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Abstract. Prestressed concrete has been gaining popularity in the construction
industry because of its many advantages, which include reduced dead load due to
less material used and overall cost savings. Nonetheless, a single prestressed
concrete I-girder as a structural element in highway bridges is still significantly
costly and massive, so optimization can yield a significant amount of cost
savings as well as reduced material consumption. In this study, prestressed
concrete |-girder optimization was carried out by implementing a genetic
algorithm (GA), a method inspired by nature’s evolution and natural selection.
This study evaluates a number of aspects of applying a genetic algorithm for
optimization of material cost of a prestressed concrete I-girder design. A new
method for calculating the fitness value is proposed, which was proven to be
essential for the application developed in this study. The best solution that
resulted from the optimization process is presented, defined by being the least
costly solution while still maintaining compliance with the AASHTO LRFD
2007 design code, which includes ultimate strength, service stresses and
deflection, detailing requirements, geometrical feasibility, etc. Lastly, a
sensitivity analysis was carried out, discussing the influence of the starting
conditions on the output of the optimization process.

Keywords: genetic algorithm; highway bridges; i-girder; optimization; prestressed
concrete.

1 Introduction

The use of prestressed concrete in the construction industry has increased to the
point where nowadays it is rare for major construction projects not to consider
prestressed concrete as a viable alternative solution [1]. However, the reduction
of the initial cost is not substantial because the savings in material consumption
are usually balanced out by the need for better material quality and more
complex formwork. In the long run, however, lower maintenance cost and the
longer lifespan make prestressed concrete more economical [2]. Nevertheless, a
single prestressed concrete element can still be significantly costly and consume
a large amount of material, so attempts at optimization can easily be worth the
effort.
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The genetic algorithm (GA) has become a popular tool for tackling complex
optimization problems such as those in engineering design due to its
mathematical and computational simplicity, its ability to work through search
spaces with many local optima, its capability of handling non-differentiable and
non-continuous functions, and its capability to be set up for discrete search
spaces (structural design variables tend to be discrete) [3-8]. The idea of the
genetic algorithm was first introduced and systematically investigated by
Holland [9-11], proving its robustness and flexibility. Today, genetic algorithms
are widely applied in engineering for design optimization, manufacturing and
other processes [12].

Because the method is stochastic, genetic algorithms produce one or several
closely optimized solutions instead of only the theoretically most optimal one.
This, in fact, is very advantageous in the process of engineering design, as
sometimes unquantifiable engineering judgment can play a major role in the
decision making process.

2 Objectives and Limitations

The objective of this study was to utilize a genetic algorithm for optimizing the
cost of prestressed concrete I-girders for highway bridges. In this paper,
deliberate addition of discontinuity to the fitness function is proposed, which
will be proven to be necessary in this application of GA. Furthermore, the
effects of different parameters and initial conditions on the overall performance
of the optimization process were also investigated.

This study assumed the girders to be simply supported. They had a span length
of 30 m and center-to-center girder spacing of 2 m, while AASHTO LRFD
2007 [13] was used as the design code. Only material costs were considered,
calculated based on the volume of materials used. Concrete and mild steel unit
costs were based on the Journal of Building Construction, Interior & Material
Prices 2017 [14], while unit prices for prestressing steel were based on the
study presented in [15], adjusted for inflation [16].

3 Optimization Method

3.1 Encoding

In order to be manipulated by genetic operators, the design parameters were
encoded into a string of characters called a chromosome. The design parameters
were mapped via binary encoding, with the chromosomes being made up of a
series of ones and zeros. To cover the whole search space, each chromosome
was set to a length of 36 digits, 13 of which represented design parameters, 8
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determined the concrete cross-sectional geometry (see Figure 1), 1 defined the

compressive strength of concrete, and the rest described the tendon geometry

and jacking parameters. All of the design parameters are presented in Table 1,
arranged according to their allocated locations in the chromosome (the K-value
designates the uniaxial compressive strength of a 150 mm concrete cube
specimen in kgf/cm?).

Table 1  Girder design parameters.

Bbi_nary K- ha P Mo P M by by by dStrand Strands Nurr}ber J?cking
(bit(s)) ) iameter  per 0 orce
12 3 4 (kgffcm?) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (inch) tendon tendons (UTS)
000000 0000 300 150 50 800 50 150 300 300 100 05 7 1 0.65
1010010001 325 200 100 900 100 200 400 400 150 06 12 2 0.7
-10010 0010 350 250 150 1000 150 250 500 500 200 - 19 3 0.75
-110110011 375 300 200 1100 200 300 600 600 250 22 4 08
- - 1000100 400 350 250 1200 250 350 700 700 300 27 - -
- - 1010101 450 400 300 1300 300 400 800 800 350 31
- - 1100110 500 450 350 1400 350 450 900 900 400 -
- 1110111 550 500 400 1500 400 500 1000 1000 450

- 1000 600 - - - - - - - -

- 1001 650

- 1010 700

- 1011 750

- 1100 800

- 1101 -

- 1110

- 1111

=
N

2
3
)

by

Figure 1 Section geometry variables.
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3.2  Genetic Operators

The genetic operators utilized in this study were crossover and mutation. Both
were set to have a certain probability of occurrence. Mutation occurs in the form
of bit flipping, a natural choice for the case of binary encoding. Crossover
occurs at multiple points instead of just one, as multi-point crossover has been
proved to be more robust in preventing premature convergence [17]. The
mutation probability was set to 0.008, while the crossover probability was set
to 1.

3.3 Evaluation

Evaluation is the process of quantifying the success of individuals by assigning
them fitness values. In this process, every individual is decoded into design
parameters and then evaluated against the optimization objective and predefined
constraints.

3.3.1 Unconstrained Fitness Function

As the goal of the optimization process in this study was to minimize cost, an
individual that offered lower cost scored higher after having been evaluated
through the unconstrained fitness function. The unconstrained fitness function
used in this study is expressed in EQ. (1).

funpenalized (Xi,j ) = Pj - COSt(Xi,i )

P; =1.5x max(cost(xlyj); cost(xzvj); (1)

cost(x&j); JCOSt(vaJ’))

3.3.2 Penalty Function

The penalty function is meant to reduce the unconstrained fitness value if one or
more constraints are violated. The constraints considered in this study were
derived from the assessments of stresses for service condition (compression and
tension at transfer, permanent service load, and service limit state), ultimate
flexural resistance and ductility requirements, ultimate shear resistance and
transverse reinforcement limits, web slenderness ratio, deflection (immediate
and long-term), and geometrical feasibility of the tendon’s (without prestressing
ducts or anchorages colliding against each other).

A penalty is applied in the following manner in Egs. (2) and (3):

fpenalized (Xi,j ) = funpenalized (Xi,j ) - fpenalty (Xi,j ) >0 (2)
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Foenaty (%) =1, [Zn:(dk(xi,J))zj ©)

k=1

In order to assure effective scaling, r; is set to be as large as possible, yet no
funpenatizea(Xi j) 1S reduced by more than one half.

3.3.3 Additional Discontinuity

A deliberate discontinuity is introduced between feasible and infeasible regions
by further reducing the fitness values of infeasible solutions for the sole reason
of being infeasible. The application of such discontinuity is described in Eqgs.
(4) and (5) and visualized in Figure 2. Similar to the previous description, r; is
set to be as large as possible, yet N0 finpenaiized(Xij)/A is reduced by more than one
half.

fun enalize i, ] 4
fpenalized(xi,j>:%(xn—rj (kz_;(dk(xiyj))zjzo (@)

1 foré(dk(xi’j))zzo
2 forkzri;(dk(xi'j))2>0

A= (5)

Fitness value

‘ ‘ without additional
discontinuity
| | with additional
! ! discontinuity
: : B Secarch space
) () ()
g<>\ ;}0\
g@‘b & s‘@‘b'
& < AN\

Figure 2 Visualization of the additional discontinuity.

34 Selection

The goal of selection is to allow individuals with high fitness to dominate the
population and the ones with low fitness to be reduced in number or eliminated.
The selection process is carried out by employing roulette wheel with elitism.
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3.4.1 Roulette Wheel

Roulette wheel is applied in order to pick the individuals to be passed on to the
next generation. The probability of each individual being selected is
proportional to the associated fitness value, as described in Eq. (6).

fpenalized (Xi,j ) (6)

m
Z fpenalized (Xi, j )

i=1

Pi,j =

Consequently, successful individuals are more likely to be picked more than
once while unsuccessful ones are less likely to be selected.

3.4.2 Elitism

First introduced by De Jong [19], elitism allows the algorithm to keep some of
the fittest individuals (‘elite members’) from the roulette wheel and genetic
operators. Applying elitism improves performance since losing and then
rediscovering the best individuals wastes significant computation time [4,18].
The proportion of the population that is considered to be elite members is called
the elite proportion, which was set to 0.55.

3.4.3 Convergence

The whole optimization algorithm is terminated after convergence is achieved.
Convergence represents the process having reached an optimum solution,
indicated by the standard deviation of the fitness values of all individuals, where
that of the most recent generation is smaller than a predetermined value, which
was set to 0.01 in this study.

4 Prestressed Concrete I-Girder Optimization

4.1  Optimization Result

The most optimized design is displayed as console output in Table 2
(dimensions in mm if not mentioned), while the anchoring device and
reinforcement layouts are shown in Figure 3 (first from the left) and Figure 4. In
order to make sure that the prestressing ducts do not collide with each other, a
check was carried out every 0.3 meter. Figure 3 (second, third, and fourth from
the left) shows examples of some sections.
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4.2  Difference from Conventional Design

The most obvious difference between the optimized design and a conventional
design shown was the choice of concrete strength. In a conventional design,
picking higher concrete strength (K-450 or higher) is more sensible, allowing a
wider range of stress between compression and tension. Instead, the
optimization algorithm picked a less costly K-375 concrete and was able to find
the small window of code-compliant and cost-effective designs. Do bear in
mind that using even lower concrete strength is possible, but the cross-sectional
area will have to be larger so that the design actually becomes less cost-
effective. In a conventional design process, finding out that a certain lower-
strength concrete will lead to the most cost-effective result and discovering a
suitable design would be very difficult to realize.

Table 2 Most Optimum Design

Cost : 68.5543 Million Rupiahs
Chromosome : 101100101010110000101001001010010111
Number of Errors : 0

Specifications (from Chromosome) :

K = 375

hfll = 200
hf12 = 150
hwb = 1300
hf21 = 250
hf22 = 200
bfl = 500
bf2 = 500
bw = 200

StrandDiameterinch = 0.6
StrandperTendon = 12
NumberofTendons = 2
InitialTendonPrestressperUTS = 0.8

Specifications (from Calculation) :

Number of Top Longitudinal D-22 Rebars: 5

Number of Bottom Longitudinal D-22 Rebars: 7

Transverse D-13 Spacing at 0 mm < x < 3000 mm : 200 mm

Transverse D-13 Spacing at 3000 mm < x < 6000 mm - 200 mm

Transverse D-13 Spacing at 6000 mm < x < 9000 mm : 400 mm

Transverse D-13 Spacing at 9000 mm < x < 12000 mm : 600 mm

Transverse D-13 Spacing at 12000 mm 15000 mm : 600 mm

Transverse D-13 Spacing at 15000 mm 18000 mm - 600 mm

Transverse D-13 Spacing at 18000 mm 21000 mm - 600 mm

Transverse D-13 Spacing at 21000 mm 24000 mm - 400 mm

Transverse D-13 Spacing at 24000 mm 27000 mm : 200 mm

Transverse D-13 Spacing at 27000 mm < x < 30000 mm : 200 mm

Stirrup D-16 Locations for Local Bursting (mm) at Tendon Number 1 : 202.5, 262.5

Stirrup D-16 Locations for Local Bursting (mm) at Tendon Number 2 : 202.5, 262.5

Stirrup D-19 Locations for Bursting at General Zone (mm) : 160, 220, 280, 340,
882.6675, 942.6675, 1002.6675, 1062.6675, 1122.6675

Number of D-22 Spalling Rebars : 2

NNNANNNAN
X X X X X
NNNNNAN
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Anchoring Device Layout Tendon Duct Tendon Duct Tendon Duct
x=0m,L=30m x=102m,L=30m x=15m,L=30m x=222m,L=30m
2000 i 2000 2000 2000
1500 D 1500 1500 1500
1000 1000 1000 1000
500 D 500 500 500 °
o o
[} 0 o
0 0 0 0
500 0 500 500 0 500 500 0 500 500 0 500

Figure 3 Anchoring device layout and prestressing duct in different locations.

Reinforcement Layout
Concrete
Prestressing Tendons

10000 — — — Longitudinal Rebars D-22 b
Transverse Rebars D-13

Bursting Rebars at General Zone D-19
5000 | Bursting Rebars at Local Zone D-16 ]
Spalling Rebars D-22

0 05 1 15 2 25 3
w10f
2000 | I : : : :
1500 | ”
1000 |
500 | ||
o | LLUI_L LI || _[SEr=p=r=r=r=r=r=r==r=r=r=r=r
0 1000 2000 3000 2000

Figure 4 Reinforcement layout.

5 Algorithm Evaluation

The parameters in a GA need to be set by considering the balance between the
tendency of exploring solutions within the search space and exploiting
discoveries made throughout the optimization process [4]. In this section, these
parameters and other aspects are evaluated, including the proposed additional
discontinuity and sensitivity analysis. While one parameter was investigated,
the others followed the default values and settings described in Section 3.



178 Tito Adibaskoro & Made Suarjana

5.1  Elite Proportion

Elite proportion was investigated in the range of 0 (no elite members) to 1
(every individual is elite an member). A smaller elite proportion leans towards
exploration while a larger elite proportion towards exploitation.

As shown in Figure 5, the optimization result is barely affected by the value of
the elite proportion, but the variation in terms of steps required to achieve
convergence is significant.

On the extreme left of Figure 5 (right), convergence is not achieved (note that
the maximum number of steps allowed is 72), meaning that elitism is necessary.
The number of steps to convergence is at its lowest around elite proportion
values of 0.45-0.65. Therefore, the value of elite proportion was set to 0.55.

m Final Cost vs Elite Proportion 80Steps to Convergence vs Elite Proportion
g 70
5 100 3
x 60
S 90 s
= g 50
(&)
‘E’ 80 £ 40
o 230
T 70 N
F 20
60 10
0 02 04 06 038 1 0 02 04 06 08 1

Elite Proportion Elite Proportion

Figure 5 Average final cost and steps to convergence vs elite proportion.

5.2  Mutation Probability

Because the mutation probability needs to be kept small, the evaluation was
carried out with mutation probability in the range of 0 and 0.1. As can be seen
in Figure 6, a trend between final cost and mutation probability cannot be
concluded, but the mutation probability significantly affected the number of
steps required to reach convergence. In fact, a valid solution was not reached at
a mutation probability of about 0.075-0.1, confirming the necessity of keeping
this value small.

In order to get better insight, another evaluation was carried out with mutation
probability in the range of 0-0.01, with the result presented in Figure 7. The
final cost slightly decreased as the mutation probability increased towards 0.01
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while the number of steps to convergence increased slightly as well. Based on
the graph displayed in Figure 7, the mutation probability was set to 0.008.

Final Cost vs Mutation Probability %t(()eps to Convergence vs Mutation Probability

70 |

60 |

50 L

40 L

Steps to Convergence

30 L

Final Cost (Million Rupiahs)

20
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

Mutation Probability Mutation Probability

Figure 6 Average final cost and steps to convergence vs mutation probability

).

Final Cost vs Mutation Probability %toeps to Convergence vs Mutation Probability

Steps to Convergence

Final Cost (Million Rupiahs)

62 15 L " " L
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004  0.006 0.008 0.01

Mutation Probability Mutation Probability

Figure 7 Average final cost and steps to convergence vs mutation probability

@).

5.3  Crossover Probability

In a similar way as mutation probability, the effect of crossover probability was
investigated. The relationships between crossover probability, final result and
steps required to reach convergence are shown in Figure 8. Increasing crossover
probability resulted in a better optimization result but more steps were required
to reach convergence. Since the increased number of steps was not significant,
the crossover probability was set to 1.
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100 Final Cost vs Crossover Probability Sé%ps to Convergence vs Crossover Probability
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Figure 8 Average final cost and steps to convergence vs crossover probability.

5.4  Additional Discontinuity

In the same way as described above, a comparison was made between cases
with additional discontinuity being applied and disregarded. The result is shown
in Table 3. Although convergence was reached, the result without additional
discontinuity showed infinity cost, meaning that the algorithm did not converge
towards a feasible solution.

Table 3  With/without additional discontinuity comparison.

Average Final Cost Before Add. Discontinuity : Inf Million Rupiahs
Average Final Cost After Add. Discontinuity : 70.9038 Million Rupiahs
Average Steps Before Add. Discontinuity : 64.4

Average Steps After Add. Discontinuity : 27.6

Note: Inf cost = one or more constraints are violated

5.5  Sensitivity Analysis

This analysis aimed to see how much the algorithm is affected by the state of
the initial population. Instead of being completely random, as in normal cases,
the initial population in this analysis was set to be within a certain cost range
(regardless of constraint violations).

As can be seen from Figure 9, with average initial cost higher than around Rp
70 million, a higher cost caused the algorithm to put more effort into the
optimization process (more generations to reach convergence), yet the final cost
after optimization was barely affected. Meanwhile, a lower average initial cost
yielded a significant decline in both the optimization result and efficiency. The
reason is that by forcing the cost to be lower than Rp 70 million, the individuals
in the initial population suffer from severe constraint violation, which is not a
good start for the optimization algorithm. Therefore, the extra effort required to
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reach convergence is unable to make up for the poor quality of the initial
population.

160 Final Cost vs Initial Cost % Steps to Convergence vs Initial Cost
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Final Cost (Million Rupiahs)
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o

Figure 9 Average final cost and steps to convergence vs initial cost.

6 Conclusion

A genetic algorithm was effectively implemented for prestressed concrete I-
girder optimization. The non-standard method of elitism and the proposed
additional discontinuity proposed in this paper are essential to reach a
satisfactory result. Furthermore, the values of mutation probability, crossover
probability and elite proportion that delivered the best optimization performance
were presented and further investigated. The sensitivity analysis proved that the
algorithm is robust, as the state of the initial population only affects the humber
of generations required to reach convergence but not the optimization result.

Nomenclature

dx = penalty function if constraint k is violated
foenaizea =  penalized fitness function

funpenalizea =  UNpenalized fitness function

m number of the population in a single generation

total number of predefined constraints
Pij = probability of individual i of generation j to be picked

ri = aconstant for scaling the penalty function for generation j
Xij = individual number i of generation j
References

[1] Naaman, A., Prestressed Concrete Analysis and Design, 2" ed,,
Michigan, United Staets, Techno Press 3000, 2011.



182

[2]

3]

[4]
[5]
[6]
[7]
(8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Tito Adibaskoro & Made Suarjana

Nawy, E.G., Prestressed Concrete: A Fundamental Approach, 5 ed.
Upper Saddle River, Prentice Hall, 2010.

Zalzala, A.M.S. & Fleming, P.J. (eds.), Genetic Algorithms in
Engineering Systems. Stevenage, Herts, United Kingdom: The Institution
of Electrical Engineers, 1997.

Coley, D.A., An Introduction to Genetic Algorithms for Scientists and
Engineers, Singapore, World Scientific, 1999.

Sivanandam, S.N. & Deepa, S.N., Introduction to Genetic Algorithms,
Berlin: Springer, 2007.

Man, K.F., Tang, K.S. & Kwong, S., Genetic Algorithms: Concepts and
Designs, Berlin: Springer, 2012.

Jenkins, W.M., Technical Note: Towards Structural Optimization via the
Genetic Algorithm, Computers & Structures, 40, pp. 1321-1327, 1991.
Gan, J. & Warwick, K., A Genetic Algorithm with Dynamic Niche
Clustering for Multimodal Function Optimisation, in Artificial Neural
Nets and Genetic Algorithms, Portoroz, pp. 248-255,1999.

Holland, J.H., Information Processing in Adaptive Systems, in
Proceedings of the International Union of Physiological Sciences, 3,
Leiden, pp. 330-339, 1962.

Holland, J.H., Genetic Algorithms and the Optimal Allocation of Trials,
SIAM Journal on Computing, 2(2), pp. 88-105, 1973.

Holland, J.H., Adaption in Natural and Artificial Systems, Ann Harbor,
1975.

Chen, T.Y. & Chen, C.J., Improvements of Simple Genetic Algorithm in
Structural Engineering, International Journal for Numerical Methods in
Engineering, 40, pp. 1323-1334, 1997.

American Association of State Highway and Transportation Officials,
AASHTO LRFD Bridge Design Specifications: SI Units. Washington,
D.C.: American Association of State Highway and Transportation
Officials, 2007.

Yayasan Pandu Bangun Persada Nusantara Batavia, Journal of Building
Construction, Interior & Material Prices, 36" Ed., Jakarta, Indonesia,
2017. (Text in Indonesian)

Zebua, F.Z. & Tarigan, J., Comparison between Post-Tensioned and
Reinforced Concrete for Floor Slabs Design, Jurnal Teknik Sipil USU,
3(1), 2014. (Text in Indonesian)

Worldwide Inflation Data. Accessed from http://inflation.eu/inflation-
rates/indonesia/historic-inflation/cpi-inflation-indonesia.aspx. (June 30",
2017).

De Jong, K.A. & W.M. Spears, A Formal Analysis of the Role of Multi-
point Crossover in Genetic Algorithms, Annals of mathematics and
Artificial intelligence, 5(1), pp. 1-26, 1992.


http://inflation.eu/inflation-rates/indonesia/historic-inflation/cpi-inflation-indonesia.aspx
http://inflation.eu/inflation-rates/indonesia/historic-inflation/cpi-inflation-indonesia.aspx

Prestressed Concrete |-Girder Optimization - Genetic Algorithm 183

[18] Mitchell, M., An Introduction to Genetic Algorithms. Cambridge,
Massachusetts: Bradford Books, 1998.

[19] De Jong, K.A., Analysis of the Behavior of a Class of Genetic Adaptive
Systems, The University of Michigan, PhD Thesis 1975.

[20] Adibaskoro, T., Prestressed I-Girder Optimization Using Genetic
Algorithm, Thesis, Institut Teknologi Bandung, Bandung, Indonesia,
2014.



	1 Introduction
	2 Objectives and Limitations
	3 Optimization Method
	3.1 Encoding
	3.2 Genetic Operators
	3.3 Evaluation
	3.3.1 Unconstrained Fitness Function
	3.3.2 Penalty Function
	3.3.3 Additional Discontinuity

	3.4 Selection
	3.4.1 Roulette Wheel
	3.4.2 Elitism
	3.4.3 Convergence


	4 Prestressed Concrete I-Girder Optimization
	4.1 Optimization Result
	4.2 Difference from Conventional Design

	5 Algorithm Evaluation
	5.1 Elite Proportion
	5.2 Mutation Probability
	5.3 Crossover Probability
	5.4 Additional Discontinuity
	5.5 Sensitivity Analysis

	6 Conclusion

