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Abstract. Underwater acoustic power around a submerged body in shallow 
water was investigated using the Boundary Element Method (BEM). The model 
domain simulated a nearshore environment with shallow water conditions. The 
seabed was assumed flat and sound velocity was constant over depth. The 
boundary element method was combined with eigenfunction expansion to model 
radiation boundary conditions. Underwater acoustic power was calculated from 
the underwater acoustic potential in the domain. Several cases were investigated 
in this study: cases with variation of submerged body distance from the seabed, 
variation of submerged body location from the underwater acoustic source, and 
variation of submerged body length. 

Keywords: boundary element method; shallow water; submerged body; underwater 
acoustics; underwater acoustic power. 

1 Introduction 
Early numerical methods for solving underwater acoustic problems, such as the 
parabolic equation, normal modes, and ray tracing, have several restrictions, as 
described by Jensen, et al. [1]. Parabolic equation methods neglect backscat-
tering effects, which are likely to be important in shallow water and near the 
shoreline. These methods are used for shallow water propagation in horizontally 
stratified media. They are best suited for low-frequency problems but 
experience difficulties with a domain (the area where the computation is 
conducted) that is both range- and depth-dependent. Ray tracing deals with 
bottom interactions only in an approximate manner and therefore is not suitable 
to simulate shallow water.  

Discretization-based methods e.g. the finite difference method (FDM) and the 
finite element method (FEM), have been developed to solve underwater 
acoustic problems with complex domain geometries. FDM places a grid of 
‘cells’ inside the domain and applies the differencing approximation to each 
interior point. FEM divides the domain into small finite segments where their 
behavior is described by a suitable shape function. As its name implies, the 
discretization of the boundary element method (BEM) is only over the boundary 



730 M. Fatkhurrozi & Irsan S. Brodjonegoro 

  

of the domain, reducing the number of unknowns by one order. This method 
computes the internal point value by employing a boundary integral equation. 
Compared to BEM, FDM has difficulty fitting complex boundary geometries as 
it employs a rectangular grid to discretize the domain. FEM is less effective in 
computational aspects as the discretization is over the entire domain [2]. 

In this study, underwater acoustic propagation was modeled in shallow water 
representative of coastal regions, where sound velocity is constant over depth. 
The existence of a submerged body in the model escalates the geometry’s 
complexity so the use of BEM is an appropriate solution. The submerged body 
was a cylindrical shell structure, which has been modeled in numerous previous 
papers due to its regularity [3]. This underwater acoustic wave modeling is used 
in active acoustic systems to detect the existence of submerged bodies (e.g. 
submarines) in water.   

The underwater acoustic power was calculated from the underwater acoustic 
potential in the domain. The problems modeled in this study were: problems 
with variation of the submerged body’s distance from the seabed, variation of 
the submerged body’s location related to the underwater acoustic source, and 
variation of the submerged body’s length. 

2 Methodology 
The boundary element computation conducted in this study used the 2D 
Boundary Element Method Helmholtz Solver (2DBEMHS) developed by 
Stéphan T. Grilli from the University of Rhode Island. The program inputs are 
wavenumber, node per-wavelength, domain geometry, submerged body 
geometry, source location, modes used in radiation boundary. The computation 
resulted in the underwater acoustic potential (∅) in the boundary and the domain 
that was used to calculate the underwater acoustic power.  

Validation was conducted on a problem with a rectangular boundary geometry 
of which the analytical solution was known. An error criterion of 5% was used 
in this validation. Once the model was validated, the underwater acoustic 
potential (∅) in the boundary and the domain was calculated.  

3 Mathematical Formulation 

3.1 Boundary Integral Equation 
The complex velocity potential for homogeneous harmonic two-dimensional 
problems in the vertical plane, (𝑥, 𝑧), is [4]: 
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 Φ(x, z, t) = ∅(x, z)𝑒−𝑖𝑖𝑖 (1) 

with velocity 𝐮 = ∇Φ, 𝜔 is the acoustic wave angular frequency, ∅ is the 
complex potential amplitude, and 𝑖 is an imaginary number (𝑖 = √−1). Sound 
velocity 𝑐 is assumed to be constant and ideal fluid theory is employed.  

The governing Eq. (1) reduces to the following Helmholtz equation: 

 ∇2∅ + 𝑘2∅ = 0 (2) 

where 𝑘 is the wavenumber (𝑘 = 𝜔/𝑐), and ∇ is the divergence operator. 

The fundamental solution of Eq. (2) is  

 𝐺 = − i
4
𝐻0

(2)(𝑘𝑘)  (3) 

The normal derivative of Eq. (3) is  

 𝜕𝜕
𝜕𝜕

= 𝑖𝑖
4
𝐻1

(2)(𝑘𝑘) 𝜕𝜕
𝜕𝜕

  (4) 

where 𝑟 is distance between the source point and the field point, 𝐻0
(2) is a zero-

order Hankel function of the second kind, 𝐻1
(2) is a first-order Hankel function 

of the second kind, and 𝑛 is the unit normal vector. 

The first step in the boundary element method is transforming governing Eq. (2) 
to a boundary integral equation, i.e. [2] 

 𝐶0(𝑄′)∅(𝑄′) − ∫ 𝐺(𝑄′,𝑄) 𝜕∅(Q)
𝜕𝜕

𝑑ΓΓ + ∫ ∅(Q) 𝜕G�Q′,Q�
𝜕𝜕

𝑑ΓΓ = 0  (5) 

where 𝑄 and 𝑄’ are the field point and source point respectively, 𝑑Γ is a 
boundary segment, and 𝐶0 is a coefficient depending on the boundary geometry 
(equal to ½ on a smooth boundary and 1 inside the domain).  

For the case where sources exist, Eq. (5) becomes Eq. (6): 

𝐶0(𝑄′)∅(𝑄′) − ∫ 𝐺(𝑄′,𝑄) 𝜕∅(Q)
𝜕𝜕

𝑑ΓΓ + ∫ ∅(Q) 𝜕G�Q
′,Q�

𝜕𝜕
𝑑ΓΓ = ∑ 𝑆𝑖𝐺(𝑄′,𝑄)𝑁𝑠

𝑖=1   (6) 

where the values 𝑆𝑖 denote the strengths of 𝑁𝑠 point sources located in the 
domain. 

3.2 Boundary Conditions 
The submerged body in shallow water is shown in Figure 1. The model is two-
dimensional (𝑥, 𝑧) and represents ocean sections near coastal regions with a 
sloping geometry and one open boundary on the offshore side. 
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Figure 1 Shallow water region with submerged body model. 

The depth of the water is ℎ, and the submerged body is 𝑀. Ω𝑖 is the domain 
where underwater acoustic potential is computed, while Ωe is the offshore 
region where the potential is not computed, bounded by radiation boundary Γ1. 
The underwater acoustic potential is discretized on the boundary and 
numerically computed under the excitation of underwater acoustic source 𝑆, 
which is located at (𝑥𝑠, 𝑧𝑠). 

The boundary conditions are described as follows:  

The rigid sea bottom is represented by Γ𝑏 and Γ2. Sloping boundary (Γ2) 
indicates that the model resembles a nearshore environment. No-flow condition 
is applied to both Γ𝑏 and Γ2, that is 

 𝜕∅�

𝜕𝜕
= 0  (7) 

The surface of the submerged body also utilizes this no-flow condition. The 
overbar denotes a prescribed value. At surface boundary Γ𝑓, where atmospheric 
pressure 𝑝 = 0, no-wave condition is represented by 

 ∅� = 0 (8) 

Boundary Γ1 is called the radiation boundary condition, where the potential and 
its normal gradient are continuous from inside the computational domain to the 
outside, 

 𝜕∅𝑒

𝜕𝜕
= 𝜕∅𝑖

𝜕𝜕
  and ∅𝑒 = ∅𝑖 on Γ1   (9) 

The potential on Γ1 can be represented by eigenfunction expansion derived from 
the normal mode solution, which satisfies the governing equation and both 
bottom and free surface boundary conditions (Eqs.  (8) and (9)) [6]: 

𝛀𝐢 

Γf 

Γ1 

Γ2 S 

Γb 

𝑀 
𝛀𝐞 

x 
z 

𝒏 

𝑧 = 0 

𝑧 = −ℎ 
𝒏 
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 ∅ = ∑ 𝐴𝑚 sin(𝑘𝑚𝑧) 𝑒𝑖
�𝑘2−𝑘𝑚2 |𝑥|𝑁𝑚

𝑚=1   (10) 

where 𝑘𝑚 is eigenvalue [𝑘𝑚 = 𝜋(2𝑚 − 1)/2ℎ] for the 𝑚th mode, and 𝑁𝑚 is 
the number of modes used (𝑁𝑚 = 15). Its normal gradient is in Eq. (11). 

 𝜕∅
𝜕𝜕

= 𝑖 ∑ 𝐴𝑚�𝑘2 − 𝑘𝑚2 sin(𝑘𝑚𝑧) 𝑒𝑖
�𝑘2−𝑘𝑚2 |𝑥|𝑁𝑚

𝑚=1   (11) 

The orthogonality of the eigenfunctions is used to derive the equation relating 
the potential and its gradient:  

 ∫ 𝑠𝑠𝑠(𝑘𝑙𝑧) 𝑠𝑠𝑠(𝑘𝑚𝑧)0
−ℎ 𝑑𝑑 = ℎ

2
𝛿𝑙𝑙 (12) 

The expansion coefficient is obtained from multiplying the potential in Eq. (7) 
by sin(𝑘𝑙𝑧) and integrating over depth in Eq. (13): 

 𝐴𝑙 = 2
ℎ
𝑒
−𝑖�𝑘2−𝑘𝑙

2|𝑥|
∫ ∅ 𝑠𝑠𝑠(𝑘𝑙𝑧)0
−ℎ 𝑑𝑑 (13) 

Substituting this expansion coefficient into Eq. (8), for 𝑙 = 𝑚, we get the 
relationship between the potential and its normal gradient along the radiation 
boundaries in Eq. (14): 

 𝜕∅
𝜕𝜕

= 2𝑖
ℎ
∑ �𝑘2 − 𝑘𝑚2 sin(𝑘𝑚𝑧)∫ ∅0

−ℎ sin(𝑘𝑚𝑧)𝑑𝑑𝑁𝑚
𝑚=1  (14) 

3.3 Discretization 
To solve the boundary integral equation numerically, first the boundary must be 
discretized into a number of elements. The geometry (𝑥,𝑦) of each element can 
be represented by interpolation between the nodal points. They are in Eqs. (15) 
and (16)[4]: 

 𝑥 = ∑ 𝑥𝑖 𝑁𝑖  (𝜉)𝑁𝑛
𝑖=1  (15) 

 𝑦 = ∑ 𝑦𝑖  𝑁𝑖  (𝜉)𝑁𝑛
𝑖=1    (16) 

where 𝑥𝑖 and 𝑦𝑖   are the coordinates at the nodal points, 𝑁𝑖  (𝜉) is the shape 
function defined by local coordinate −1 ≤ 𝜉 ≤ 1, and 𝑁𝑛 is the number of 
nodes in the element. A quadratic element is employed in this discretization. Its 
shape functions are in Eqs. (17) to (19): 

 𝑁1 = −1
2
𝜉(1 − 𝜉)  (17) 

 𝑁2 = (1 − 𝜉2)  (18) 

 𝑁3 = 1
2
𝜉(1 + 𝜉)  (19) 
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The boundary variables, ∅ and 𝜕∅/𝜕𝜕, are represented by the same set of shape 
functions that are used to represent the geometry. They are: 

 ∅ = ∑ ∅𝑖 𝑁𝑖  (𝜉)𝑁𝑛
𝑖=1  (20) 

 𝜕∅
𝜕𝜕

 = ∑ 𝜕∅𝑖
𝜕𝜕

 𝑁𝑖  (𝜉)𝑁𝑛
𝑖=1    (21) 

Collocation is done by successively placing ∅ at each of the nodal points on the 
boundary. For each collocation point ∅, Eqs. (20) and (21) are subtituted into 
the boundary integral equation (Eq. (4)), integrating the equation over the 
boundary. The integration is done on an element-by-element basis. Each 
collocation point ∅ and element Γe combination produces two ‘element 
coefficient vectors’ in Eqs. (22) and (23): 

 ℎ𝑒 = ∫ 𝜕G
𝜕𝜕
𝑁𝑖𝑑ΓΓe

  (22) 

 𝑔𝑒 = ∫ 𝐺𝑁𝑖𝑑ΓΓe
  (23) 

Assembling ℎ𝑒 into global matrix [𝐻∗] and 𝑔𝑒 into global matrix [𝐺], and 
applying to Eq. (6) produces Eq. (24). 

 [𝐶]{∅} + [𝐻∗]{∅} = [𝐺] �𝜕∅
𝜕𝜕
� (24) 

where [C] is a diagonal matrix consisting of geometry coefficient 𝑐. Combining 
[𝐶] and [𝐻∗] into one single matrix [𝐻] yields in Eq. (25). 

 [𝐻]{∅} = [𝐺] �𝜕∅
𝜕𝜕
� (25) 

Each component in [𝐻] and [𝐺] corresponds to unknown node values on the 
boundary (∅ for [H]. Then 𝜕∅

𝜕𝜕
 for [G]) are arranged into a new matrix [𝐴] while 

the components corresponding to known values on the boudary are arranged 
into vector {𝑏}. This produces a new system of equations: 

 [𝐴]{𝑥} = {𝑏} (26) 

Eq. (26) can be solved by a standard matrix solver to get the unknown values on 
the boundary. Once the unknown values of ∅ and 𝜕∅

𝜕𝜕
 on the boundary have been 

solved, the ∅ in the domain can be obtained by solving Eq. (6) numerically. 

3.4 Discretization of Underwater Acoustic Power 
Once ∅ for the entire internal domain in a grid is known, the underwater 
acoustic power can be calculated by [5] 
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 𝑊 = 1
2
𝑅𝑅 �𝑖𝜌0𝜔 ∫  �∅ 𝜕𝜙∗

𝜕𝜕
�  𝑑𝑑0

−ℎ � (27) 

where 𝜌0 is the water density, 𝜔 is the angular frequency, 𝑅𝑅 is the real part. 
The acoustic power, 𝑊, is determined by evaluating Eq. (27) over a vertical line 
in 𝑥. 

4 Software Validation 
2DBEMHS was validated for simple geometries of which the analytical 
solution is known. The case was selected from Grilli, et al. [5], which is a 
rectangular domain in two dimensions, as shown in Figure 2. 

 
Figure 2 Simple case with rectangular domain. 

The potential on boundary Γ1 is specified with some value so as to easily derive 
an analytic solution. The boundary conditions thus read in Eq/ (28): 

∅(0, 𝑧) = − 1
𝜔𝜌0

cot(𝑘𝐿𝑑) {𝑥 = 0; 0 ≤ 𝑧 ≤ ℎ} 

 𝜕∅
𝜕𝜕

= 0 �
𝑥 = 𝐿𝑑; 0 ≤ 𝑧 ≤ ℎ
𝑧 = ℎ; 0 ≤ 𝑥 ≤ 𝐿𝑑
𝑧 = 0; 0 ≤ 𝑥 ≤ 𝐿𝑑

� (28) 

where ℎ is the domain height and 𝐿𝑑 is the domain length. The analytic solution 
of ∅ (magnitude) to this problem is represented by Eq. (29). 



736 M. Fatkhurrozi & Irsan S. Brodjonegoro 

  

 ∅(𝑥, 𝑧) = � 1
𝜔𝜌0

�sin(𝑘𝑘) + cos(𝑘𝑘)
tan(𝑘𝐿𝑑)�� (29) 

where ℎ =  𝐿𝑑  =  1 , 𝜔𝜌0 = 1,00, and 𝑘ℎ = 8.  

Figure 3 shows a comparison between the analytical result and the numerical 
results for potential ∅. Three z coordinates (𝑧 =0.25 m, 0.5 m, and 0.75 m) were 
chosen to represent the numerical results. There are small inaccuracies in 
several points of 𝑥 that will be discussed in the next paragraph. 

 
Figure 3 Potential result of the analytical and the numerical solution for three 𝑧 
coordinates (𝑧 = 0.25 m, 0.5 m, and 0.75 m) for a rectangular domain. 

The error for each point of 𝑥 is calculated by the following formula: 

 𝜀 = �∅𝑏−∅𝑎
∅𝑎

� × 100% (30) 

where index 𝑎 refers to the analytical solution and index 𝑏 to the numerical 
solution. The error plot over the 𝑥 axis for 𝑧 = 0.25 m, 0.5 m, and 0.75 m is 
depicted in Figure 4. As can be seen in Figure 4, the numerical results have a 
maximum error of 2.5% (for 𝑧 = 0.5 m) at 𝑥 = 0.8 m. The average error over the 
entire domain is 0.465%. This means that there is overall agreement between 
the analytical and the numerical results. 2DBEMHS was then used to calculate a 
model with a more complex geometry. 
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Figure 4  Error plot for the numerical solution for three 𝑧 
coordinates (𝑧 = 0.25 m, 0.5 m, and 0.75 m) for a rectangular 
domain. 

5 Problem Modeling and Results 
The validated 2DBEMHS was then used to model underwater acoustic 
propagation with a more irregular boundary geometry. This case represents a 
shallow water region near the coast with a submerged body inside the water, as 
shown in Figure 5. The case is scaled at 10:1. The density of the water is 
𝜌 = 1025 𝑘𝑘/𝑚3, underwater sound speed is 𝑐 = 1500 m/s, and wavenumber k 
= 3.55. The boundaries are numbered 1 to 4. 

 
Figure 5 Shallow water region with submerged body used in this model. 
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𝑧𝑣 is the distance between the submerged body and the seabed, and 𝑠𝑣 is the 
distance of the submerged body on the 𝑥 axis. The source with strength 𝑆 = 1 is 
located at 𝑥𝑠 = 1 and 𝑧𝑠 = 0.5. Sea bottom boundaries Γ𝑏 and Γ2 are rigid, 
therefore no-flow condition applies (𝜕∅/𝜕𝜕 = 0). The surface of the 
submerged body also utilizes this no-flow condition. At surface boundary Γ𝑓, 
no-wave condition ∅� = 0 is present. Γ1 is a lateral open boundary treated as 
radiation boundary condition. The submerged body dimensions are depicted in 
Figure 6.  

 
Figure 6 Submerged body dimensions used in the model. 

The boundaries of the domain were discretized by 15 nodes per wavelength. As 
the elements employed were of a quadratic type, each of them contained 3 
nodes. The number of elements on each of the boundaries was equal to (𝑁𝑜 −
1)/2, where 𝑁𝑜 is the number of nodes of the corresponding boundary. As the 
domain was inside the boundaries, the entries for the coordinates of the 
boundary elements are read in counterclockwise order. The nodes and elements 
in all boundaries produce the scheme in Figure 7. For the submerged body, 13 
nodes discretize its boundaries, so it contains 6 elements. For plotting the results 
in the domain, 118 x 18 internal points (horizontal x vertical) were employed. 

 
Figure 7 Illustration of discretization of the model. 

5.1 Underwater Acoustic Potential 
Figure 8 shows the potential field obtained by numerical computation.  It can be 
seen that the potential in the surface region has zero value, representing a 



       Underwater Acoustic Power Around Submerged Body 739 
 

pressure-release boundary condition. In the bottom, there is the periodic 
potential value resulted from the wave equation. 

 
(a) 

 
(b) 

Figure 8 Plot of potential for a shallow water geometry (𝑘 = 3.55), (a) without 
submerged body, (b) with submerged body. 

There is a potential increase over the slope (8 < 𝑥 < 12 𝑚) with maximum 
value 0.75 𝑚2/𝑠 in Figure 8(a) and 0.91 𝑚2/𝑠 in Figure 8(b). At the offshore 
side (1 < 𝑥 < 8 𝑚) the maximum potential is 0.56 𝑚2/𝑠 in Figure 8a and 0.69 
𝑚2/𝑠 in Figure 8(b). The existence of a submerged body in the shallow water 
enhances the potential field in the domain. 

The potential plot for the regions under the submerged body can be seen in 
Figure 9. This plot gives the details of the differences in potential resulted from 
the case in Figures 8(a) and (b) in the range of 3.1 m < 𝑥 < 4.7 m for z = -0.8 
m. It indicates that there is an increase in average potential for the case with a 
submerged body. From the calculation, the increment is 15%. This is caused by 
the existence of the submerged body, which enhances the potential in the region 
where the submerged body resides. 
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5.2 Underwater Acoustic Power 
Underwater acoustic power, 𝑊, was then calculated using Eq. (21) for 1.1 𝑚 <
𝑥 < 11.7 𝑚, as depicted in Figure 10. 

 
Figure 9 Plot of underwater acoustic power 𝑊 (k = 3,55). The submerged 
body is located at 𝑥 = 3.37 m to 𝑥 = 4.57 m, (a) real value, and (b) magnitude. 

As can be seen in Figure 10a, there is significant difference in the real value of 
underwater acoustic power between both cases for 1.1 𝑚 < 𝑥 < 7 𝑚. In the 
case with submerged body, there is a positive value at about 1 x 104 watt within 
that range while in the case without submerged body it is negative over the 
entire 𝑥 axis. At 3.3 𝑚 < 𝑥 < 4.15 𝑚, the real value of the case with 
submerged body harshly drops 3 ∙ 104 watt before increasing at 𝑥 = 4.25 m.  

As for the underwater acoustic power magnitude, Figure 10b shows that the 
case with submerged body has a larger result over the 𝑥 axis than the case 
without submerged body, except at 1.8 𝑚 < 𝑥 < 3.6 𝑚, where both cases seem 
to have the same value. Calculation of the average value shows that the case in 
which submerged body is located in the domain has an average magnitude of 
underwater acoustic power 1.33 times greater than the case without submerged 
body. This is evidence that the existence of a submerged body in the domain 
enhances the magnitude of the underwater acoustic power. 

5.3 Variation of Submerged Body Distance from Seabed 
The next calculation was conducted on the cases with variation of the distance 
of the submerged body from the seabed, 𝑧𝑣 (Figure 5). The five 𝑧𝑣s used in the 
model were: 𝑧𝑣 = 0.2 m, 𝑧𝑣 = 0.3 m, 𝑧𝑣 = 0.4 m, 𝑧𝑣 = 0.5 m, and 𝑧𝑣 = 0.6 m. 
The same values of 𝜌, c, and k were used in this case. The results are shown in 
Figure 11. 
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Figure 10   Plot of underwater acoustic power with various submerged body 
distance from seabed, 𝑧𝑣, (a) real value, and (b) magnitude. 

Figure 11(a) shows that the real value of underwater acoustic power shared the 
same behavior in all cases, except for the case with 𝑧𝑣 = 0.3 m. The value of 
the case with 𝑧𝑣 = 0.3 surges from 𝑥 = 2 m to 𝑥 = 3.8 m, while the others go 
down. Entering the submerged body area (𝑥 = 3.3 m), the real 𝑊 values of all 
cases decrease. The sharp drop occured in the cases with 𝑧𝑣 = 0.3 𝑚. The case 
with 𝑧𝑣 = 0.3 𝑚 has a positive value of real acoustic power over the other 
cases. 

As can be seen in Figure 11(b), the underwater acoustics power magnitude has 
the same periodic behavior for all cases at 4.4 m < 𝑥 < 11 m. The maximum 
and minimum average value of underwater acoustic power magnitude for all 
cases occurs at 𝑥 = 9.4 m and 𝑥 = 0.2 m respectively. The average underwater 
acoustic magnitude in the case with submerged body distance from the seabed 
𝑧𝑣 = 0.4 m is 2.2 times larger than the case with 𝑧𝑣 = 0.2 m. In the offshore 
area (1 m < 𝑥 < 8 m), the minimum magnitude underwater acoustic power 𝑊 
occurs at 𝑥 =1.35 m for the case with 𝑧𝑣 = 0.4, where its value is 0.042 times 
below its average magnitude. 

5.4 Variation of Submerged Body Location on x Axis 
The next calculation was conducted on the cases with variation of submerged 
body distance in on the 𝑥 axis, 𝑠𝑣 (Figure 5). The five locations used in the 
model were: 𝑠𝑣 = 3.3 𝑚, 𝑠𝑣 = 3.8 𝑚, 𝑠𝑣 = 4.3 𝑚, 𝑠𝑣 = 5.3 𝑚, and 𝑠𝑣 = 7.8 𝑚. 
The same values of 𝜌, c, and k were used in this case. The results are shown in 
Figure 12. 
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Figure 11    Plot of underwater acoustic power in the cases with various 
submerged body distances on the 𝑥 axis 𝑠𝑣 , (a) real value, and (b) magnitude. 

Figure 12(a) shows that the real value of the underwater acoustic power for all 
cases has the same behavior in all cases at 1.1 m < 𝑥 < 4.5 m. The real value 
of the acoustic power in the case with 𝑠𝑣 = 7.8 m is larger compared to the 
other cases while for the case with 𝑠𝑣 = 4.3 m it is smaller. For 𝑥 > 4.5 m, the 
real value of the acoustic power in the case with 𝑠𝑣 = 3.8 m is larger compared 
to the other cases. For 4.8 m < 𝑥 < 8.6 m, there is a relatively small value of 
the acoustic power for the cases with 𝑠𝑣 = 7.8 m. 

 
Figure 12    Potential plot for 3.1 𝑚 <  𝑥 < 4.7 𝑚 for 𝑧 = −0,8 𝑚. 

As can be seen in Figure 12(b), there is apparently a different behavior of the 
acoustic power magnitude in all cases. In the case with submerged body 
distance on the 𝑥 axis, 𝑠𝑣, 𝑠𝑣  = 3.3 m, 𝑠𝑣 = 4.3 m, and 𝑠𝑣 = 5.3 m, there is a 
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relative increase of magnitude acoustic power in the area where the submerged 
body resides (𝑥 = 4.4 m). The cases with 𝑠𝑣 = 3.8 m and 𝑠𝑣 = 7.8 decrease at 
𝑥 = 4.4 m. The largest and the smallest average magnitude acoustic power 
occurs in the case with 𝑠𝑣 =3.3 m and 𝑠𝑣 =3.8 respectively. The case with 
𝑠𝑣 =3.3 m has a magnitude acoustic power that is 1.8 times larger than in the 
case with 𝑠𝑣 = 3.8 m. In the offshore area (1 m < 𝑥 < 8 m), the minimum 
acoustic power magnitude occurs at 𝑥 = 0.45 m in the case with 𝑠𝑣 = 2.3 m, 
where its value is 0.042 times below its average magnitude. 

 

5.5 Variation of Submerged Body Length 
The next calculation was conducted on the cases with variation of submerged 
body length, 𝐿𝑠𝑠𝑠 (Figure 5). The five lengths of the submerged body used in 
the model were: 𝐿𝑠𝑠𝑠 = 1.2 𝑚, 𝐿𝑠𝑠𝑠 = 1.21 𝑚, 𝐿𝑠𝑠𝑠 = 1.44 𝑚, 𝐿𝑠𝑠𝑠 = 1.8 𝑚, 
and 𝐿𝑠𝑠𝑠 = 2.4 𝑚. The same values of 𝜌, c, and k are used in this case. The 
results are shown in Figure 13. 

 
Figure 13    Plot of underwater acoustic power in the cases with various 
submerged body lengths, 𝐿𝑠𝑠𝑠, (a) real value and (b) magnitude. 

Figure 13(a) shows that the real value of the underwater acoustic power has the 
same behavior in all cases. There is a significant drop for all cases at 3.1 < 𝑥 <
4.4 m. The case with submerged body length 𝐿𝑠𝑠𝑠 = 1.2 m has a relatively large 
value of real acoustic power at 2 < 𝑥 < 3.5 m and a relatively large negative 
value of real acoustic power at 3.5 < 𝑥 < 4.4 m. 

As can be seen in Figure 13(b), the magnitude of acoustic power has the same 
behavior over the 𝑥 axis in all cases, except at 𝑥 > 8 m. The largest magnitude 
occurs at 𝑥 = 9.4 m in all cases. The case with submerged body length 𝐿𝑠𝑠𝑠 = 
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1.2 m has a larger magnitude than the other cases, while the case with 𝐿𝑠𝑠𝑠 = 
2.4 m has a smaller magnitude than the other cases. The calculation indicates 
that the average magnitude of acoustic power for the case with submerged body 
length 𝐿𝑠𝑠𝑠 = 2.4 m is 0.44 times smaller than the average magnitude of 
acoustic power in the case with 𝐿𝑠𝑠𝑠 = 1.2 m. This implies that the longer the 
submerged body, the smaller the average magnitude. In the offshore area 
(1 m < 𝑥 < 8 m), the minimum magnitude of acoustic power occurs at 𝑥 =5.15 
m in the case with 𝐿𝑠𝑠𝑠 = 2.4 m, where its value is 0.024 times smaller than its 
average magnitude. 

6 Conclusion 
Numerical computation with the boundary element method was conducted on a 
shallow water problem with various submerged body locations and geometries. 
The existence of a submerged body in the domain enhances the underwater 
acoustic potential. The cases in which the submerged body is located within the 
domain has an average magnitude of underwater acoustic power (𝑊) 1.33 times 
greater than the cases without submerged body.  

In the cases where the distance of submerge body from the seabed (𝑧𝑣) was 
varied, the greatest average and the lowest acoustic power occurred for a 
distance of 𝑧𝑣 = 0.4 m and 𝑧𝑣 = 0.2 m respectively. In the offshore area 
(1 m < 𝑥 < 8 m), the minimum magnitude of acoustic power occurs at 𝑥 = 
1.35 m for case with 𝑧𝑣 = 0.4, where its value is 0.042 times smaller than its 
average magnitude. 

In the case with variation of distance from the source (𝑠𝑣), the results show that 
the case with 𝑠𝑣 = 3.3 m has the greatest average acoustic power over the 𝑥 
axis and the case with 𝑠𝑣 = 3.8 m has smallest average acoustic power over the 
𝑥 axis. In the offshore area (1 m < 𝑥 < 8 m), the minimum magnitude of 
acoustic power occurs at 𝑥 =0.45 m in the case with 𝑠𝑣 = 2.3 m, where its 
value is 0.042 times smaller than its average magnitude. 

In the case with variation of submerged body length (𝐿𝑠𝑠𝑠), the results show 
that the case with 𝐿𝑠𝑠𝑠 = 1.2 m has the greatest average acoustic power over the 
𝑥 axis and the case with 𝐿𝑠𝑠𝑠= 2.4 m has the smallest average 𝑊. In the 
offshore area (1 m < 𝑥 < 8 m), the minimum magnitude of acoustic power 
occurs at 𝑥 = 5.15 m for the case with 𝐿𝑠𝑠𝑠 = 2.4 m, where its value is 0.024 
times smaller than its average magnitude.  
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