & Juangsa, F. B. (2023). Thermodynamic Study on Decarbonization of Combined Cycle Power Plant. Journal of Engineering and Technological Sciences, 55(5), 613-626.




Most read articles by the same author(s)