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Abstract. In an orthotropic materi;, the grain angle has a significant influence
on its mechanical properties. The aim of this reseawas to perform a
numerical simulation usina nonlinear finite element analysis (FEA) to obtain
the compressiostrength ofthe Red Merantighorea spp.timber species at an
angle to the grain raimyg from 12° to 80°. The material properties neededHe
analysis werebtained from clear scimen tests. To investigate the validity of
the numerical results, various cross grain specénvegre tested under uniax
compressive stres$t has been shown in this study ttan FEA based on the
distortion energy ofan orthotropic material can be used to obtain the
compressive strength at proportional limit for aragain specimens. Con-
rison with theexperimental results shed that for a cross grain angle between
12° and 80° the FEArediced the strength to be 9.4% to 33.6% lower than the
experimental resultsCompared tousing Hankinson’s formula to predict the
compressive strength a cross grain angle, using the FEA always gave a&tow
value, ranging from 13.2% to 30%. Based on these results, an FEA
incorporating Hill's yield criterion is a conservative method for predicting
compressive strength at an angle to the ¢

Keywords: compressionFEA,; grain angle; Hill's yield criterion; red meranti.

1 Introduction

The @mpressive strength is the ultimate value that lmarreacheddefore a
component fails due to corression. Compressive strength at proportidinait
load is animportant parameter used in timber design, for extarm the desigi
of columns or posts. Similarithe modulus of elasticity and thmodulus of
plasticity obtained from compressive st-strain curves are useful for p-
elastic analyis, for example analysifor studying thebuckling behavior of :
laminated column or a laminated p

Experimental tests and analytical research on igtertion energy criterion fc
timber uniaxial compressii at an angle to the grain has been done previc
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[1]. It proveddifficult to obtain the reacompression strength f@pecimens &
an angle to the grairin general, failure occurred nin the plane perpendicul
to the load, but ithe principal planof the material.

The aim of this research 's to perform anumerical simulation usin@
nonlinear finite elemerdnalysis(FEA) to obtain the compressive strengthan
angle to the graimanging from 12° to 80for the Indonesian hardwood timb
species named Red Merarshorea spp. Compressive strength in this pape
defined as the strength ptoportional limit and is assumed to be the sam
compressive yield strengtlTo investigate the validity of the finitelement
analysisresults, various cross grain specimn, as shown in Figure lyere
tested under uniaxial compressive sl.

Figure 1 Examples of various cross grain specim

In finite element analysis plasticit-based constitutive material model is u
to represent wood asm@nlinear orthotropic material according to theeesion
of the Von Mises yield criterio, called the Hill yield criterion [236 The
material properties needewere obtained from clear specimen tests
accordance with ASTM D14.6].

2 Methodology

2.1  Elastic Orthotropic Equation

Wood is generally assumed to behavean orthotropic material with thre
mutually perpendicular material principal axes, ejnthe longitudinal radial,
and tangential axeslhe constitutive relation oa linear elastic orthotropi
material can be desbed in accordance with Hools law [7]. The dastic
modulus E) is the slope othe stress-strain curve in the elastic reglnis the
slope of the longitudinadxe (parallel t the grain) stress-strain cunigs is the
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slope of the radial-axe stress-strain cuilzeis the slope of the tangential-axe
stress-strain curve. In this research, the radidltangential axises are assumed
to be equal and called perpendicular to the grain.
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The lateral strain at any point in a bar is propod! to the axial strain at that
same point if the material is linearly elastic. Tia¢io () of these strains is a
property of the material known as Poisson’s raiijo [

lateral strain
axial strain

The Poisson’s ratios are denotedvy, Vi, Vrn VRL VL, @andvrg. The first letter
of the subscript refers to the direction of theleggpstress and the second letter
to the direction of the lateral deformation. Thiatien between all six Poisson’s
ratios and all three elastic moduli are calculatsidg Eqg. (3) [7].

Ve = Yir (3a)
ER EL
h = h (3b)
E E
h = h (3C)
E. E,

The modulus of rigidity, also called shear moduluslcates the resistance to
deflection of a member caused by shear stressesthifee moduli of rigidity,



Nonlinear Finite Element Modeling of Red Meranti 225

denoted byG, g, G.1, andGgy, are the elastic constants in the LR, LT, and RT
planes, respectively. All three shear moduli atewtated using Eq. (4) [9].

= ELER 4
Cue E .(1+ V) + Ex 1+ V) (4a)

= EL'ET 4b
G T (v )+ B () o
Ger = S (4c)

Er-(1+ Vir) + B (1 Vi)

Although the microstructure of wood is very compléxis assumed to be
homogeneous. Natural imperfections such as krepertand distortions in the
alignment of the grain are ignored. If a sampleusfar enough from the center
of the tree so that the curvature of the growtlgsircan be ignored, the
mechanical properties of wood may be regardedthastoopic [7].

2.2  Axial Load-Deformation and Stress-Strain Curves

As seen in Figure 2(b), axial stresg;| is the compressive stress in the
direction parallel to the grain [3-6, 1@}, is the axial load ) divided by the
initial cross section area of the specime. (Axial strain €) is axial
deformation 4) divided by the initial length of the specimen.eTéxial load vs.
the axial deformation curve (Figure 2(a)) was ai#di from the compression
parallel to the grain test.
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(a) Load-deformation curve (b) Stresgin curve

Figure 2 Compression parallel to the grain stress-strainecigealization.

The slope of the stress-strain curve in the elastifon, as shown in Figure
2(b), is called the modulus of elasticity paralielthe grain . or Ey). The
slope of the stress-strain curve in the post-@astjion is named the modulus
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of plasticity parallel to the grainEf,). F, is the compressive strength
(proportional limit load) parallel to the grain §310].

Axial stress §..) is the compressive stress perpendicular to thm ¢B8-6, 10],
as shown in Figure 3(by.L isthe load P) divided by the initial cross section
area of the specimer®), Strain €.v) is the deformationA) divided by the
initial length of the specimen. The load vs. defation curve (Figure 3(a)) was
obtained from the compression perpendicular togtlaén test. The slope of the
stress-strain curve in the elastic region is called modulus of elasticity
perpendicular to the graitic{ or Er or EcL). The slope of the stress-strain curve
in the post-elastic region is called the moduluglasticity perpendicular to the
grain E,1). F.. is the compressive strength (proportional limitadd
perpendicular to the grain [3-6,10].

A A
P a

v

A Syl EeplL &

Figure 3 Compression perpendicular to the grain stresspstraurve
idealization.

Shear failure in timber is one of the critical farst to be considered in the
design of timber members. The shear strength istdeas-,;;, stress is assumed
to be distributed uniformly, and the shear streiigihs calculated as,

P
F = max 5
, =t (5)
whereP. is the maximum load anél is the area of shear plane. Details of the
shear specimen can be seen in Figure 9.
2.3  Plastic-Orthotropic Material Model

Nonlinear inelastic orthotropic materials can bedeled using Hill's yield
criterion [2-5,11]. This criterion is an extensiai the Von Mises yield
criterion. According to this criterion, failure ags if,
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f (0'” ) =F (Ubb _0-(:c)2 +G(Ucc_aaa)2 (6)
+H (0,, - 0y,)° +2L0%, +2M % + 2NoZ. - 1= 0
where,
11,1 1
2lyz 72 x? (7a)
c=1f1,1 1
2\z% X? Y? (7b)
_1[i+_1__1j
2\ X? y? 7 (7¢)
1
2Yy, (7d)
M = 12
2Yac (76)
_ 1
Yy (79

where a, b, ¢ are the three main directions ofntlagerial. X, Y, Z are yield
stresses in the direction of a, b, c, afig Y., Y are yield stresses for pure
shear at plane (a,b), (a,c), and (b,c).

The accumulated effective plastic straifi is defined using the principle of the
equivalence of plastic work,
dW’ =g, &, (8)

In general, the accumulated effective plastic stiginot equal to the uniaxial
plastic strain [11]. The hardening rule is definaderms of the relationship
between the yield stress and the accumulated e#guiastic strain. The plastic
modulus is defined as,

Ef:ﬁ{é(Ef B ) B B ©

where,
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__EF - \
E=—-"1- i=ab,c (102
E-E ‘
E E'
EP=—39_ ji=abachc (10b;
Eij - Eij

E.,E,,E are independent moduli for the a, b, ¢ directiond for the (a,b)
(a,c), (b,c) planes. Note that orthotropic promodl hardening reduces
isotropic hardening for thappropriate values of the elastic and tangent nic
The effective-stresiinction algorithm is used to calculate stressek [@astic
strains when plasticity occurs. The initial yielless o) is entered by direc
specification of the vyield stressiX, Y, Z, ¥ Yas Yho then thefollowing
formula is applied,

o= z) g e (1)

2.4  Hankinson's Formula for Uniaxial Stresswith Cross Grain

Because of the complexity of failure phenomendimber, predttions usinc
basic theory have yet to be fully developed. Conseetly, empirical methoc
havebeen used to study failure phenomena in tim12]. For cases ainiaxial
compressive stress iorthotropic materis with cross grairf, as shownin
Figure 4, many ades, for example ND[13], use the empiricaHankinson’s
formula,

F,F

c/l” cOd

F, =
® F,sin0+F_cogd (12)

whereF, = compressive strengat an angle to the grain.

Figure 4 An orthotropicmaterial with cross graiéi[14,15].
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Experimental evidence establishes the validity ehkinson’s formula for the
compression strength of timber. Figure 5 shows presentation of the

compression strength-grain angle relationship fidamkinson’s formula and
experimental values [12].

; i | Legend: — Hankinson's formula
Sy + experimental values |-}

Compression Strength ( 103 psi)

0 15 30 45 60 75 90
Grain Angle (degree)

Figure 5 Representation of the compression strength-gragiearelationship
from Hankinson’s formula [12].

2.5 Nonlinear Finite Element Method

Numerical simulation to predict the yield stress dompression at an angle to
the grain can be done using a software applicaiemed ADINA, based on
nonlinear finite element analysis (FEA) [16]. Nowar stress-strain curves for
all three principal axes of the orthotropic matiedee modeled in accordance
with Hill's yield criterion. The hardening rule idefined in terms of the

relationship between the yield stress and the achated effective plastic
strain.

The three-dimensional solid element is a variablendde isoparametric
element applicable to general 3-D analysis. A nicakmodel of the specimen
is modeled using one of the 3-D elements callegtraliedral element with ten
nodes as shown in Figure 6.

Figure 6 Tetrahedral element with ten nodes [16].
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In nonlinear static analysis, the equilibrium EbL][to be solved are,
t+AL R_ t+AL F :O (13)

where" "R is the vector of externally applied nodal loaddiate (load) step
t+At, and " "'F is the force vector equivalent (in the virtual wanse) to the
element stresses at tirie\t.

The load-displacement-control (LDC) method (or kmegth method) can be
used to solve the nonlinear equilibrium path of @det until its collapse. The
LDC method can only be used in a nonlinear statadyais in which there are
no temperature, strain-rate, pipe internal pressurereep effects. The LDC
method can be used in contact problems [11]. Theteans employed in the
equilibrium iterations are,

DAL © =(t+m/]a—1) +M())R+ R’ _t+8 {1 (14a)
t+AtU (i) — t+AlU (i-1) +AU0) (l4b)
f(a©,a00)=0 (14c)

where™ K" is the tangent stiffness matrix at the end of ftera(-1) at time
t+At, R is the constant reference load vect®s,is the load vector from the
previous solution rurd;*'2" is the load scaling factor (used Bhat the end of
iteration (-1) at timet+At, andAA” is the increment in the load scaling factor in
iteration ().

The equatiorf = 0 is used to constrain the length of the loag.stUsually, the
constant spherical arc length constraint methodused, and the constant
increment of the external work method is used & #nc length method has
difficulty to converge.

2.6  Determining the Yield Point

The yield point indicates when plastic deformatimgins. Material ductility is

an indicator of how much plastic deformation theterial can undergo without
significant loss of strength. The calculated ihigtffness was between 10%
and 40% of the peak load. A straight line betwe@%4and 90% of the peak
load and a straight-line tangent to the load-diggt@ent curve, parallel to the
40% and 90% secant line, were determined [17]. Tdst line represents the
immediate post-elastic zone before reaching thek dead. The point of

intersection between the initial stiffness withstimew tangent was projected
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horizontaly towards the loe-displacement curve in ordeto obtain the
respective yield point displacems as shown in Figure 7. This methaas
used to calculate the yikbtres (F¢), whereF, is the axial load ) divided by
the initial cross section area of the specimA). The P-A curves are resul
obtained from thexperimental compressi tests.

K /4000

Kio-00
K10-4O / Pmax

A Aves A

Figure 7 Yasumura and Kawai yield point methc17].

3 Results and Discussic

For theexperimental tests, universal testing mchine was used to load e
specimen. The test setup for testthe compressive strength parallel to
grain is shown in Figurg(a); the Poissos’ratios were also obtained from th:
tests. The test setup for testithe compressive strength perpendicular to
grain is shown in Figur@8(b). The output obtained from both tests tlas
relationship between thexial load antheaxial displacement. This relationst
was then converted to the relationship betwthe axial stress and ttexial
displacementThe test setup for testitheshear strength parallel to the grait
shown in Figure 9. Theubput obtained fronthis test was load?), which was
then converted to shear stress usin. (5). The maximum load?,.,) producd
the shear strength.

The loading displacemerwas controlled with a displacement rate of |
mm/minute (both compressi parallel to the grain and shear tests) and C
mm/minute (compression perpendicular to the grdihg rate was so slow tr
the dynamic effects could be neglected. The loadiag terminated when tt
specimen showesignificant failure.

Each specimewas weighed to obtain its densiThe moisture contentf @ach
specimen after being ailied was measured usia Lignomat digital moistur
tester. Table 1 shows the specific gravity and tooéscontent ofthe Red
Meranti specimens tested.



232 Yosafat A. Pranata & Bambang Suryoatmono

Table 1 Physical proerties of Red Meranti (number of specimens = 21).

Description Value
Average of ‘pecific Gravity 0.51
Coefficient of variatio (CoV) (%) 13.12
Moisture Content (% 15.14

Specimen dimensions for compres: parallel to the grain testg & 0°) were
50 x 50 x 200 mm (seeigure 8(a)). Specimen dimensionsrfperpendicular t
the grain testsd(= 90°) were 50 x 50 x 150 mm (see Figure 8(b)peSimen
dimensions for theshear testwere 60 x 50 x 50 mm (see Figurg These
dimensions conform tthe ASTM D143 6]. Each test use@l (nine) specimel.

(a) Parakl to the grain (b) Perpendicular to the grain.

Figure 8 Test setup for uniaxial compress testing.

Figure 9 Specimens for shear testing.

Results obtained frorthe experimental tes the P-A curvesas a modefor
compressiorparallel to the gra, can be seen in Figure 10(&hile Figure
10(b) shows the axial stre-strain curves for compression parallel to the ¢
(6 = 0°). MM1 throughMM9 are legends for each specimen.
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Figure 10 Results obtained from experimental testccompression parallel to

the grain @ = 0°).
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The Yasumura and Kawai yield point method was ueenbtain the value of
F.s andF.L. Theresults can be seen in Table 2, in which Eq. (5 used to
obtain the value of,;,. As shown in Table 2, the compressive strength |ghral
to the grain was the largest among the three dtierand could be as high as
forty times the compressive strength perpendictdathe grain. Compressive
strength perpendicular to the grain was the loasxing the three.

Table 2 Compressive parallel to the graiR.(), compressive perpendicular to
the grain E.L), and shear strengthB{) obtained from tests [1].

Strength Value Coefficient of Variation
(Mpa) (%)
Fe (6=0°) 33.67 17.8:2
Fer (6=90° 7.17 15.69
Fu, 7.55 5.77

The elastic modulus obtained from the clear spetitast for the longitudinal
direction Ee;) was 8261.46 MPa, while for the radial and thegéamtial
direction E.L) it was 688.78 MPa. The bilinear plastic modulus the
longitudinal direction E,;) was 2804.83 MPa, while for the radial and the
tangential directionH,.) it was 86.79 MPa. The three Poisson’s ratios wgre

= 0.014,v.+ = 0.027, and/irr = 0.247. The three shear moduli were calculated
using Eq. (4); the results weBgr = 548.15 MPaG 1 = 488.63 MPa, anGr+

= 276.25 MPa.

The specimens for grain angles of 12°, 60°, anda&®e all subjected to the
compression parallel to the grain test; detailsederal of the specimens can be
seen in Figure 1. Table 3 shows a comparison aofethdts for the compression
strengths at grain angles of 12°, 60°, and 80°imbthfrom the experimental
tests, Hankinson’s formula, and FEA.

Table 3 Compressive strength at grain angles of 12°, 668, 80° obtained
from Hankinson’s formula, experimental tests, aBa\F

Angle Hankinson's Experimental tests* FEA
0 (° formula (MPa) (Mpa) (MPa)
12 29.0¢ 27.82 25.2(

60 8.92 8.52 6.2C
80 7.34 7.68 5.10

*average value

As shown in Table 3, the experimental compresdirength at an angle to the
grain was obtained from the stress-strain curvdeerey the yield point was
calculated using the Yasumura and Kawai yield poiethod [17]. The FEA-
based compressive strength at an angle to the gramobtained from the
value of g,, when failure occured. Hankinson's compressivengtie at an
angle to the grain was calculated using Eq. (12).
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According to Hill's yield criterion (Eq. (6)), faire occurs iff(s;) = 0, with X
and Y as compression strength perpendicular to the g(&i)), Z as
compression strength parallel to the grdta.), andYap, Yae., andY, as shear
strength. The shear strength,,j for all directions Ya, Ya. andY,y) was
obtained from the shear tests. Step by step deghilse calculation of(g;)
obtained from the FEA, as a model for the specimi¢h a grain angle of 12°,
can be seen in Table 4. As shown in the tableyéhees off(s;) for step 1
through step 7 are all negative, indicating thdufa did not occur. At time
step 8, failure occurs whé(y;) = 0.71.

Table 4 Stresses obtained from numerical simulation, as aaleinfor the
specimen with a grain angle of 12°.

Time Oxx oyy 07z Oxy Oxz Oyz Off f(o)
sep (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) v
1 0.71 0.14 -0.23 -0.31 -0.42 0.04 1.04 -0.99
2 1.43 0.28 -0.46 -0.63 -0.83 0.08 2.09 -0.95
3 2.13 0.44 -0.72 -0.97 -1.28 0.12 3.17 -0.90
4 2.93 0.74 -1.06 -1.44 -1.98 0.17 458 -0.79
5 4.32 1.76 -1.97 -2.76 -4.05 0.38 8.14 -0.43
6 3.39 3.05 0.75 -4.18 -5.57 2.17 9.27 -0.06
7 -11.98 -11.70 -16.20 -4.71 -5.86 2.15 10.53 -0.08
8 -19.45 -24.50 -25.20 -5.07 -6.21 1.98 11.49 0.71
9 -23.31 -28.52 -32.00 -5.40 -6.58 2.14 13.15 0.92
10 -24.85 -30.19 -34.06 -5.73 -6.97 2.34 13.94 1.11
11 -25.49 -30.93 -35.19 -6.04 -7.37 2.55 14.73 1.32
12 -25.75 -31.30 -35.95 -6.36 -7.79 2.75 15.53 1.55
13 -25.81 -31.50 -36.55 -6.67 -8.20 2.95 16.35 1.80
14 -25.75 -31.61 -37.05 -7.00 -8.63 3.13 17.19 2.06
15 -25.61 -31.64 -37.49 -7.32 -9.05 3.32 18.04 2.34
16 -25.42 -31.63 -37.87 -7.64 -9.49 3.49 18.90 2.63
17 -25.21 -31.56 -38.21 -7.96 -9.93 3.67 19.74 294
18 -24.97 -31.45 -38.48 -8.28 -10.37 3.85 20.58 53.2

Figure 11 shows the effective stress contour obthfrom the FEM simulation
for the specimen model with a grain angle of 125térthat the z-axis is in the
axial direction).

Figure 12, Figure 13, and Figure 14 show both empmrtal-test and FEA-
simulation results obtained from the specimens githin angles of 12°, 60°,
and 80°, respectively. The FEA simulation resuiligate that the compressive
strengths are always lower compared to the expataheest results, with a
difference of 9.4% to 33.6%. A possible source hafst differences are the
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mechanical properties of the material used in tB& Ehat might differ from
those of the specimens. It should be noted thathvi®a natural material whose
mechanical properties vary from species to spefiies) tree to tree, and even
from one spot in a lumber to another. Compared daakiihson’s formula, the
compressive strength at an angle to the grain gestliusing the FEA was
always lower, ranging from 13.2% to 30.5%.

Time 10.00

Effective Stress
RST CALC
Time 10.00

I:EB.E
485

- 405
- 315
—~ 225

135
I:a_.an

Maximum
& 5046

Minimum
* 0.07328

Figure 11 Numerical simulation for a grain angle of 12°.

As shown in Figure 12, Figure 13, and Figure 14, 4Mhe legend for each
specimen’s test result, while FEA is the legendliier FEA result.
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Figure 12 Comparison of stre-strain curves for specimens with a grain angle
of 12°.
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Figure 13 Comparison of stre-strain curves for specimens with an angle 60°.
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Figure 14 Comparison of stre-strain curves for specimens with an angle of
80°.

4 Conclusion

It has been shown in this study tla finite element analysis (FEAgRsed ora
distortion energy criterion ian orthotropic material can be used to obtain
compressive strength at proportional limit for cograin specimen
Comparison with experimental results shows that a cross grainangle
between 12° to 80° tHeEA predicts a strength that3s4% to 33.6% lower the
the experimental resultCompared to Hankinson’s formula, tbempressivt
strength at an angle to the grain predicted uthe FEA wa always lower
ranging from 13.2% t®0.5%. Based on these results, an FEA incaapog
Hill's yield criterion is a conervative method fompredicting compressiv
strength at an angle to the gr
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