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Abstract. This paper presents the application of an improved firefly algorithm
(IFA) for minimizing total electricity generation fuel cost while all loads are
supplied by thermal generating units. The proposed IFA was developed by
combining two proposed improvements of the firefly algorithm (FA), i.e.
improvement of the distance between two considered solutions and improvement
of the new-solution production technique. The effect of each proposed
improvement on the conventional firefly algorithm (FA) and the performance of
IFA were investigated in two study cases, i.e. single- and multi-fuel option based
thermal generating units. In the first case, three different systems with three, six
and twenty units were employed, while a ten-unit system with four different
loads was tested in the second case. The comparison results between IFA and
existing methods, including three other FA variants, revealed that the two
proposed improvements of FA are very efficient and make IFA a very promising
meta-heuristic algorithm for minimizing fuel cost of thermal generating units.

Keywords: improved firefly algorithm; multi-fuel; single-fuel; thermal generating
units; total fuel.

1 Introduction

The world is currently experiencing rapid population growth, while many
countries are confronted with high rates of urbanization. Thus, the question how
to meet the increasing demands of essential products, energy and services — the
main challenge of this century — needs to be considered. To solve this matter, a
large power source is required to supply services and daily energy consumption.
Hence, the electrical power market will become more competitive and more
complicated than ever before. The solution is to distribute the power system
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load to generation units so that the lowest fuel cost function is accomplished
while satisfying the system constraints, an approach that is known as optimal
operation of thermal generating units (ELD) [1]. In the system operation
conditions of the ELD problem, the fuel resources of the thermal units can be
supplied according to two cases. The first case is single-fuel, where the fuel cost
function of each generator can be represented approximately by a single
quadratic function [2]. The second case is multi-fuel (coal, natural gas and oil),
where the generator can be represented by a segmented-piecewise quadratic
function [3-11]. Traditionally, a wide range of deterministic methods have been
used to solve the ELD problem, namely the Lagrangian relaxation algorithm
[12], the gradient method [13], the lambda iteration method [14] and the
Hopfield model (HNN) [1,3,15-17]. These methods share the same advantages,
such as requiring only a short execution time, having a small number of control
parameters and providing a single optimal solution. However, there are some
drawbacks when handling the problems related to complex multi-fuel
constraints, large power systems and a non-differentiable objective.

During the previous decades several approaches have been adopted to deal with
the ELD problem, such as Tabu Search (TS) [18], differential evolution (DE)
[19], Non-dominated Sorting Genetic Algorithm 11 (NSGA-II) [20],
biogeography-based optimization (BBO) [21-22], the Fuzzy Logic Controlled
Genetic Algorithm (FCGA) [23], and the Cuckoo Search Algorithm (CSA) [24-
25]. Among these, DE is one of the most popular methods and has been widely
and successfully applied. DE can handle difficult problems with nonlinear
constraints and complicated objective functions. In addition, it has a small
number of control parameters that lie within a predetermined range. However,
the task of finding the best values for these control parameters by tuning is
time-consuming and needs a large number of evaluations for different results
from different sets of control parameters [26]. In fact, DE has two main factors,
the crossover factor and the mutation factor, where the first is from zero to 2
while the latter is from zero to 1. In addition, the new-solution generation
method is based on the same formula, which has high probability of converging
to a local optimum solution with low quality.

BBO has better characteristics than DE since it uses two generations per
iteration but only one evaluation time. Thus, BBO can overcome the
shortcoming of easily converging to a local optimum but it has difficulty in
coping with the selection of the control parameters. BBO has more control
parameters, i.e. population size, iterations, maximum immigration rate,
mutation coefficient, maximum emigration rate, retaining rate and habitat
modification probability. CSA can overcome the limitations of these two
methods. CSA can avoid falling into local optimum zones and finding lower
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quality solutions by using two mechanisms: exploration via Levy flights and
exploitation via mutation. The Levy flights mechanism can explore large search
zones while the mutation operation focuses on narrow zones. Furthermore, CSA
has a small number of adjustment parameters, i.e. population size, iterations and
probability of mutation performance. The first two are popular parameters that
all metaheuristic algorithms also have, while the third one is very a simple one
for tuning within the range from 0 to 1. The firefly algorithm is a population
based meta-heuristic algorithm similar to PSO, DE, CSA, etc. It was built by
Yang in 2008 for solving optimization problems [27]. The configuration of FA
consists of three procedures for updating the distance between two considered
fireflies, updating the step size and updating the solutions.

In this paper, we propose two modifications of FA in order to tackle several of
its disadvantages, such as premature convergence to a local optimum solution
and impossibility of jumping out of a search zone with many local optimum
solutions. In the first modification, we propose a new formula to update the
radius between a considered firefly Xi (one solution) and another firefly X;
(another solution) with a lower fitness function than the considered solution.
The proposed radius based on X; and the best solution Xerest is more effective
than that based on Xi and X; in FA. In the second modification, we propose a
new algorithm for producing new solutions of an old solution by suggesting two
models for the updated step size. A larger or smaller updated step size will be
used to find solutions in different zones and to avoid converging to a local
optimum and getting trapped into a search zone with many local optimums. As
a result, the new algorithm provides a very considerable improvement compared
to FA. The application of each modification was evaluated by testing on four
systems with nine cases, i.e. nine thermal generating units using single-fuel and
multi-fuel ELD.

2 Problem Formulation

2.1  Objective Function

In single-fuel ELD, the fuel cost of each generating unit is expressed as a
guadratic function of its power output. The objective of the problem is to
minimize the total fuel cost of N available units, as shown in Eqg. (1):

N
MinF:st(Ps)a (1)

s=1
where Ps is the real power output of generator s and Fs is the fuel cost function

of thermal unit s, which can be represented in Egs. (2) and (3) corresponding to
single-fuel and multi-fuel cases.
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F(P)=a, +b,P, +c,P’ ($/h), 2)

2
ag + bslps + Cslps , fuel 1, I:)s,min < Ps < Psl,max

F.(R,) =1{a, +by,P, +c,, P2, fuel m, P <P, <P , (3)

» Tsm,min = sm,max

aSMS + bSMS PS + CSMS PSZ‘ fuel MS’ PsMs,min S PS S Ps,max

where as, bs, and cs are fuel cost coefficients of unit s with single-fuel option;
asm, bsm, Csm denote fuel cost coefficients for fuel type m of unit s; Psmmin and
Psmmax denote the lower and upper limits for fuel m of unit s, respectively; Psmin
and Psmax represent the lowest value and the highest generations that thermal
unit s can produce; M; represents the number of fuel options of thermal unit s.

2.2 Set of Constraints

Active power balance: power from the generating units together with electricity
load P.p and power losses Pt should satisfy the constraint of Eq. (4):

N
zlps =P + P, 4)
§=!
where P is found by using Eqg. (5) [1]:
N N N
Pro =2 X BB;P; + 2By R + By, ®)
i=1 j= i=1

where Bij, Boi, Boo are terms in the transmission power loss coefficient matrix.

Limitations of the thermal generating units: the power output of each thermal

generating unit must follow the rule in Eq. (6):
P < PS < Ps,max' (6)

s,min =

3 Proposed Improved Firefly Algorithm

3.1  Firefly Algorithm

Each firefly i is represented by a position X; corresponding to solution X; at the
current iteration. When the fitness function of solution i is higher than that of
another solution j, the distance between firefly i and j is obtained by using Eq.

(7):
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i =i = X))%, U]
Then the updated new distance solutions are carried out using Egs. (8) and (9):
2
=g, ®)
AXijneW = Xi +ﬂAX” + I‘andi, (9)

where rand; is a random solution i, Bo is the attractiveness at zero distance
(normally set to 1). X; is a solution with a lower fitness function than X;; and

AX; is the updated step size calculated by employing Eq. (10).
AX;; = (X = Xi) (10)

The whole description of FA is shown in detail in the flowchart in Figure 1.
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v
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v
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Figure 1 Flowchart of implementing FA for a general optimization problem.
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3.2  Proposed Improved Firefly Algorithm

In the paper, we propose two improvements regarding the considered radius and
the updated step size. Instead of using the distance between the considered
solution i and another better solution to determine the radius, the best solution
Xenest 1S recommended to be used for calculating the radius:

Fgest =\ (Xi — Xapest)’- (11)

where Xepest IS the best solution in the population.

In the second improvement, a novel technique is proposed for producing new
solutions with higher quality than those of FA. It is clear that the manner of
producing the updated step size by using Eg. (9) is similar to the mutation
operation of the differential evolution algorithm (DEA) in which B acts as
mutation factor, ranging from 0 to 2. Some previous studies [26] have pointed
out disadvantages of DEA, such as low convergence to a global optimum or
easily getting trapped in a local optimum. Consequently, the proposed
improvement aims to tackle the limitations of FA by using Eqgs. (12)-(14):

AXyij = (X = Xj + X1 = X2), (12)
AXqij = AXyij + (X gpest = Xworst ) (13)

AXy; if RN;>PT
AXI] =

. (14)
AXyjj  otherwise

The definitions in Eq. (14) are as follows: X1 and X, are two random solutions
among the current population that are different from Xi and X;j; Xcbest and Xworst
are the best and the worst solutions among the current population; RN; is a
random number ranging from O to 1, generated for solution i; PT is
predetermined tolerance, which was set to 0.5 for all cases in this paper to
ensure that the probability is 50% for each model. The implementation of the
proposed IFA for a general optimization problem is similar to the flowchart
shown in Figure 1 of FA. The difference between the two considered algorithms
is the way in which new solutions are produced.

4 Implementation of IFA for ELD Problem

4.1  Dealing with Load Demand- Supply Balance Constraint

In order to deal with the load demand-supply balance constraint, one thermal
generating unit must be considered as dependent variable while the rest are
decision variables, which are included in the position of each firefly in the
initialization step and are updated in each iteration by using the search strategy
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of IFA. Consequently, the position of firefly i will go from thermal generating
unit 1 to unit N-1 as shown in Eq. (15):

Xiz[Pl,iy P2,iy ceeey PN-l,i],' l:], veey Npop, (15)
where X; must always meet the constraint of Egs. (16)-(18):

Xmin SXi Sxmaxv (16)
xminz[Pl,min, Pamin, ..., PN'l,min], (17)
xmax:[Pl,max, P2max, .- PN‘l,max]- (18)

As a result, the load demand-supply balance constraint can be dealt with
successfully by using the dependent variable Py, obtained by Eq. (19) [25].

N-1
Pyi=Po+PL— zl Pi- (19)
5=

4.2  Penalizing Violations by Py

Eqg. (20) indicates that there is a possibility that Py, violates its limitations, i.e.
being lower than the lowest generation or higher than the highest generation.
Therefore, the violation must be controlled and considered in the quality
evaluation of the solutions. This is done by calculating the penalty term as
indicated in Eq. (20):

Pui = Puma If Byi > Py

,max

Penalty, =1 Py nin —Pui if Pui <Py min , (20)
O If PN,min < PN,i < I:)N,max

4.3 Fitness Function

The fitness function of all solutions should be determined to arrange the
effectiveness of all the solutions. The fitness function, which considers the
objective function and the penalty term, is shown in Eq. (21):

N
FT, = 3. F,(P,) + PF x (Penalty;)?, (21)
s=1

where FT; is the fitness function of solution i and PF is the penalty factor used
to amplify the violation of the dependent variable.

5 Numerical Results

The proposed IFA, FA and two other improved versions corresponding to the
first improvement (called IFA1) and the second improvement (called IFA2)
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were tested in four cases, where the first three cases considered thermal
generating units using only the single-fuel option while the last one took
thermal generating units using the multi-fuel option into consideration. The
details of the four test systems were as follows:

Case 1: Three thermal generating unit test systems with a load of 850 MW [18].
Case 2: Six thermal generating unit test systems with varying loads, i.e. 800
MW, 1200 MW and 1800 MW corresponding to cases 2.1, 2.2 and 2.3 [23].
Case 3: Twenty thermal generating unit test systems with a load of 2500 MW
[15].

Case 4: Ten thermal generating units with varying loads, i.e. 2400 MW, 2500
MW, 2600 MW and 2700 MW corresponding to cases 4.1, 4.2, 4.3 and 4.4 [6].

In addition, the population size and the highest iteration number selected for
implementation of IFA, FA, IFAL1 and IFA2 were identical, as shown in
Table 1. In all four cases, each method was run in fifty independent trials using
Matlab and a computer with 4GB of RAM and a 2.4 Ghz processor.

Table 1 Selection of population size and highest iteration number.

Type of fuel Case  Npop  Niter

1 10 15
Single-fuel 2 10 40
3 20 500
Multi-fuel 4 15 200

5.1 Impact of Proposed Modifications on Obtained Results

In this section, the impact of each modificaiton on the performance of the
proposed method is discussed as well as the advantages of the proposed method
over FA. Thus, four FA variants were run in cases 1, 2 and 3. The results,
consisting of minimum cost, average cost, maximum cost and standard
deviation cost, are reported in Tables 2 and 3.

The comparison of best cost reflects the best optimal solution and the
comparison of standard deviation cost reflects the stabilization of the search
ability. The two comparison criteria are both essential to indicate the
performance of each method. In case 1 with the 3-TGU system, the proposed
method obtained lower best cost than FA, IFAL and IFA2 by $0.034, $0.014
and $0.006 respectively. Similarly, the standard deviation cost of IFA was
lower than that of FA, IFA1 and IFA2 by $55.3, $1.16, $0.085 respectively.

The comparison shows that the proposed method performed the best and FA the
worst, while IFA2 was better than IFAL. The same outcome was obtained in the
subcases of case 2 and case 3. Clearly, the first modification has only a slight
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impact on the results of the proposed method, while the second modification has
a significant impact. The best cost after fifty runs obtained by the four methods
for cases 1 and 3 (shown in Figures 2 and 3) shows the superiority of IFA over
FA by small fluctuations, high stablization and approximate convergence to the
best solution. For the multi-fuel case, the result comparisons are shown in Table
4 and the fifty runs of case 4.1 are plotted in Figure 4. The minimum cost
confirms the better performance of the proposed method over FA, while the
standard deviation and the figure give evidence of a stable search in the
proposed method. Consequently, it can be concluded that the proposed method
is much more effective and robust than FA.

Table 2  Results ($/h) obtained by FA methods in case 1.

Method Bestcost Mean cost Worstcost Std. dev.
FA 8344.627 8350.38 8378.291  55.30577
IFA1 8344607 8344.71 8349.779  1.16356
IFA2  8344.599 8344.6 8344.72 0.08551
IFA 8344593  8344.59 8344.593  0.00006

Table 3 Best Cost ($/h) obtained by FA methods in case 2 and case 3.

Method Case2.1 Case2.2 Case2.3 Case3
FA 8243.2632 11482.6 16583.26 62514.98
IFA1  8230.7388 11480 16581.9 62460.49
IFA2 82275393 11477.3 16579.6 62458.88
IFA 8227.0986 11477.1 16579.33 62456.64
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Figure 2 The best cost after fifty runs obtained by FA and the proposed method
in case 1.
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Figure 3 The best cost after fifty runs obtained by FA and the proposed method
in case 3.

Table 4 Results ($/h) obtained by FA methods for case 4.

Method C;ase 4.1 C_ase 4.2 C_ase 4.3 (_:ase 4.4
Min. Std. Min. Std. Min. Std. Min. Std.
FA 485.661 6.78 528.11 6.54 577.003 8.89 627.887 3.25
IFA1 482.821 5.82 528.091 5.27 57541 517 626.73 3.07
IFA2 481933 2.1 526.77 3.14 575.03 438 62405 243
IFA 481.723 0.24 526.24 0.33 574381 1.63 62381 0.83
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Figure 4 The best cost after fifty runs obtained by FA and the proposed method
in case 4.1.
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5.2 Comparison and Discussion

In order to further investigate the performance of IFA, comparisons were
carried out of results obtained by IFA and other optimization tools, such as
EALHN [1], HNN [3], HRCGA [4], RCGA [4], DE [5], HNUM [6], AHNN
[7], ELANN [8], IEP [9], AIS [10], HICDEDP [11], Lambda [15], HM [15], TS
[18], IGA [20], BBO [21-22], CGA [23] FCGA [23], CSA [24-25], and
ORCSA [26]. In addition to the comparison of best cost, another comparison
criterion was considered, i.e. the number of fitness evaluations Nges, which is
shown in Eq. (24):

|\lFES =a)XNpopXNIter’ (24)
where o is the number of generations in each iteration. For some optimization
algorithms with two new-solution generations, CSA and ORCSA, o is 2 while
for the other two, with one new-solution generation, PSO and DE, o is 1. For
the proposed IFA, only one new solution is generated in each iteration, thus o is
equal to 1. The value of Nees was added to each table for comparison, which
indicates that methods with a lower Nres are more efficient if its best cost is also
lower or equal.

Table 5 shows the best cost, ACTFER and Nges from IFA and other methods for
case 1. The best cost comparison indicates that IFA has the same solution
quality as BBO [21] and CSA [24] but better solution quality than TS [18] and
IGA [20]. The reported time indicates faster search ability of IFA compared to
CSA. No values were reported by the other methods. However, IGA and BBO
used a very high number of Nggs, 10,000,000 for IGA and 30,000 for BBO,
whereas the value was very low for IFA (150). Consequently, IFA is a very
efficient method for case 1.

Table 5 Result comparisons for case 1.

Method Cost ($) ACTFER (S) Npop Niter NFEs
TS[18] 8344598 - - - -
IGA[20] 8344.598 - 500 20,000 10,000,000
BBO [21] 8344.592 - 100 300 30,000
CSA[24] 8344.59 0.09 - - -
IFA 8344.592 0.06 10 15 150

The comparisons for cases 2.1, 2.2 and 2.3 (Table 6) show that the costs from
IFA were equal to those from CSA but much lower than those from FCGA [23]
and CGA [23]: by $3.93 and $5.79 for case 2.1, $2.94 and $16.65 for case 2.2,
and $6.52 and $9.72 for case 2.3 respectively. Clearly, IFA obtained better
solutions than CGA and FCGA for the three cases. Furthermore, IFA used only
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400 fitness evaluations while CGA and FCGA used 10,000 fitness evaluations.
CSA does not report its population and iterations, thus we cannot calculate its
Nres. Consequently, IFA is very promising for cases 2.1, 2.2 and 2.3.
Comparisons with other methods, i.e. Lambda [15], HM [15], BBO [22], CSA
[25] and ORCSA [25] for case 3, are given in Table 7. The best cost comparison
shows that the method yielded much better cost than FA and the same or
approximate solution quality as the other methods. However, Lambda and HM
had a high error rate (about 10-%), while the other methods and IFA had low
error rates.

Table 6 Result comparisons for cases 2.1, 2.2 and 2.3.

Method Case 2.1 Case 2.2 Case 2.3
Cost (3) Cost ($) Cost ($) NFES
FCGA[23] 8231.030 11480.030 16585.850 10,000
CGA[23] 8232.890  11493.740 16589.050 10,000
CSA[24] 8227.100  14477.090 16579.330 -
IFA 8227.0986  11477.09 16579.33 400

Table 7 Result comparisons for case 3.

Method Cost (3) Npop  Nier  NFES
Lambda [15] 624656.639 - - -
HM [15] 62456.6341 - - -
CSA[25] 62456.633 10 500 10,000
ORCSA [25] 62456.633 10 500 10,000
BBO [22] 62456.7926 50 400 20,000
IFA 62456.638 20 500 10,000

Moreover, IFA used the same Nges as CSA, ORCSA but half that of BBO.
Clearly, IFA is also an effective method for case 3. For the multi-fuel cases, the
best cost and fitness evaluations are shown in Table 8.

Table 8 Comparison of best cost (in $/h) for case 4.

Method Case 4.1 Case 4.2 Case 4.3 Case 4.4 NFes
EALHN [1] 481.723 526.239 574.381 623.809 -
HNN [3] 487.780 526.130 574.260 626.120 -
HRCGA [4] 481.7226 526.2388 574.3808 623.8092 8,000
RCGA [4] 481.7233 526.2393 574.3966 623.8094 8,000
DE [5] 481.723 526.239 574.381 623.809 12,000
HNUM [6] 488.500 526.700 574.030 625.180 -
AHNN [7] 481.720 526.230 574.370 626.240 -
ELANN [8] 481.740 526.270 574.410 623.880 -
IEP [9] 481.779 526.304 574.473 623.851 -
AIS [10] 481.723 526.24 574.381 623.809 3,000
HICDEDP [11] 481.723 526.239 574.381 623.809 4,000
FA 485.661 528.11 577.003 627.887 3,000

IFA 481.723 526.240 574.381 623.810 3,000
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The best cost comparison indicates that IFA had the same optimal solution
quality as most methods, excluding a number of methods that had higher cost,
i.e. HNN [3], HNUM [6], ELANN [8], and IEP [9]. The proposed method
especially had much better cost than FA. Furthermore, IFA was one of methods
with the lowest Nees value (3,000), while RCGA and HRCGA in [4] needed
8,000, DE [5] needed 12,000 and HICDEDP [11] needed 4,000. Clearly, IFA is
one of the most efficient methods, being able to find the lowest fuel cost and
using the smallest number of fitness evaluations.

6 Conclusions

In this paper, two improvements of the conventional firefly algorithm were
proposed. The first improvement was to determine the effective distance
between two considered solutions and the second improvement was aimed at
finding an efficient algorithm for generating new solutions. Each improvement
had a significant impact on the performance of the proposed IFA since IFA1
(with application of the first improvement) and IFA2 (with application of the
second improvement) performed better than conventional FA. The proposed
IFA with both improvements also performed much better than FA.

Further investigation of the proposed IFA was done by comparing its
performance with that of several other methods in nine cases, considering the
single-fuel and multi-fuel options. Result comparisons indicated that IFA can
obtain high approximate solution quality or better solutions than the other
methods while using a lower or equal number of fitness evaluations compared
to these methods. Consequently, the proposed IFA is very promising for solving
the problem of optimal operation of thermal generating units.
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