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Abstract. Because the choice of oscillator resonant circuit parameters depends
mostly on experience, we propose nonlinear differential equations to describe an
oscillator based on an equivalent circuit of the oscillator and then to describe the
internal electrical noise of the oscillator by introducing a stochastic term that
establishes a nonlinear stochastic differential equation to analyse the oscillator’s
behavior. For optimization of the oscillator resonant circuit parameters, first, we
used Advanced Design System (simulation software of the Agilent company) to
verify the conclusion, and then, using a 10MHz Pierce crystal oscillator,
provided experimental evidence.
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1 Introduction

The oscillator is one of the most important electronic devices in electronic
circuits. It provides the reference frequency in many set-ups and is widely used
in communications, electronics, telecommunications, aerospace, instruments
and so on [1]. How to choose the parameters of a resonant circuit is of great
significance to the oscillator characteristics and the oscillator frequency stability
in oscillator circuits. Although the topic of noise in oscillators has engaged
classical investigations of a qualitative nature [2,3], Leeson [4] was the first to
propose a simple intuitive phenomenological model relating the level of phase
noise in a widely used class of resonator-based oscillators to voltage and current
noise sources in the circuit elements. Sauvage [5] used the mathematical
principles involved to prove the validity of Leeson’s model. This model has
been widely embraced and serves well to predict oscillator phase noise induced
by sources of white noise. However, while Leeson admits that device flicker
(1/f) noise may determine the phase noise very close to the oscillation
frequency, his model cannot explain why. Using a linear time variant (LTV)
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model for the oscillator, Hajimiri and Lee [6] have proposed a phase-noise
analysis method that explains this up-conversion phenomenon, but it cannot
predict the phase noise at frequency offsets very close to carrier. Kaertner [7],
[8] and Demir [9] used the perspective of a state-space trajectory to analyze the
phase noise of oscillators. In their works, the noise causing perturbation is
decomposed into two parts. One part causes a deviation in the state-space
solution along the unperturbed trajectory, effectually altering the phase of the
solution. The other part results in a deviation that is considered an orbital
perturbation. The orbital perturbation can be shown to remain small given a
small noise. Subsequently, they analyzed the oscillator phase noise by a
linearization of the oscillator equations around the noiseless periodic steady-
state solution.

According to recent research, generally speaking there are two methods: direct
analysis with a linear system or transferring the nonlinear system into the linear
domain. Since the closed-loop gain of the oscillator has to be larger than the one
at the beginning stage of oscillation, the output amplitude of the oscillator can
be increased in order to amplify both the internal and the external noise of the
oscillator [1]. When the output amplitude is increased to a certain value, the
closed-loop gain will be decreased by the nonlinear characteristics of the active
components in the oscillator. The signal of the oscillator can be stable only
when the closed-loop gain of the oscillator is equal to one. Therefore, in order to
make sure the oscillator can initialize the oscillation and maintain stable status,
all oscillators have to be non-linear systems. Any linear process will definitely
change the physical characteristics of the oscillator [1].

This paper directly describes oscillators using nonlinear autonomous differential
equations, and introduces the noise signal as a term of a nonlinear autonomous
differential equation. By setting up a nonlinear stochastic differential equation
model, the phase noise of oscillators can be analysed. Using the widely used
Pierce oscillator as an example, the modeling process illustrates the rationality
of the model. Reference [10] uses this nonlinear stochastic differential equation
model of the Pierce oscillator and a genetic algorithm to select the oscillator
resonant circuit parameters, whose fitness function is based on the least phase
noise. The results show that when the capacitance between the base and the
emitter of the resonant circuit and the capacitance between the collector and the
emitter of the resonant circuit are close, the phase noise can be better inhibited
in the Pierce oscillator circuit. Their relationship is less than 2 to 8 times in
reference [11]. In this research, Agilent’s Advanced Design System simulation
software was used to test this conclusion and subsequently an actual circuit was
used to verify the conclusion.
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2 Derivation of Model

An ideal oscillator has the following output form:
X = A, cos(27ft + ¢,) )

where x is output of oscillator, A, is amplitude of oscillator, f is output
frequency of oscillator, ¢, is initial phase, Ao, f and ¢, are all constant. The
oscillators’ output is a signal spectral line in the frequency domain of this case.
Carefully observe Eq. (1), which must satisfy the following differential
equation:

X+ (27)2x =0 )

Considering the nonlinear essence of the oscillator, introduce nonlinear term
o (X, )'() to describe the nonlinear active device of the oscillator. Without loss of

generality, the oscillator without noise is described by the scalar, ordinary
differential equation:

X+ X+ f (X, X) =0 ©))

where ¢ is a real number. The function f is nonlinear so ¢ is a parameter that
controls the degree of nonlinearity of the system. By introducing a noise term,
we can get the equation to describe the oscillator with noise [12]

X+ X+ & (X, X) = w(t) (4)
where w(t) is the noise.
Considering the wide use of the Pierce oscillator, without loss of generality, the

Pierce oscillator with grounded emitter is analyzed. The equivalent circuit
schematic diagram is shown in Figure 1.
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Figure 1 Pierce oscillator circuit with emitter grounded.

In order to facilitate the derivation, Figure 1 can be simplified as shown in
Figure 2.
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Figure 2 Pierce oscillator.

Established current equation for node o:

IL+IR+I(\/bC)+C2%=O (5)

where I is the current of through inductor branch L, I is the current of through
resistance branch R, 1(Vy) is the current of through the collector junction, Vi is
the voltage at the two ends of the collector and the base. V. is the voltage of the
collector terminal, considering:

C
Vb ~ _2Vc
C,
where V,, is a voltage based terminal.

So Eq. (5) can be written as:

J (1_?:2 Vet C,.V dv (6)
Lt (1-22) 4 (V,,)+C,—% =0
L ( Cl) R (Vbc) 2 dt

Let:
C
X=|1-=2)V dt
Ja-gow.

Then, substituting the above expression into Eq. (6), we obtain:

GG, ;+§+1+Is(ew—1)=0 (7)
c,-C, L R

X

where I is the reverse saturation current of the PN junction, V; = kT/q is the
thermal voltage, k is the Boltzmann constant, T is the absolute temperature, g is
the charge on the electron.
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Because the electric noise is the fundamental cause of oscillator phase jitter, the
noise w(t) is introduced to describe the electrical noise of the oscillator. The
Pierce oscillator with noise equation can be described as follows:

GG X X" 1) = w(t) (8)
c,-C, L R

.
X

Eqg. (8) fits the form of the nonlinear stochastic differential equation model that
is proposed in this paper, which shows the effectiveness of the model (4).

Reference [10] used this model, selecting the same intensity of white noise. The
following conclusion was drawn: if the capacitance between the base and the
emitter of the resonance circuit and the capacitance between the collector and
the emitter of the resonance circuit are close, the phase noise can be better
inhibited in the Pierce oscillator circuit.

3 Simulation Verification

In this research, we used Agilent’s Advanced Design System 2008 [13] as
simulation tool and a parallel type oscillator simulation circuit with grounded
emitter to verify the conclusion. The simulation circuit was as shown in Figure
3.
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Figure 3 Parallel type oscillator simulation circuit with grounded emitter.
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Figure 4 is the simulation curve of the oscillation output and phase noise using
empirical methods in this oscillation circuit for C1 =15 pF, C2 =30 pF.
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Figure 4 The simulation curve of oscillation output and phase noise for
C, =15pF, c, =30pF.

Figure 5 is the simulation curve of the oscillation output and phase noise using
the conclusion of [10] in this oscillation circuit for C; = 15 pF, C,= 16 pF.
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Figure 5 The simulation curve of oscillation output and phase noise for
C,=15pF, C, =16pF.

4  Experimental Verification

This research used an actual circuit to verify the conclusion. The equivalent
circuit of the Pierce oscillator was as shown in Figure 6.
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Figure 6 The Pierce equivalent circuit.

In this case, the desigh was a 10MHz Pierce crystal oscillator, while the other
parameters of the oscillating circuit were the same. We only considered the
relationship between the values of C1 and C2 to see how they influence the
phase noise of the 10MHz Pierce crystal oscillator. The measurement
instrument was an Agilent E5052B signal source analyzer.
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Figure 7 Test curve of the phase noise of 10MHz Pierce crystal oscillator with
C1=43pF, C2=100pF.



Parameter Selection of Oscillator Resonant Circuit 177

Figure 7 is the test curve of the phase noise of the 10MHz Pierce crystal
oscillator for C1 = 43 pF, C2 = 100 pF. It shows that for deviations from the
carrier frequency of 100Hz, 1kHz, 10kHz, the phase noise was -112.2725
dBc/Hz@100Hz, -139.4369 dBc/Hz@1kHz and -148.7335 dBc/Hz@10kHz.

According to the conclusion of [10], the phase noise can be reduced in a Pierce
crystal oscillator when C; and C, are close. In the premise of meeting the
feedback conditions, the test curve of the phase noise of the 10MHz Pierce
crystal oscillator for C, = 43 pF, C,= 51 pF, as shown in Figure 8, shows that
for deviations from the carrier frequency of 100Hz, 1kHz, 10kHz, the phase
noise was -120.2828 dBc/Hz@100Hz, -145.4669 dBc/Hz@1kHz and -158.7771
dBc/Hz@10 kHz.
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Figure 8 Test curve of the phase noise of 10MHz Pierce crystal oscillator for
C1 =43pF, C2 =51pF.

5 Conclusion

Using nonlinear autonomous differential equations to describe an oscillator, the
introduction of the noise signal as a term of nonlinear autonomous differential
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equations through the establishment of nonlinear stochastic differential
equations corresponding to the analysis of the phase noise in oscillators is
feasible. Comparing Figure 7 and Figure 8, we can see that the phase noise can
be reduced in a Pierce crystal oscillator when the values of C1 and C2 are close.
This conclusion was verified using an equivalent oscillator circuit of the Pierce
crystal oscillator. In the resonant circuit, the capacitance between the base and
the emitter and the capacitance between the collector and the emitter is less than
2 to 8 times the empirical relationship in reference [11].

Comparing the simulation results with the experimental results, although the
simulation results were not completely consistent with the experimental results
in numerical value (because the circuit simulation software is incapable of
exactly simulating non-linear complex circuits), the above conclusion was
confirmed. In fact, when C1 and C2 are close, the loaded Q will increase, which
reduces the energy loss in the oscillation circuit — thus increasing the useful
signal power — the signal-to-noise ratio is improved and therefore it can improve
the phase noise. Comparing Figure 4 and Figure 5, we also found that when C1
and C2 are close, apart from inhibiting the phase noise in the Pierce oscillation
circuit, also the starting oscillator characteristics are improved. This work
provides empirical evidence for the optimization selection of oscillator resonant
circuit parameters.
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