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Abstract. Kelud volcano, a stratovolcano with summit elevation of 1731 m 

above sea level, is considered to be one of the most dangerous volcanoes in Java, 

Indonesia. Kelud volcano erupts frequently, with the most recent eruption 

occurred on November 3, 2007. Therefore, volcano monitoring, especially 

detecting precursory signals prior to an eruption, is important for hazard 

mitigation for Kelud volcano. Interferometric Synthetic Aperture Radar (InSAR) 

has been proven to bea powerful tool for investigating earth-surface deformation. 

Hence, we applied D-InSAR (differential InSAR) in an effort to identify pre-

eruptive deformation of Kelud volcano before November 2007 eruption. SAR 

images, L band ALOS-PALSAR, were used to construct 3 coherent 

interferograms between January to May 2007. We used the D-InSAR technique 

to remove topographic effects from interferometry images. During the interval 

observation, we detected a continuous inflation with a maximum line-of-sight 

(LOS) displacement of 11cm. Uplift of Kelud volcano was also observed by the 

tiltmeter 1-2 months prior to the November 2007 eruption. We interpret this 

inflation as a manifestation of increased volume of magmatic material in the 

shallow reservoir and magmatic migration towards the surface, indicating an 

imminent eruption. This study confirms that InSAR technique is a valuable tool 

for monitoring volcano towards better hazard mitigations. 

Keywords: deformation; eruption; hazard; InSAR; Kelud; mitigation; volcano; 

tiltmeter. 

1 Introduction 

Indonesia has 129 active volcanoes as a consequence of interactions and 

convergence among several tectonic plates [1]. One of the most active and 

explosive volcanoes in Indonesia is Kelud Volcano (Figure 1 and Figure 2), 

located in the East Java, Indonesia (7.65S; 112.19E; 1731 m a.s.l.) and part of 

the Sunda volcanic arc system that arises from the subduction of the Australian 

plate. Kelud is an andesitic stratovolcano with a complex structure, which 

principally includes two avalanche calderas; one is open to the south and one to 

the west; the latter is occupied by the active dome.  Kelud volcano is considered 

to be one of the most dangerous volcanoes in Java because of its frequent 

eruptions [2]. 
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More than 30 eruptions have been recorded in historical times. The1000 AD 

eruption of Kelud is the oldest in the historical record of eruptions for the entire 

Indonesian archipelago. Since AD 1300, the periods of inactivity between 

eruptions range from 9 to 75 years [3,4]. One of the worst lahars in the 

historical record of volcanic eruptions, which took the lives of about 10,000 

people, was in 1586. During the past century, eruptions occurred in 1901, 1919, 

1951, 1966 and 1990. All these recent eruptions were very similar and were 

characterized by a very short duration (a few hours) and a small volume of 

eruptive products (0.1-0.2km
3
) which are emitted as ash and pumice fallout of 

Plinian columns and “St. Vincent”-type nuéesardentes. Eruption on 1990, 

February l0, began at 11:41 local time with a series of phreatic explosions. In 

this eruption most of the damage and the 32 casualties were due to the weight of 

the tephra that caused houses to collapse [5].  

 

Figure 1 Location of Kelud volcano, rectangular box is target image of SAR. 

Dashedcircle is area of Kelud volcano. 



 Uplift of Kelud Volcano before November 2007 Eruption 247 
 

The current state of the art in volcano hazard monitoring and mitigation is based 

on two techniques that provide information over very different time scales: (1) 

stratigraphic studies to elucidate a volcano's long-term eruptive history 

(typically 10
4
-10

6 
years) and (2) monitoring shallow-seated forms of unrest, 

such as seismicity, gravity, remote sensing and ground deformation, that are 

typically recognized a few days to months before an eruption [6].  

 

Figure 2 Kelud volcano after November, 2007 eruption (source: http://www. 

ulb.ac.be/sciences/cvl/Kelud/cud_Kelut.HTM) [7]. 

The ground deformation is interpreted as are sult of inflation and deflation of 

the volcanic edifice in response to magma movement towards the Earth's 

surface before an eruption. After a volcanic eruption the ground moves 

downward, since the magma reservoir has been emptied. Detecting pre-eruption 

deformation signals would allow scientists to focus their monitoring of 

inflation-deflation cycles of a magma reservoir and would permit public 

officials to better mitigate volcano hazards.  

Movements of deep magma reservoirs are difficult to detect beneath most 

volcanoes.  This may be because: (1) deep magma accumulation occurs below 

the brittle/ductile transition and consequently is virtually a seismic and (2) any 

associated surface deformation is relatively subtle. InSAR could be an 

alternative tool for monitoring volcano deformation. InSAR has recently been 

used to study deformation at several volcanoes around the world [6,8-11] and 

has the capability of mapping centimeter-level deformation over a large area 

(hundreds of km
2
). In other studies, scientists have been successfully using 



248 Ashar Muda Lubis 

InSAR for monitoring land subsidence due to intensive ground water extraction 

[12-14].  

In this paper, we report pre-eruption deformation and describe the use of InSAR 

to image progressive inflation of Kelud volcano, observed between January to 

May 2007, about 7 months prior to the November 2007 eruption. 

2 Basic Theory and Methodology 

2.1 Theory of InSAR 

InSAR data processing starts with generating an interferogram by differencing 

the phase values of two co-registered radar images acquired over the same 

scene. Several factors could possibly contribute to a measured phase difference 

     [15]: 

                  (1) 

where   is orbital fringes and    is the topographic contribution if the 

perpendicular baseline is not zero;    comes from the sensor-scatterer range 

change that corresponds to coherent ground movement between the two SAR 

acquisitions;    is due to the effects of atmospheric in homogeneity on both the 

temporal and spatial scales;    is Gaussian random noise due mainly to 

temporal decorrelation of radar echoes backscattered from surface disturbances 

(e.g. vegetation growth, variation of ground moisture, etc.). Decorrelation and 

atmospheric effects are two main limiting factors in InSAR [16,17]. Since it is 

difficult to accurately quantify and correct for the effects, both    and    are 

usually assumed to be zero in data processing. It is clear that any deviation of 

the data from this assumption will result in errors in InSAR measurement 

results. If the imaged ground presents no motion (  = 0),    can be used to 

map the topography of the ground. Otherwise, when    is not equal to 0 and 

needs to be determined,    needs to be removed in a differential interferogram. 

The phase difference at each pixel in an interferogram is ambiguous since the 

integer multiple of 2π is unknown. The phase difference in an absolute sense 

can be determined through so-called phase unwrapping [18]. The suitability of 

an interferometric image pair for topographic mapping and surface deformation 

detection depends on the orbital separation, or more specifically, on the baseline 

component perpendicular to the radar line-of-sight (LOS) direction. 

Topographic mapping requires moderate perpendicular baseline length to 

balance between the sensitivity of    to ground elevation variation and baseline 

decorrelation [8]. 
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The longer the perpendicular baseline is, the smaller the elevation variation 

would be that is necessary to generate a 2π phase cycle (fringe) on the 

corresponding interferogram. On the other hand, deformation detection 

demands baseline to be as short as possible [19]. To extract surface 

deformations, a digital elevation model (DEM) can be used to remove the 

topographic contributions from an interferogram [20]. However, a DEM error of 

δh can cause the following residual phase error in the differential interferogram: 

    
  

 

 

     
    (2) 

where λ is the wavelength; R is the slant range from satellite to ground; θ is the 

radar incidence angle and B is the length of the perpendicular baseline. Δh 

approaches 0 when B approaches 0. Therefore a short baseline can limit the 

propagation of DEM errors into a differential interferogram. The unwrapped 

differential interferogram with absolute phase values ( ) is converted to the 

slant-range-change (∆R) that reflects ground displacements: 

    
 

  
  . (3) 

2.2 Data and Method  

In this study, we use SAR data from two passes of ALOS-PALSAR (DAICHI) 

satellite, one of the largest satellites in the world, which was launched on 

January 24, 2006. The ALOS satellite has a mass of 4 tons and 7 kW electric 

powers generated by the 23 m solar array paddle. The PALSAR revolves in a 

circular orbit at 691.65km altitude; illuminating the Earth surface with L band 

radar with a microwave frequency of 1270MHz and inclination of 98.16 deg. 

ALOS (which carries PALSAR) is in a sun-synchronous orbit, in which it 

revolves around the earth every 100 minutes, or 14 times a day. ALOS returns 

to the original path every 46 days (repeat cycle), and the inter-orbit distance is 

approximately 59.7 km on the Equator. We use high-resolution observation data 

mode of Fine Beam Single (FBS) of 34.3° and horizontal-horizontal (HH) 

polarization. Figure 1 shows a location map of SAR data; the SAR image 

covers a larger area in rectangular box. 

To process raw SAR data and generate intensity images of microwave 

backscatter intensity from the surface, we apply SIGMA_SAR software [21-

22]. The deformation patterns are obtained by two-pass differential 

interferometry.  In order to remove the fringes related to the topographic effect 

we use a 3-arcsecond SRTM digital elevation model (http://srtm.usgs.gov). A 

simulated SAR image from DEM SRTM 90m and a topography phase image 

can be seen in Figure 3. We improve the signal to noise ratio of each differential 

m

http://srtm.usgs.gov/
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interferogram using a weighted power spectrum filter as discussed in Goldstein 

and Werner [23]. 

Table 1 SAR data for monitoring Kelud volcanodeformation. 

Pair 
Master 

(date) 

Slave 

(date) 
Path Row 

Off -nadir 

Angle 
Polarization 

Period 

(day) 

a 2007/01/03 2007/02/18 89 3780 34.3
o
 HH/HH 46 

b 2007/01/03 2007/04/05 89 3780 34.3
o
 HH/HH 92 

c 2007/01/03 2007/05/21 89 3780 34.3
o
 HH/HH 138 

 

 

Figure 3  (a) Simulated SAR image from DEM, (b) Topography phase image. 

3 Results and Discussion 

We obtained four synthetic aperture radar (SAR) images suitable for measuring 

surface deformation at Kelud volcano from L-band satellite (PALSAR, 

wavelength=23.5 cm). We used the two-pass InSAR approach [8,24] to produce 

three deformation interferograms with reasonably good coherence that 

collectively span most of the January to May 2007 time interval. Image 

acquisition times and associated imaging parameters are given in Table 1.  

We are able to detect ground surface deformation around Kelud volcano. Based 

on the D-InSAR LOS displacement maps (Figure 4), an average of 3 to 4 cm 
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uplift was observed during the period of observation January to February 2007. 

Between period of January to April 2007, average of ground uplift of 7 to 8 cm 

in the slant range direction is detected. From January to May 2007, more than 

11 cm uplift was captured. These results indicate deformation of Kelud volcano 

5 to 10 months prior initial eruption that showing as a manifestation of 

magmatic processes underneath the volcano. This deformation signal is 

observable by InSAR technique. Such kind of ground uplift prior to avolcanic 

eruption has also been detected in Okmok volcano, Alaska [25]. 

Temporal variation of ground deformation observed around Kelud volcano 

(Figure 5) between January to May 2007, demonstrates that displacements are 

conserve well within the time span of observation. The uplift rate detected by 

InSAR images from January to May 2007 was almost constant.  

As expected, the interferograms spanning the entire period January-February 

2007 (pair a), January to April 2007 (pair b) and January to May 2007 (pair c) 

exhibit 1/4 fringe, 1/2 fringe and 1 fringe respectively on western part of Kelud 

volcano, where the uplift was up to 11.78 cm. We interpret the observations 

using the following conceptual model. Inflation begins as magma rises into the 

shallow reservoir. It pushes up through the crust and fractures and displaces the 

country rock. Magma migration towards the surface and increasing volume of 

accumulated magma in the shallow reservoir act as source of pressure along the 

crack and reservoir wall. This force causes displacement in the surrounding 

rocks, causing uplift of the surface of the Earth, which is detectable by 

deformation instruments/satellites. After the eruption, when magmatic material 

reached the surface in the form of dome extrusion, explosion, or gas burst, the 

ground surface around the volcano deflates or moves downward in response to 

lower subsurface pressure. Therefore, changes in the ground surface 

deformation are a reflection of changes in pressure within the volcano due to 

variations in magma location and volume [26]. 

Figure 4 (d)-4(f) shows InSAR coherence maps around Kelud volcano during 

the period of observation between January to May 2007. In general the 

correlation of our SAR analysis is good especially in the northeast part, even 

though some variation of coherences also observed for pairs a, b, and c.  

Observed correlations for the periods of January-February and January-April 

2007 are better than during January-May 2007 (Figure 4(d)-4(f)). 
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Figure 4 Temporal deformation of Kelud Volcano; a, b and c are displacement 

images that correspond to pair a, b and c in Table 1 and their correlation images 

d, e and f.  Black dashed ellipse is the area of inflation. 

Unfortunately we cannot directly compare our investigation with other 

observations such as GPS and tiltmeter methods for the same time 

span. However, tiltmeter signals continuously recorded at the observatory at 

Kelud volcano shows inflation during 1-2 months prior to the November 2007 

eruption (Figure 6) [27]. Our InSAR results are consistent with deformation 

detected by the tilmeter.  Even both measurements have different time span 

investigation, for instant, we can conclude that there was a signal of inflation of 

Kelud volcano prior to November 2007.  Such kind behavior prevailing at 

volcano is very useful information for volcano hazard monitoring and 

mitigation in the future 

In addition, we also detect ground surface subsidence associated with the Lusi 

mud volcano in the subdistrict of Porong-Sidoarjo, (white circle in Figure 4(a), 
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4(b) and 4(c)). The deformation is not due to the DEM error since the 

deformation was also detected by GPS measurements [28]. In addition, 

Fukushima, et al. [29] have also investigated the deformation associated with 

Lusi mud volcano from satellite images. Almost continuous eruption of mixed 

mud, water and gas started in May 2006 and has caused significant damage to 

livelihoods, the environment and infrastructure. In this study we are only able to 

observe the subsidence during period of January to May 2007. 

To better understand precursory activity and to quantify the deformation signal 

prior to the eruption of Kelud in November 2007, future research should aim to 

incorporate a longer time span of SAR imagery. 

 

Figure 5 Temporal variation of Kelud volcano prior to November 2007 

eruption obtained from Differential InSAR 

 

Figure 6 Temporal variation of uplift in Kelud volcano, 1-2 months prior to 

November 2007 eruption, as recorded by tiltmeter [26].  
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This study demonstrates that InSAR is capable on observing pre-eruptive 

deformation 5-10 months prior to initial eruption of Kelud volcano. Numerical 

modelling for a longer observation period leading up to the initial eruption 

would be necessary to be able to quantify magmatic volume and migration 

process, thus provide a better assessment on volcano hazard risk. 

4 Conclusions 

The earliest possible warning of the unrest of a volcano is a highly desirable 

goal in monitoring active volcanoes. Many such volcanoes are found in 

developing countries where real-time monitoring is non-existent or incomplete. 

InSAR provides a new tool in the remote sensing of volcanic activity that may 

give warnings appreciably before or simultaneously with other well-known 

monitoring methods. We are able to capture the pre-eruptive deformation signal 

of Kelud volcano using InSAR. Within 5-10 months prior to the November 

2007 eruption of Kelud volcano, our analysis shows continuous uplift, with 

cumulative inflation of about 11 cm during January to May 2007, and the 

cumulative uplift increased prior to initial eruption. Based on De Bélizal et al. 

[30], this eruption ceased in May 2007 with extrusion of a lava dome with a 

volume of 3.5 x 10
7
 m

3
.  We infer that the observed uplift displacement in this 

study was associated with increased volume of magmatic material in the 

shallow reservoir and magma migration towards the surface. 

Acknowledgements 

We greatly appreciate Dr. Christina Widiwijayanti and Jamie McCaughey at 

Earth Observatory of Singapore (EOS), for thoughtful comments that improving 

the manuscript. We thank Hasanuddin Z. Abidin and Yo Fukushima for 

comments that substantially improved the quality of the manuscript. We also 

thank the PIXEL (PALSAR Interferometry Consortium to Study our Evolving 

Land surface) group for sharing PALSAR data level 1.0 among members. The 

ownership of data belongs to Japan Aerospace Exploration Agency (JAXA). 

SAR data were processed in Geophysics Laboratory, Department of Earth 

Sciences, Chiba University, Japan. 

References 

[1] Hasanuddin, Z.A., Andreas, M., Gamal, M., Hendrasto, M., Suganda, O., 

Purbawinata, M., Irwan, M. & Kimata, F., The Deformation of Bromo 

Volcano (Indonesia) as Detected by GPS Surveys Method, Journal of 

Global Positioning Systems, 3(1-2), pp.16-24, 2004. 

[2] Lesage, Ph. & Surono, Seismic Precursors of the February 10, 1990 

Eruption of Kelut Volcano, Java, Journal of Volcanology and Geothermal 

Research, 65, pp.135-146, 1995. 

http://www.sciencedirect.com/science/journal/03770273
http://www.sciencedirect.com/science/journal/03770273


 Uplift of Kelud Volcano before November 2007 Eruption 255 
 

[3] Kusumadinata, K., Catalogue of References on Indonesian Volcanoes 

with Eruptions in Historical Times (text in Indonesian), Volcanological 

Survey of Indonesia, p. 820, 1975. 

[4] Thouret, J.C., Abdurachman, K.E. & Bourdier, J.L., Origin, Character-

istics, and Behaviour of Lahars Following the 1990 Eruption of Kelud 

Volcano, Eastern Java (Indonesia), Bull. Volcanol., 59, pp. 460-480, 

1998. 

[5] Sudradjat, A., A Preliminary Account of the I990 Eruption of the Kelut 

Volcano, Geol. Jahrb. ReiheA, 127, pp. 447-462, 1991. 

[6] Lu, Z., Wicks, C., Dzurisin, D., Thatcher, W., Freymueller, J.T., McNutt, 

S.R. & Mann, D., A Seismic Inflation of Westdahl Volcano, Alaska, 

Revealed by Satellite Radar Interferometry, Geophys. Res. Lett., 27, pp. 

1567-1570, 2000.  

[7] Kelud Volcano after November, 2007 Eruption, http://www.ulb.ac.be/ 

sciences/cvl/Kelud/cud_Kelut.HTM (20 July 2013). 

[8] Massonnet, D. & Feigl, K., Radar Interferometry and Its Application to 

Changes in the Earth’s surface, Reviews of Geophysics, 36, pp. 441-500, 

1998. 

[9] Thatcher, W. & Massonnet, D., Custal Deformation at Long Valley 

Caldera, Eastern California, 1992-1996, Inferred from Satellite Radar 

Intertferometry, Geophys. Res. Lett, 24, pp. 2519-2522, 1997. 

[10] Wicks, C., Thatcher, W. & Dzurisin, D., Migration of Fluids Beneath 

Yellowstone Caldera Inferred from Satellite Radar Interferometry, 

Science, 282, pp. 458-462, 1998. 

[11] Moran S.C., Kwoun, O., Masterlark, T., & Lu, Z., On the Absence of 

InSAR-detected Volcano Deformation Spanning the 1995–1996 and 1999 

Eruptions of Shishaldin Volcano, Alaska  Journal of Volcanology and 

Geothermal Research, 150(1-3), pp. 119-131, 2006. 

[12] Galloway, D. L., Hudnut, K.W., Ingebritsen, S.E., Phillips, S.P., Peltzer, 

G., Rogez, F. & Rosen, P.A., Detection of Aquifer System Compaction 

and Land Subsidence Using Interferometric Synthetic Aperture Radar, 

Antelope Valley, Mojave Desert, California, Water Resources Research, 

34(10), pp. 2573-2585, 1998. 

[13] Lubis, A.M., Image of Land Subsidence in Jakarta (text in Indonesian), 

Kompas, Daily news paper, Monday, 28 September 2009, http://cetak. 

kompas.com/read/xml/2009/09/28/03412272/citra.satelit.penurunan.tanah 

.jakarta (10 January 2010). 

[14] Lubis, A.M, Sato, T., Tomiyama, N., Isezaki, N. & Yamanokuchi, T., 

Ground Subsidence in Semarang-Indonesia Investigated by ALOS–

PALSAR Satellite SAR Interferometry, Journal of Asian Earth Sciences, 

40(5), pp. 1079-1088, 2011. (doi:10.1016/j.jseaes.2010.12.00) 

[15] Stevens, N.F., Wadge, G. & Williams, C.A., Post-emplacement Lava 

Subsidence and the Accuracy of ERS InSAR Digital Elevation Models of 

http://www.sciencedirect.com/science/journal/03770273
http://www.sciencedirect.com/science/journal/03770273
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235962%232006%23998499998%23615891%23FLA%23&_cdi=5962&_pubType=J&_auth=y&_acct=C000010839&_version=1&_urlVersion=0&_userid=136872&md5=550882608502eee81f315778f7f9713a
http://www.sciencedirect.com/science/journal/13679120


256 Ashar Muda Lubis 

Volcanoes, International Journal of Remote Sensing, 22(5), pp. 819-828, 

2001. 

[16] Zebker, H.A., Rosen, P.A. & Hensley, S., Atmospheric Effects in 

Interferometric Synthetic Aperture Radar Surface Deformation and 

Topographic Maps, Journal of Geophysical Research, 102, pp. 7547-

7563, 1997. 

[17] Chen, Y.Q., Zhang, G.B., Ding, X.L. & Li, Z.L., Monitoring Earth 

Surface Deformations with InSAR Technology: Principle and Some 

Critical Issues, Journal of Geospatial Engineering, 2(1), pp. 3-21, 2000. 

[18] Goldstein, R.M., Zebker, H.A. & Werner, C.L., Satellite Radar 

Interferometry: Two -Dimensional Phase Unwrapping, Radio Science, 

23, pp. 713-720, 1988. 

[19] Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A. & Werner, C. L., 

On the Derivation of Coseismic Displacement Fields Using Differential 

Radar Interferometry: the Landers Earthquake. Journal of Geophysical 

Research, 99, pp. 19617-19634, 1994. 

[20] Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, 

K. & Rabaute, T., The Displacement Field of the Landers Earthquake 

Mapped by Radar Interferometry, Nature, 364, pp. 138-142, 1993. 

[21] Shimada, M., Synthetic Aperture Radar Processing, Journal of the 

Geodetic Society of Japan, 45(4), pp. 277-28, 1999. 

[22] Shimada, M., Correction of the Satellite's State Vector and the 

Atmospheric Excess Path Delay in the SAR Interferometry-An 

Application to Surface Deformation Detection, Journal of the Geodetic 

Society of Japan, 45(4), pp. 327-346, 1999. 

[23] Goldstein R.M. & Werner C.L., Radar Interferogram Filtering for 

Geophysical Applications, Geophysical Research Letters, 25(21), pp. 

4035-4038, 1998 

[24] Rosen, P., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, 

E. & Goldstein, R.M., Synthetic Aperture Radar Interferometry, 

Proceedings of the IEEE, 88, pp. 333-380, 2000. 

[25] Lu, Z., Mann, D., Freymueller, J.T. & Meyer, D.J., Synthetic Aperture 

Radar Interferometry of Okmok Volcano, Alaska: Radar observations. 

Journal of Geophysical Research, 105 (B5), pp. 10791-10806, 2000.  

[26] Sansosti, E., Lanari, R. & Lundgren, P., Dynamic Deformation of Etna 

Volcano Observed by Satellite Radar Interferometry, IEEE, IGARSS '98, 

3, pp. 1370-1372, 1998. 

[27] Data Base of Indonesian Volcano, Western Region, Kementrian Energi 

and SumberDaya Mineral, 2
nd 

Ed., p. 389, Jakarta, 2011. 

[28] Abidin, H.Z., Davies, R.J., Kusuma, M.A., Andreas, H. & Deguchi, T., 

Subsidence and Uplift of Sidoarjo (East Java) due to The Eruption of the 

LusiMud Volcano (2006-present), Environ. Geol., 57(4), pp. 833–844, 

2009. (doi:10.1007/s00254-008-1363-4) 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5660


 Uplift of Kelud Volcano before November 2007 Eruption 257 
 

[29] Fukushima, Y., Mori, J., Hashimoto, M. & Kano, Y., Subsidence 

Associated with the LUSI Mud Eruption, East Java, Investigated by SAR 

Interferometry, Mar. Pet. Geol., 26(9), pp. 1740-1750, 2009. 

[30] De Bélizal, É., Lavigne, F., Gaillard, J., Grancher, D., Pratomo, I. & 

Komorowski, J., The 2007 Eruption of Kelut Volcano (East Java, 

Indonesia): Phenomenology, Crisis Management and Social Response, 

Geomorphology, 136(1), pp. 165-175, 2012. 

 

 

 


