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Abstract. This paper introduces an adaptive neuro-fuzzy inference system
(ANFIS) for tracking SEDC motor speed in order to optimize the parameters of
the transient speed response by finding out the perfect training data provider for
the ANFIS. The controller was adjusted using PI, PD and PIPD to generate data
sets to configure the ANFIS rules. The performance of the ANFIS controllers
using these the different data sets was investigated. The efficiencies of the three
controllers were compared to each other, where the PI, PD, and PIPD
configurations were replaced by ANFIS to enhance the dynamic action of the
controller. The performance of the proposed configurations was tested under
different operating situations. Matlab’s Simulink toolbox was used to implement
the designed controllers. The resultant responses proved that the ANFIS based
on the PIPD dataset performed better than the ANFIS based on the Pl and PD
data sets. Moreover, the suggested controller showed a rapid dynamic response
and delivered better performance under various operating conditions.

Keywords: adaptive neuro-fuzzy inference system (ANFIS); data sets; FIS and Matlab
Simulink; motor control; SEDC motor.

1 Introduction

The core idea of motor control is to make the motor work reliably and to
achieve an ideal operating process. DC motor control means regulating the
speed to the desired value to realize all scheduled processes. In many situations,
variations in the load can influence the speed. Therefore, the DC motor needs
precise control to achieve the desired speed. The portability used in various
speed ranges makes the application of an SEDC motor important. Full torque
should be obtainable at all speeds. Connecting the armature to a variable voltage
source is used to get accurate speed and the speed direction is changed by
switching the field polarity [1].

The speed control of DC motors has been broadly applied through the use of
conventional control techniques. Nevertheless, these still have some drawbacks.
For example, traditional PI, PD, and PID controllers cannot perform the desired
speed control, especially under variant loads [2-6]. A control based on fuzzy
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logic has been developed to overcome the weakness of conventional PIDs [7],
but the efficiency of fuzzy control is limited because it is built on human
experiences. This has led several researchers to develop modern methods aimed
at improving the performance of the DC motor in order to avoid the
shortcomings of conventional PIDs and the limitations of fuzzy control [8].
ANFIS, for instance, is one of the most useful techniques exploited to control
DC motor speed. This method was developed by Jang in the 90s of the last
century [9]. It is a combination of a fuzzy and a neural network by employing a
hybrid learning process and has been applied by many researchers in the field of
motor control. ANFIS control was developed specifically to control DC motors
and good results have been obtained. It was found that ANFIS has less
overshoot and settling time in the speed response and a fast dynamic response
compared to fuzzy and conventional PIDs [10].

In addition, a neuro-fuzzy configuration has been recommended to control
SEDC motors, where a Pl scheme was used to build the training data. The
configuration was operated under varying and constant load and tested in a
simulation at inconstant speed [11]. The SEDC motor speed was regulated
using an ANFIS, but in this system a chopper circuit was utilized. Moreover,
the speed response was compared with fuzzy, Pl and PID, where the effect of
temperature on the speed was considered [12].

A supervisory learning algorithm has been used with ANFIS to track the DC
motor speed. However, the results showed high values in the transient response
characteristics [13]. In a study by Zhang, once again high overshoot and
substantial settling time were observed [14]. The simulation results for an
ANFIS controller proposed for SEDC motor speed control showed that its
performance with a conventional Pl was somewhat acceptable [15]. In [16],
fuzzy logic online learning for RBFNN was implemented to control the speed
of a DC motor, where the controller showed superior performance compared
with conventional PID.

A bat algorithm optimized ANFIS has been designed for controlling a DC
motor [17]. The performance of the suggested technique was compared with an
ANFIS based genetic algorithm and PSO, Fuzzy-PID, PID based bat algorithm
and adaptive FLC. The proposed method showed superior performance in all
aspects compared with the other techniques. However, the controller showed
different performance between the simulation and experimental verification.
Emotional learning algorithms utilizing a proportional-derivative based on
ANFIS have been proposed in [18]. However, tuning the PD gain resulted in an
observable overshoot and large settling time. In another study, a neuro-fuzzy
speed regulator was designed. Its effectiveness in a simulation compared with a
conventional speed regulator showed that the steady state was slightly improved
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[19]. Likewise, a hybrid control has been established for DC motors, where the
presented configuration slowed down the controller response. In addition, the
controller exhibited a drawback at variant loads [20]. Another shortcoming was
observed when an ANFIS controller was assessed in offline mode [21].
Nevertheless, the performance of ANFIS models in providing correct
predictions is comparatively superior to that of ANN [22].

In [23] the genetic algorithm appears again, where it was developed for FLC.
However, setting the parameters affects the algorithm, which leads to repeating
similar suboptimal solutions. Furthermore, a hybrid GA-PSO algorithm
optimized online ANFIS has been developed to control DC motor speed, where
the learning parameters were optimized online for different speed torques [24].
In [25], an ANFIS-based composite controller was developed for a static VAR
compensator in a power system.

The performance of the introduced method improved the steady-state response
but deteriorated the transient response. In [26], the speed of a DC motor was
regulated using an ANFIS based on neuro-fuzzy logic algorithms. This
controller exhibited larger overshoot and undershoot in its speed response. An
ANFIS controller based on PID has been proposed, where the controller showed
outstanding performance in all aspects, except for the appearance of overshoot
in the speed response of the motor.

In [27], the performance and stability of ANFIS were analyzed for constant and
variant speed, sudden load and changes in several motor parameters, i.e. inertia,
resistance, inductance and magnetic flux. In a number of studies, algorithms
have been developed to cope with the accelerated progression of the motor
industry, where [8] and [28] developed a novel bacterial foraging and antlion
algorithm to enhance ANFIS performance.

Most of the previous studies compared their proposed designs with one or more
conventional schemes. Herein, we present an ANFIS technique based on PI,
PD, and PIPD control, where PIPD combines Pl and PD training data,
implemented through a particular algorithm. This study’s contributions are:
firstly, generating three types of training data sets; secondly, comparing the
performance of ANFIS between the three models; and thirdly, investigating the
response efficiency of the suggested controllers under several operating
conditions. This article is organized as follows: Section 2 describes the
mathematical modeling of the DC motor. The control techniques are presented
in Section 3. The results of the ANFIS methodologies implemented in this work
and the discussion are detailed in Section 4, followed by the conclusion in the
final section.
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2 Motor Mathematical Modelling

From Figure 1 and by applying Kirchhoff’s voltage law to the circuit, the

voltage equation can be formed as follows:

_ dia(t)
Ea(t):Ra.la(t)+L. it +eb(t)

where ¢, (t) = K, .o, (t)

Tm J, B8 W

Figure 1 Electrical circuit of an SEDC motor.

After substitution in Eq. (1), it becomes Eq. (2) as follows:

_ di_(t)
E.(t)=R..i (t)+L—
dt

+K, .o (1)

The mechanical part can be formulated as follows:

- do,(t)
TO=3,~2=+B,0,0

where T(t)=K_.i_(t)
After substitution in Eq. (3) we derive Eq. (4):
K, i (t)= Jm.%+ B. .. (t)

By applying Laplace transform we get Egs. (5) and (6):
E.(s)=Ls.1 (s)+R.l (s)+K, .o (s)

K,.i (s)=J_ .o (s)s+B_ .o (s)

To obtain the final motor transfer function formula as in following Eq. (7):
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o, (s) _ K, )
E.(s) L. s*+(R.J_ +B .L)s+(K .K_+R.B)

Figure 2 shows a block diagram of an SEDC motor. Figure 3 illustrates the
model made in Matlab Simulink, while the parameters applied to the model are
specified in Table 1.

Table 1 Motor specifications.

Parameter Value
Armature inductance | 0.1215H
Armature resistance R, 11.2Q
Rotor inertia J_ 0.02215Kgm
Viscous friction coefficient B, 0.002953Nms/rad
Back EMF constant K, 1.28Vs/rad
Torque constant K. 1.28Nm/A
¢Ioad
E,(s) + . IS K T,(9) + 1 w(S)} 1 o(s)
. Ls+R, ! Js+B s
E() <
b Kb

Figure 2 SEDC motor structure.
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Figure 3 Simulink scheme of the SEDC motor.
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3 The Adaptive Neuro-Fuzzy Inference System

3.1  Adaptive Neuro-Fuzzy Principle

An artificial neural network is a new control technique that holds numeric
entities and manipulates them by figuring out the convergence and divergence
between them. Fuzzy logic is a flexible and autonomous methodology that has
reasonable interpretation capabilities and can be easily integrated with similar
systems. On the other hand, a neural network has superior efficiency with
numerical entities. Hence, by incorporating both strategies, a modern method
can be acquired.

The new configuration has the characteristics of both systems and results in a
significant improvement in modeling, nonlinear mapping, learning and pattern
recognition. As for their general structures, fuzzy logic and ANFIS have the
same parts except that ANFIS has a neural network portion. This is arranged in
four major components: fuzzification, rule base, neural network, and
defuzzification, as shown in Figure 4.

ANFIS controller
________________________________________ y
! Dala base |
) e — —
i | . i p ~
) Artificial i / Desired spood
r_._(‘>/{ b :b Fuzzificalion > Kn?:::ge - Neural P Defuzzification H—p| E:t: \'
WY i | Network | c..w\m or /I
+ | | inpt
I

Rule base

Figure 4 The general structure of the ANFIS configuration.

The network scheme contains a set of elements structured in five coupled
layers. The nodes in layer 1 represent the fuzzy inputs. The weight of the
membership functions is checked to select the minimum input values in the
second layer. Then, layer 2 sends its output to layer 3, where each neuron is
matched with a fuzzy rule and normalized by calculating its weight. Hence, at
this level, the number of layers is equal to the number of fuzzy rules.

The fourth layer is called the defuzzification layer and produces the output that
results from the fuzzy rule layer. All of these are summed up in layer five to
provide crisp values. The general scheme of the neuro-fuzzy network is shown
in Figure 5, where the circles and squares represent fixed and adaptive nodes
respectively.
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layer 2 layer 3 l

Figure 5 The general scheme of the neuro-fuzzy network.

3.2 The Methodology for Generating Training Data for ANFIS

In this study, three models were built to generate data for training the ANFIS.
The first and second were the regular Pl and PD while the third one was PIPD,
which is a combination of the first two configurations. They were then
manipulated by a special algorithm called SADU to ensure that they are able to
cover all possible operation conditions (SADU stands for symmetric difference
of unions). This algorithm is designed to find out the convergence and
divergence between data generated by models. The performance of Pl and PD
were predictable, but the performance of PIPD could be more efficient. Figure 6
shows the structure of the PIPD model that was used to generate the training
data for the ANFIS controller.
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Figure 6 Architecture of the PIPD model.
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7. k«k+1,
8. Stop when the criterion is satisfied,
9. where: Seti, k, j = 0 as index and counter,

10. A, B,,U,,S,, R, are defined as the variables,
11. U, = (A N B,) is the intersection between two inputs that represent the
datain A, and B,

12. S, = {j (JeA)D(je Bk)} is the symmetric difference between the two

data sets,
13. R, =S, UU, is the union between the two data sets,

14. k <k +1 is used to read the data element from the data set,
15. Repeat the condition until the criterion is satisfied.

3.3 ANFIS Controller Scheme

The training data from the PI, PD, and PIPD configurations are generated
according to observation of the SEDC motor’s behavior and then saved in
separate files. The model used to generate the data is a predetermined model,
which means that the assumed parameters related to the input/output
membership function and rules are adjusted to attain optimum performance. The
generated data files are uploaded to the fuzzy inference system in order to train
it.

The fuzzy system then learns the data and tracked the I/O provided data. The
adaptive mechanism must continuously perform online identification of the
controlled object during system operation. It is required that the structure of the
selected neural network should be suitable for the work characteristics of the
adaptive learning mechanism for online learning.

Moreover, the learning speed should be increased. In case the network structure
is more complicated, the number of weights that need to be adjusted is higher.
This inevitably affects the learning speed of the adaptive mechanism. It also
makes it impossible to properly track changes of the controlled object and the
dynamic learning theory of the multi-layer neural network is not perfect enough.
Based on comprehensive consideration of the above factors, the speed controller
in this study used neuron network dynamic learning to achieve the adaptive
mechanism as explained in Figure 7.



The Performance of ANFIS for Control the Speed of DC Motor 91

logical operation

L ] and

- e
— e

Figure 7 Architecture of the ANFIS network.

The PI, PD, and PIPD controllers were built and correctly adjusted. The
generated data were investigated several times in order to ensure that they were
able to cover all situations. In this study, the data were minimized as much as
possible to increase the dynamic response speed. Moreover, they were
rearranged in a usable form for training in the ANFIS. Subsequently, the ANFIS
was utilized to train the data set. The zero-error criterion was used to modify the
membership functions. The model was validated to ensure that the FIS model
was successful in predicting the values of the equivalent data set output; the
models’ efficiency and capability were verified; and the tested data were able to
cover all different possibilities of load variation. The system was repeatedly
tested by implementing different load signals and values. This resulted in the
membership functions, method optimization and several modifications of the
error tolerance to obtain an ideal response. If the training data prepared for the
ANFIS completely represent the features of the optimal response, this kind of
modeling will work admirably. However, if the training data are prepared via
noisy measurements and cannot represent all features of the data that will be
presented to the ANFIS, then validating the model is helpful. As an example,
the data generated using the PIPD scheme to perform ANFIS are shown in
Figures 8, 9 and 10 respectively.

Traming Error

442 . . :
1 2 3 4 5 Epachs 6 7 8 9 10

Figure 8 PIPD training errors for ANFIS.
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Figure 9 PIPD training data for ANFIS.
Training data:o FIS output:*
5000
4000
_ 3000}
£ 2000
[=}
10004
0
-1000 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Index

Figure 10 PIPD tested data for ANFIS.

For all the introduced controllers, a fuzzy first-order Takagi-Sugeno model was
utilized to perform the configuration of the ANFIS. It had two inputs, hamely
error E and its changing rate EC, and one output to represent the control signal
to the motor. The rules were defined as follows:

Rule 1: If Xis A and Y is B, then

f =px+qy+r;
Rule 2: If Xis A, and Y is B,, then
f, =p,X+0,y+1,;

Since A and B are the fuzzy antecedent sets, f (x.y) is a consequent crisp

function. In this configuration, the ANFIS controller has two inputs, each
consisting of four triangle membership functions and one linear output type.
The system has 16 possible rules, with zero-error tolerance and 10 epochs.

The ANFIS structure was tuned automatically by a back propagation
optimization algorithm for training the FIS because it is flexible and showed
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perfect performance with load variation, while the hybrid optimization method
was found to be unsuitable for changes in load. Figure 11 shows a schematic
diagram of the ANFIS Simulink model for controlling SEDC motor speed,
where the reference and real speed difference are input into the ANFIS
configuration, while the resulting output is the voltage to the motor.
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<t
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Figure 11 ANFIS Simulink model scheme for controlling SEDC motor speed.

4 Results and Discussion

The system was tested in several stages. In the first stage, the motor response
was tested without controller for the purpose of clarifying the overall impact of
the control. As expected, the response showed a sizeable steady-state error as
shown in Figure 11. Secondly, it was operated with a fixed load equal to 10% of
the input signal. The response was very far removed from the optimal response,
as illustrated in Figures 12 and 13.
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Figure 12 Motor response without control and load.
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Figure 13 Motor response without control and with constant 1/10 of referenced
speed.

In the second, and for the purpose of demonstrating the disparity in the
performance of the simulation system tests, the ANFIS controller operated
based on the data generated by the PI, PD, and PIPD models. First, the speed
response performance was accomplished without load. For the ANFIS-based PI
data controller, the speed response showed a reasonable response performance
with a slight overshoot and an inconsiderable oscillation before reaching a
stable state, as shown in Figure 14. As for the ANFIS-based PD data controller,
its response showed a distinct overshoot. Moreover, it also showed a small
oscillation and more rapidly reached a steady state compared with the ANFIS-
based PI data controller, as can be seen in Figure 15. Figure 16 illustrates the
speed response produced by the ANFIS-based PIPD data controller, which
showed optimal performance and superiority in all aspects.

The second test was done by applying a constant external load to the motor in
order to determine the ability of the controller for disturbance avoidance. The
ANFIS-based PI data controller got stuck in an oscillating state, thus causing an
inadmissible instability, as can be seen in Figure 17. This obviously proves that
the controller failed to bear a constant load under the same circumstances, other
than the other two controllers. PD and PIPD demonstrated their ability in
dealing with an unvarying load without any change in their responses, as
illustrated in Figures 18 and 19. In the third test, the constant load was increased
tenfold. For the ANFIS-based Pl data and the ANFIS-based PD data, this
resulted in a massive overshoot in the speed response. However, so far the
ANFIS-based PIPD data maintained their efficiency without any change.
Besides, their response was not affected even if the load was increased ten- or
hundredfold. For the ANFIS-based PIPD data controller response, the overshoot
was so small that it was difficult to measure. As for the rise time and settling
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time, the controller showed exceptional performance and a very speedy

dynamic response with no oscillation. Figures 20-22 display the three
controllers’ speed responses.
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Figure 14 Speed response of ANFIS-based Pl training data without load.
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Figure 15 Speed response of ANFIS-based PD training data without load.
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Figure 16 Speed response of ANFIS-based PIPD training data without load.
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Figure 17 Speed response of ANFIS-based PI training data with a constant
load.
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Figure 18 Speed response of ANFIS-based PD training data with a constant
load.

Time Series Plot:
1
0.8
=
2
=
= 0.6
=
2
= 04l -
02| .
0 05 1 135 2 25 3 33 1 is 3
Time(sec)

Figure 19 Speed response of ANFIS based on PIPD training data with a
constant load.
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Figure 20 Speed response of ANFIS-based Pl training data with 10 times
constant load.
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Figure 21 Speed response of ANFIS-based PD training data with 10 times
constant load.
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Figure 22 Speed response of ANFIS-based PIPD training data with 10 and 100
times constant load.
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Furthermore, for further confirmation the system was tested under sudden load.
First, the system was operated under a slight sudden load. For the ANFIS-based
Pl data controller, apparently, the slight sudden load had a large effect on the
speed response, as can be seen in Figure 23. As a result, the motor speed
oscillated during the load period and only reached stable state after the load was
removed. Meanwhile, for the ANFIS-based PD data, there was a small change
observed in the speed response to the sudden load, as shown in Figure 24. With
respect to the ANFIS-based PIPD data no difference was seen, as is evident
from Figure 25, where the controller succeeded to absorb the load successfully.
For more confirmation, the amplitude of the sudden load was increased ten- and
hundredfold. The ANFIS-based PIPD data controller displayed outstanding
performance for the sudden heavy load, as shown in Figure 26. In contrast, for
the other two controllers the increase of the sudden load affected the system’s
stability.
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Figure 23 Speed response of ANFIS-based PI training data with a sudden load.

Time Series Plot:

[
L

speedirad/sec)
=
o

0 0.3 1 15 2 23 3 35 4 i3 5
Timeisec)

Figure 24 Speed response of ANFIS-based PD training data with a sudden
load.
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Figure 25 Speed response of ANFIS-based PIPD training data with a sudden
load.
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Figure 26 Speed response of ANFIS-based PIPD training data with a sudden
load increased 100 times.

5 Conclusion

In this study, the performance of ANFIS was assessed according to the feed-
forward data type used to set the rules for the speed controller of an SEDC
motor. PI, PD, and PIPD models were used to generate the data for the ANFIS.
The created data were integrated into the ANFIS configuration and operated
under different conditions to evaluate the transient response parameters while
absorbing constant and sudden load, and steady-state error. In general, the
designed ANFIS configuration has several advantages, for instance, the
simplicity of its structure and learning susceptibility. Implementation of its rules
is relatively rapid and easy compared to traditional methods. In addition to these
features, the ANFIS-based PIPD data also showed high robustness under
changing load and superior performance for speed control. Added to this, it
showed low oscillation and more accuracy in its speed response. The controller
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also proved to have a perfect tracking response for the desired speed without
overshoot and short settling time. The Matlab simulation results proved that the
ANFIS-based PIPD data provided good performance since they passed all
different tests conditions and showed high efficiency. Moreover, the controller
showed a distinct performance increase compared to the ANFIS-based PI or PD
training data and the controllers previously mentioned in the literature review.
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