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Abstract. Because the choice of oscillator resonant circuit parameters depends 

mostly on experience, we propose nonlinear differential equations to describe an 

oscillator based on an equivalent circuit of the oscillator and then to describe the 

internal electrical noise of the oscillator by introducing a stochastic term that 

establishes a nonlinear stochastic differential equation to analyse the oscillator’s 

behavior. For optimization of the oscillator resonant circuit parameters, first, we 

used Advanced Design System (simulation software of the Agilent company) to 

verify the conclusion, and then, using a 10MHz Pierce crystal oscillator, 

provided experimental evidence. 
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1 Introduction 

The oscillator is one of the most important electronic devices in electronic 

circuits. It provides the reference frequency in many set-ups and is widely used 

in communications, electronics, telecommunications, aerospace, instruments 

and so on [1]. How to choose the parameters of a resonant circuit is of great 

significance to the oscillator characteristics and the oscillator frequency stability 

in oscillator circuits. Although the topic of noise in oscillators has engaged 

classical investigations of a qualitative nature [2,3], Leeson [4] was the first to 

propose a simple intuitive phenomenological model relating the level of phase 

noise in a widely used class of resonator-based oscillators to voltage and current 

noise sources in the circuit elements. Sauvage [5] used the mathematical 

principles involved to prove the validity of Leeson’s model. This model has 

been widely embraced and serves well to predict oscillator phase noise induced 

by sources of white noise. However, while Leeson admits that device flicker 

(1/f) noise may determine the phase noise very close to the oscillation 

frequency, his model cannot explain why. Using a linear time variant (LTV) 
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model for the oscillator, Hajimiri and Lee [6] have proposed a phase-noise 

analysis method that explains this up-conversion phenomenon, but it cannot 

predict the phase noise at frequency offsets very close to carrier. Kaertner [7], 

[8] and Demir [9] used the perspective of a state-space trajectory to analyze the 

phase noise of oscillators. In their works, the noise causing perturbation is 

decomposed into two parts. One part causes a deviation in the state-space 

solution along the unperturbed trajectory, effectually altering the phase of the 

solution. The other part results in a deviation that is considered an orbital 

perturbation. The orbital perturbation can be shown to remain small given a 

small noise. Subsequently, they analyzed the oscillator phase noise by a 

linearization of the oscillator equations around the noiseless periodic steady-

state solution. 

According to recent research, generally speaking there are two methods: direct 

analysis with a linear system or transferring the nonlinear system into the linear 

domain. Since the closed-loop gain of the oscillator has to be larger than the one 

at the beginning stage of oscillation, the output amplitude of the oscillator can 

be increased in order to amplify both the internal and the external noise of the 

oscillator [1]. When the output amplitude is increased to a certain value, the 

closed-loop gain will be decreased by the nonlinear characteristics of the active 

components in the oscillator. The signal of the oscillator can be stable only 

when the closed-loop gain of the oscillator is equal to one. Therefore, in order to 

make sure the oscillator can initialize the oscillation and maintain stable status, 

all oscillators have to be non-linear systems. Any linear process will definitely 

change the physical characteristics of the oscillator [1]. 

This paper directly describes oscillators using nonlinear autonomous differential 

equations, and introduces the noise signal as a term of a nonlinear autonomous 

differential equation. By setting up a nonlinear stochastic differential equation 

model, the phase noise of oscillators can be analysed. Using the widely used 

Pierce oscillator as an example, the modeling process illustrates the rationality 

of the model. Reference [10] uses this nonlinear stochastic differential equation 

model of the Pierce oscillator and a genetic algorithm to select the oscillator 

resonant circuit parameters, whose fitness function is based on the least phase 

noise. The results show that when the capacitance between the base and the 

emitter of the resonant circuit and the capacitance between the collector and the 

emitter of the resonant circuit are close, the phase noise can be better inhibited 

in the Pierce oscillator circuit. Their relationship is less than 2 to 8 times in 

reference [11]. In this research, Agilent’s Advanced Design System simulation 

software was used to test this conclusion and subsequently an actual circuit was 

used to verify the conclusion. 
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2 Derivation of Model 

An ideal oscillator has the following output form: 

 )2cos( 00   ftAx                                           (1) 

where x is output of oscillator, A0 is amplitude of oscillator, f is output 

frequency of oscillator, φ0 is initial phase, A0, f and φ0 are all constant. The 

oscillators’ output is a signal spectral line in the frequency domain of this case. 

Carefully observe Eq. (1), which must satisfy the following differential 

equation:  

 0)2( 2 


xfx                                                  (2) 

Considering the nonlinear essence of the oscillator, introduce nonlinear term 

),(


xxf  to describe the nonlinear active device of the oscillator. Without loss of 

generality, the oscillator without noise is described by the scalar, ordinary 

differential equation:   

 0),( 


xxfxx                                                 (3) 

where ε is a real number. The function f is nonlinear so ε is a parameter that 

controls the degree of nonlinearity of the system. By introducing a noise term, 

we can get the equation to describe the oscillator with noise [12] 

 )(),( twxxfxx 


                           (4) 

where w(t) is the noise. 

Considering the wide use of the Pierce oscillator, without loss of generality, the 

Pierce oscillator with grounded emitter is analyzed. The equivalent circuit 

schematic diagram is shown in Figure 1. 

 
Figure 1 Pierce oscillator circuit with emitter grounded. 

In order to facilitate the derivation, Figure 1 can be simplified as shown in 

Figure 2.  
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Figure 2 Pierce oscillator. 

Established current equation for node o: 

 0)( 2 
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                                    (5) 

where IL is the current of through inductor branch L, IR is the current of through 

resistance branch R, I(Vbc) is the current of through the collector junction, Vbc is 

the voltage at the two ends of the collector and the base. Vc is the voltage of the 

collector terminal, considering: 
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where Vb is a voltage based terminal. 

So Eq. (5) can be written as: 
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Let: 

 dtV
C

C
x c)1(

1

2

   

Then, substituting the above expression into Eq. (6), we obtain: 
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where IS is the reverse saturation current of the PN junction, VT = kT/q is the 

thermal voltage, k is the Boltzmann constant, T is the absolute temperature, q is 

the charge on the electron. 
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Because the electric noise is the fundamental cause of oscillator phase jitter, the 

noise w(t) is introduced to describe the electrical noise of the oscillator. The 

Pierce oscillator with noise equation can be described as follows: 
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x
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x
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

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                             (8) 

Eq. (8) fits the form of the nonlinear stochastic differential equation model that 

is proposed in this paper, which shows the effectiveness of the model (4). 

Reference [10] used this model, selecting the same intensity of white noise. The 

following conclusion was drawn: if the capacitance between the base and the 

emitter of the resonance circuit and the capacitance between the collector and 

the emitter of the resonance circuit are close, the phase noise can be better 

inhibited in the Pierce oscillator circuit. 

3 Simulation Verification 

In this research, we used Agilent’s Advanced Design System 2008 [13] as 

simulation tool and a parallel type oscillator simulation circuit with grounded 

emitter to verify the conclusion. The simulation circuit was as shown in Figure 

3. 

 

 

 

 

 

 

 

 

 

Figure 3 Parallel type oscillator simulation circuit with grounded emitter. 
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Figure 4 is the simulation curve of the oscillation output and phase noise using 

empirical methods in this oscillation circuit for C1 = 15 pF，C2 = 30 pF. 

 

Figure 4 The simulation curve of oscillation output and phase noise for 

151 C pF, 302 C pF. 

Figure 5 is the simulation curve of the oscillation output and phase noise using 

the conclusion of [10] in this oscillation circuit for C1 = 15 pF，C2 = 16 pF.  

 

Figure 5 The simulation curve of oscillation output and phase noise for 

151 C pF, 162 C pF. 

4 Experimental Verification 

This research used an actual circuit to verify the conclusion. The equivalent 

circuit of the Pierce oscillator was as shown in Figure 6.  
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Figure 6 The Pierce equivalent circuit. 

In this case, the design was a 10MHz Pierce crystal oscillator, while the other 

parameters of the oscillating circuit were the same. We only considered the 

relationship between the values of C1 and C2 to see how they influence the 

phase noise of the 10MHz Pierce crystal oscillator. The measurement 

instrument was an Agilent E5052B signal source analyzer. 

 

Figure 7 Test curve of the phase noise of 10MHz Pierce crystal oscillator with 

C1=43pF, C2=100pF. 
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Figure 7 is the test curve of the phase noise of the 10MHz Pierce crystal 

oscillator for C1 = 43 pF，C2 = 100 pF. It shows that for deviations from the 

carrier frequency of 100Hz, 1kHz, 10kHz, the phase noise was -112.2725 

dBc/Hz@100Hz, -139.4369 dBc/Hz@1kHz and -148.7335 dBc/Hz@10kHz.  

According to the conclusion of [10], the phase noise can be reduced in a Pierce 

crystal oscillator when C1 and C2 are close. In the premise of meeting the 

feedback conditions, the test curve of the phase noise of the 10MHz Pierce 

crystal oscillator for C1 = 43 pF, C2 = 51 pF, as shown in Figure 8, shows that 

for deviations from the carrier frequency of 100Hz, 1kHz, 10kHz, the phase 

noise was -120.2828 dBc/Hz@100Hz, -145.4669 dBc/Hz@1kHz and -158.7771 

dBc/Hz@10 kHz. 

 

Figure 8 Test curve of the phase noise of 10MHz Pierce crystal oscillator for 

C1 = 43pF, C2 = 51pF. 

5 Conclusion 

Using nonlinear autonomous differential equations to describe an oscillator, the 

introduction of the noise signal as a term of nonlinear autonomous differential 
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equations through the establishment of nonlinear stochastic differential 

equations corresponding to the analysis of the phase noise in oscillators is 

feasible. Comparing Figure 7 and Figure 8, we can see that the phase noise can 

be reduced in a Pierce crystal oscillator when the values of C1 and C2 are close. 

This conclusion was verified using an equivalent oscillator circuit of the Pierce 

crystal oscillator. In the resonant circuit, the capacitance between the base and 

the emitter and the capacitance between the collector and the emitter is less than 

2 to 8 times the empirical relationship in reference [11]. 

Comparing the simulation results with the experimental results, although the 

simulation results were not completely consistent with the experimental results 

in numerical value (because the circuit simulation software is incapable of 

exactly simulating non-linear complex circuits), the above conclusion was 

confirmed. In fact, when C1 and C2 are close, the loaded Q will increase, which 

reduces the energy loss in the oscillation circuit – thus increasing the useful 

signal power – the signal-to-noise ratio is improved and therefore it can improve 

the phase noise. Comparing Figure 4 and Figure 5, we also found that when C1 

and C2 are close, apart from inhibiting the phase noise in the Pierce oscillation 

circuit, also the starting oscillator characteristics are improved. This work 

provides empirical evidence for the optimization selection of oscillator resonant 

circuit parameters. 
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