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Abstract. Prestressed concrete has been gaining popularity in the construction 
industry because of its many advantages, which include reduced dead load due to 
less material used and overall cost savings. Nonetheless, a single prestressed 
concrete I-girder as a structural element in highway bridges is still significantly 
costly and massive, so optimization can yield a significant amount of cost 
savings as well as reduced material consumption. In this study, prestressed 
concrete I-girder optimization was carried out by implementing a genetic 
algorithm (GA), a method inspired by nature’s evolution and natural selection. 
This study evaluates a number of aspects of applying a genetic algorithm for 
optimization of material cost of a prestressed concrete I-girder design. A new 
method for calculating the fitness value is proposed, which was proven to be 
essential for the application developed in this study. The best solution that 
resulted from the optimization process is presented, defined by being the least 
costly solution while still maintaining compliance with the AASHTO LRFD 
2007 design code, which includes ultimate strength, service stresses and 
deflection, detailing requirements, geometrical feasibility, etc. Lastly, a 
sensitivity analysis was carried out, discussing the influence of the starting 
conditions on the output of the optimization process. 

Keywords: genetic algorithm; highway bridges; i-girder; optimization; prestressed 
concrete. 

1 Introduction 
The use of prestressed concrete in the construction industry has increased to the 
point where nowadays it is rare for major construction projects not to consider 
prestressed concrete as a viable alternative solution [1]. However, the reduction 
of the initial cost is not substantial because the savings in material consumption 
are usually balanced out by the need for better material quality and more 
complex formwork. In the long run, however, lower maintenance cost and the 
longer lifespan make prestressed concrete more economical [2]. Nevertheless, a 
single prestressed concrete element can still be significantly costly and consume 
a large amount of material, so attempts at optimization can easily be worth the 
effort. 
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The genetic algorithm (GA) has become a popular tool for tackling complex 
optimization problems such as those in engineering design due to its 
mathematical and computational simplicity, its ability to work through search 
spaces with many local optima, its capability of handling non-differentiable and 
non-continuous functions, and its capability to be set up for discrete search 
spaces (structural design variables tend to be discrete) [3-8]. The idea of the 
genetic algorithm was first introduced and systematically investigated by 
Holland [9-11], proving its robustness and flexibility. Today, genetic algorithms 
are widely applied in engineering for design optimization, manufacturing and 
other processes [12].  

Because the method is stochastic, genetic algorithms produce one or several 
closely optimized solutions instead of only the theoretically most optimal one. 
This, in fact, is very advantageous in the process of engineering design, as 
sometimes unquantifiable engineering judgment can play a major role in the 
decision making process. 

2 Objectives and Limitations   
The objective of this study was to utilize a genetic algorithm for optimizing the 
cost of prestressed concrete I-girders for highway bridges. In this paper, 
deliberate addition of discontinuity to the fitness function is proposed, which 
will be proven to be necessary in this application of GA. Furthermore, the 
effects of different parameters and initial conditions on the overall performance 
of the optimization process were also investigated. 

This study assumed the girders to be simply supported. They had a span length 
of 30 m and center-to-center girder spacing of 2 m, while AASHTO LRFD 
2007 [13] was used as the design code. Only material costs were considered, 
calculated based on the volume of materials used. Concrete and mild steel unit 
costs were based on the Journal of Building Construction, Interior & Material 
Prices 2017 [14], while unit prices for prestressing steel were based on the 
study presented in [15], adjusted for inflation [16]. 

3 Optimization Method 

3.1 Encoding 
In order to be manipulated by genetic operators, the design parameters were 
encoded into a string of characters called a chromosome. The design parameters 
were mapped via binary encoding, with the chromosomes being made up of a 
series of ones and zeros. To cover the whole search space, each chromosome 
was set to a length of 36 digits, 13 of which represented design parameters, 8 
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determined the concrete cross-sectional geometry (see Figure 1), 1 defined the 
compressive strength of concrete, and the rest described the tendon geometry 
and jacking parameters. All of the design parameters are presented in Table 1, 
arranged according to their allocated locations in the chromosome (the K-value 
designates the uniaxial compressive strength of a 150 mm concrete cube 
specimen in kgf/cm2). 

Table 1 Girder design parameters. 

Binary 
(bit(s)) K- 

(kgf/cm2) 
hf11 

(mm) 
hf12 

(mm) 
hwb 

(mm) 
hf21 

(mm) 
hf22 

(mm) 
bf1 

(mm) 
bf2 

(mm) 
bw 

(mm) 

Strand 
diameter 

(inch) 

Strands 
per 

tendon 

Number 
of 

tendons 

Jacking 
force 
(UTS) 1 2 3 4 

0 00 000 0000 300 150 50 800 50 150 300 300 100 0.5 7 1 0.65 
1 01 001 0001 325 200 100 900 100 200 400 400 150 0.6 12 2 0.7 
- 10 010 0010 350 250 150 1000 150 250 500 500 200 - 19 3 0.75 
- 11 011 0011 375 300 200 1100 200 300 600 600 250 - 22 4 0.8 
- - 100 0100 400 350 250 1200 250 350 700 700 300 - 27 - - 
- - 101 0101 450 400 300 1300 300 400 800 800 350 - 31 - - 
- - 110 0110 500 450 350 1400 350 450 900 900 400 - - - - 
- - 111 0111 550 500 400 1500 400 500 1000 1000 450 - - - - 
- - - 1000 600 - - - - - - - - - - - - 
- - - 1001 650 - - - - - - - - - - - - 
- - - 1010 700 - - - - - - - - - - - - 
- - - 1011 750 - - - - - - - - - - - - 
- - - 1100 800 - - - - - - - - - - - - 
- - - 1101 - - - - - - - - - - - - - 
- - - 1110 - - - - - - - - - - - - - 
- - - 1111 - - - - - - - - - - - - - 

 
Figure 1 Section geometry variables. 
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3.2 Genetic Operators 
The genetic operators utilized in this study were crossover and mutation. Both 
were set to have a certain probability of occurrence. Mutation occurs in the form 
of bit flipping, a natural choice for the case of binary encoding. Crossover 
occurs at multiple points instead of just one, as multi-point crossover has been 
proved to be more robust in preventing premature convergence [17]. The 
mutation probability was set to 0.008, while the crossover probability was set 
to 1. 

3.3 Evaluation 
Evaluation is the process of quantifying the success of individuals by assigning 
them fitness values. In this process, every individual is decoded into design 
parameters and then evaluated against the optimization objective and predefined 
constraints. 

3.3.1 Unconstrained Fitness Function 
As the goal of the optimization process in this study was to minimize cost, an 
individual that offered lower cost scored higher after having been evaluated 
through the unconstrained fitness function. The unconstrained fitness function 
used in this study is expressed in Eq. (1). 

 
( ) ( )

( ) ( )(
( ) ( ))

unpenalized , ,

1, 2,

3, ,

cost

1.5 max cost ;  cost ;

                              cost ;  ; cost

i j j i j

j j j

j m j

f x P x

P x x

x x

= −

= ×



 (1) 

3.3.2 Penalty Function 
The penalty function is meant to reduce the unconstrained fitness value if one or 
more constraints are violated. The constraints considered in this study were 
derived from the assessments of stresses for service condition (compression and 
tension at transfer, permanent service load, and service limit state), ultimate 
flexural resistance and ductility requirements, ultimate shear resistance and 
transverse reinforcement limits, web slenderness ratio, deflection (immediate 
and long-term), and geometrical feasibility of the tendon’s (without prestressing 
ducts or anchorages colliding against each other). 

A penalty is applied in the following manner in Eqs. (2) and (3): 

 ( ) ( ) ( )penalized , unpenalized , penalty , 0i j i j i jf x f x f x= − ≥  (2) 
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 ( ) ( )( )2penalty , ,
1

n

i j j k i j
k

f x r d x
=

 
=   

 
∑  (3) 

In order to assure effective scaling, rj is set to be as large as possible, yet no 
funpenalized(xi,j) is reduced by more than one half. 

3.3.3 Additional Discontinuity 
A deliberate discontinuity is introduced between feasible and infeasible regions 
by further reducing the fitness values of infeasible solutions for the sole reason 
of being infeasible. The application of such discontinuity is described in Eqs. 
(4) and (5) and visualized in Figure 2. Similar to the previous description, rj is 
set to be as large as possible, yet no funpenalized(xi,j)/A is reduced by more than one 
half. 
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Figure 2 Visualization of the additional discontinuity. 

3.4 Selection 
The goal of selection is to allow individuals with high fitness to dominate the 
population and the ones with low fitness to be reduced in number or eliminated. 
The selection process is carried out by employing roulette wheel with elitism. 
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3.4.1 Roulette Wheel 
Roulette wheel is applied in order to pick the individuals to be passed on to the 
next generation. The probability of each individual being selected is 
proportional to the associated fitness value, as described in Eq. (6). 

 ( )
( )

penalized ,
,

penalized ,
1

i j
i j m

i j
i

f x
p

f x
=

=

∑
 (6) 

Consequently, successful individuals are more likely to be picked more than 
once while unsuccessful ones are less likely to be selected. 

3.4.2 Elitism 
First introduced by De Jong [19], elitism allows the algorithm to keep some of 
the fittest individuals (‘elite members’) from the roulette wheel and genetic 
operators. Applying elitism improves performance since losing and then 
rediscovering the best individuals wastes significant computation time [4,18]. 
The proportion of the population that is considered to be elite members is called 
the elite proportion, which was set to 0.55. 

3.4.3 Convergence 
The whole optimization algorithm is terminated after convergence is achieved. 
Convergence represents the process having reached an optimum solution, 
indicated by the standard deviation of the fitness values of all individuals, where 
that of the most recent generation is smaller than a predetermined value, which 
was set to 0.01 in this study. 

4 Prestressed Concrete I-Girder Optimization 

4.1 Optimization Result 
The most optimized design is displayed as console output in Table 2 
(dimensions in mm if not mentioned), while the anchoring device and 
reinforcement layouts are shown in Figure 3 (first from the left) and Figure 4. In 
order to make sure that the prestressing ducts do not collide with each other, a 
check was carried out every 0.3 meter. Figure 3 (second, third, and fourth from 
the left) shows examples of some sections. 
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4.2 Difference from Conventional Design 
The most obvious difference between the optimized design and a conventional 
design shown was the choice of concrete strength. In a conventional design, 
picking higher concrete strength (K-450 or higher) is more sensible, allowing a 
wider range of stress between compression and tension. Instead, the 
optimization algorithm picked a less costly K-375 concrete and was able to find 
the small window of code-compliant and cost-effective designs. Do bear in 
mind that using even lower concrete strength is possible, but the cross-sectional 
area will have to be larger so that the design actually becomes less cost-
effective. In a conventional design process, finding out that a certain lower-
strength concrete will lead to the most cost-effective result and discovering a 
suitable design would be very difficult to realize. 

Table 2 Most Optimum Design 

Cost : 68.5543 Million Rupiahs 
Chromosome : 101100101010110000101001001010010111 
Number of Errors : 0 
    
Specifications (from Chromosome) :  
K = 375 
hf11 = 200 
hf12 = 150 
hwb = 1300 
hf21 = 250 
hf22 = 200 
bf1 = 500 
bf2 = 500 
bw = 200 
StrandDiameterInch = 0.6 
StrandperTendon = 12 
NumberofTendons = 2 
InitialTendonPrestressperUTS = 0.8 
  
Specifications (from Calculation) :  
Number of Top Longitudinal D-22 Rebars: 5 
Number of Bottom Longitudinal D-22 Rebars: 7 
Transverse D-13 Spacing at 0 mm < x < 3000 mm : 200 mm 
Transverse D-13 Spacing at 3000 mm < x < 6000 mm : 200 mm 
Transverse D-13 Spacing at 6000 mm < x < 9000 mm : 400 mm 
Transverse D-13 Spacing at 9000 mm < x < 12000 mm : 600 mm 
Transverse D-13 Spacing at 12000 mm < x < 15000 mm : 600 mm 
Transverse D-13 Spacing at 15000 mm < x < 18000 mm : 600 mm 
Transverse D-13 Spacing at 18000 mm < x < 21000 mm : 600 mm 
Transverse D-13 Spacing at 21000 mm < x < 24000 mm : 400 mm 
Transverse D-13 Spacing at 24000 mm < x < 27000 mm : 200 mm 
Transverse D-13 Spacing at 27000 mm < x < 30000 mm : 200 mm 
Stirrup D-16 Locations for Local Bursting (mm) at Tendon Number 1 : 202.5, 262.5 
Stirrup D-16 Locations for Local Bursting (mm) at Tendon Number 2 : 202.5, 262.5 
Stirrup D-19 Locations for Bursting at General Zone (mm) : 160, 220, 280, 340, 

882.6675, 942.6675, 1002.6675, 1062.6675, 1122.6675 
Number of D-22 Spalling Rebars : 2 
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Figure 3 Anchoring device layout and prestressing duct in different locations. 

 

Figure 4 Reinforcement layout. 

5 Algorithm Evaluation 
The parameters in a GA need to be set by considering the balance between the 
tendency of exploring solutions within the search space and exploiting 
discoveries made throughout the optimization process [4]. In this section, these 
parameters and other aspects are evaluated, including the proposed additional 
discontinuity and sensitivity analysis. While one parameter was investigated, 
the others followed the default values and settings described in Section 3. 
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5.1 Elite Proportion 
Elite proportion was investigated in the range of 0 (no elite members) to 1 
(every individual is elite an member). A smaller elite proportion leans towards 
exploration while a larger elite proportion towards exploitation. 

As shown in Figure 5, the optimization result is barely affected by the value of 
the elite proportion, but the variation in terms of steps required to achieve 
convergence is significant.  

On the extreme left of Figure 5 (right), convergence is not achieved (note that 
the maximum number of steps allowed is 72), meaning that elitism is necessary. 
The number of steps to convergence is at its lowest around elite proportion 
values of 0.45-0.65. Therefore, the value of elite proportion was set to 0.55. 

  
Figure 5 Average final cost and steps to convergence vs elite proportion. 

5.2 Mutation Probability 
Because the mutation probability needs to be kept small, the evaluation was 
carried out with mutation probability in the range of 0 and 0.1. As can be seen 
in Figure 6, a trend between final cost and mutation probability cannot be 
concluded, but the mutation probability significantly affected the number of 
steps required to reach convergence. In fact, a valid solution was not reached at 
a mutation probability of about 0.075-0.1, confirming the necessity of keeping 
this value small. 

In order to get better insight, another evaluation was carried out with mutation 
probability in the range of 0-0.01, with the result presented in Figure 7. The 
final cost slightly decreased as the mutation probability increased towards 0.01 
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while the number of steps to convergence increased slightly as well. Based on 
the graph displayed in Figure 7, the mutation probability was set to 0.008. 

  
Figure 6 Average final cost and steps to convergence vs mutation probability 
(1). 

  
Figure 7 Average final cost and steps to convergence vs mutation probability 
(2). 

5.3 Crossover Probability 
In a similar way as mutation probability, the effect of crossover probability was 
investigated. The relationships between crossover probability, final result and 
steps required to reach convergence are shown in Figure 8. Increasing crossover 
probability resulted in a better optimization result but more steps were required 
to reach convergence. Since the increased number of steps was not significant, 
the crossover probability was set to 1. 
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Figure 8 Average final cost and steps to convergence vs crossover probability. 

5.4 Additional Discontinuity 
In the same way as described above, a comparison was made between cases 
with additional discontinuity being applied and disregarded. The result is shown 
in Table 3. Although convergence was reached, the result without additional 
discontinuity showed infinity cost, meaning that the algorithm did not converge 
towards a feasible solution. 

Table 3 With/without additional discontinuity comparison. 

Average Final Cost Before Add. Discontinuity : Inf Million Rupiahs 
Average Final Cost After Add. Discontinuity : 70.9038 Million Rupiahs 
Average Steps Before Add. Discontinuity : 64.4 
Average Steps After Add. Discontinuity : 27.6  
Note: Inf cost = one or more constraints are violated  

5.5 Sensitivity Analysis 
This analysis aimed to see how much the algorithm is affected by the state of 
the initial population. Instead of being completely random, as in normal cases, 
the initial population in this analysis was set to be within a certain cost range 
(regardless of constraint violations). 

As can be seen from Figure 9, with average initial cost higher than around Rp 
70 million, a higher cost caused the algorithm to put more effort into the 
optimization process (more generations to reach convergence), yet the final cost 
after optimization was barely affected. Meanwhile, a lower average initial cost 
yielded a significant decline in both the optimization result and efficiency. The 
reason is that by forcing the cost to be lower than Rp 70 million, the individuals 
in the initial population suffer from severe constraint violation, which is not a 
good start for the optimization algorithm. Therefore, the extra effort required to 
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reach convergence is unable to make up for the poor quality of the initial 
population. 

 
Figure 9 Average final cost and steps to convergence vs initial cost. 

6 Conclusion 
A genetic algorithm was effectively implemented for prestressed concrete I-
girder optimization. The non-standard method of elitism and the proposed 
additional discontinuity proposed in this paper are essential to reach a 
satisfactory result. Furthermore, the values of mutation probability, crossover 
probability and elite proportion that delivered the best optimization performance 
were presented and further investigated. The sensitivity analysis proved that the 
algorithm is robust, as the state of the initial population only affects the number 
of generations required to reach convergence but not the optimization result. 

Nomenclature 
dk = penalty function if constraint k is violated 
fpenalized = penalized fitness function 
funpenalized = unpenalized fitness function 
m = number of the population in a single generation 
n = total number of predefined constraints 
pi,j = probability of individual i of generation j to be picked 
rj = a constant for scaling the penalty function for generation j 
xi,j = individual number i of generation j 
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