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Abstract. In this paper we propose a new approach to path planning for mobile 
robots with cellular automata and cellular learning automata. We divide the 
planning into two stages. In the first stage, global path planning is performed by 
cellular automata from an initial position to a goal position. In this stage, the 
minimum distance is computed. To compute the path, we use a particular two-
dimensional cellular automata rule. The process of computation is performed 
using simple arithmetic operations, hence it can be done efficiently. In the 
second stage, local planning is used to update the global path. This stage is 
required to adapt to changes in a dynamic environment. This planning is 
implemented using cellular learning automata to optimize performance by 
collecting information from the environment. This approach yields a path that 
stays near to the obstacles and therefore the total time and distance to the goal 
can be optimized.  

Keywords: cellular automata; cellular learning automata; global path; learning 
automaton; local planning. 

1 Introduction 
Path planning for mobile robots has been studied by researchers and 
practitioners to find optimal path planning solutions. Designing an optimal path 
is a difficult task [1,2]. There are many aspects that must be considered, such as 
the model of the environment, existing constraints, kinematics and the dynamic 
properties of the robot itself. These aspects should be identified carefully to 
yield efficient planning.  

However, recent improvements in path planning have been developed to 
consider many factors such as the factors mentioned above and other factors 
such uncertainties, errors in modeling and optimality. Among these approaches, 
there is one common objective, i.e. finding the best and optimal trajectory. 
Some algorithms use a discrete and probabilistic approach [3] that is integrated 
with the basic theory of searching and dynamic programming with some minor 
changes [4,5]. 
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Some researchers have developed path planning for mobile robots with cellular 
automata [6-9]. Cellular automata are a group of cells with a certain structure in 
which each cell has its own state, on or off. The state of the cell is able to 
change every time step according to a local rule with a simple arithmetic 
computation [10-13]. By exploiting the characteristics of the rule, the process of 
updating the states can be done efficiently with simple calculations. 

An important part of planning design is optimization. In a static environment, 
the path is optimal if the distance is minimum. In a dynamic environment, the 
best path is not always the minimum path. Instead, we seek the path that guides 
the robot to the goal in the minimum amount of time without colliding with 
obstacles. In two previous works [8,9], we applied cellular automata to compute 
the shortest path between two points in a static environment. For the case of a 
dynamic environment, addressed in this paper, we expanded the cellular 
automata to cellular learning automata in order to optimize the path by 
exploring information from the environment. Cellular learning automata has 
been used before in other areas of problem optimization [14,16]. 

The main contribution of this study is to provide path planning alternatives for 
mobile robots using cellular learning automata. Existing path planning methods 
for mobile robots implemented in ROS (Robot Operating System) [17] were 
designed using Dijkstra’s algorithm and the A* algorithm, where the path 
planning is computed step by step between two nodes of an irregular mesh. Our 
approach extends the existing method by exploiting the regularity of cellular 
automata in which the distance between two adjacent cells is equal. 
Furthermore, we use cellular learning automata to optimize the path generated 
in the first stage. 

This paper is structured as follows: in Section 2, we review the theory of 
cellular automata, in Section 3 the path planning problem and its optimization 
are formulated, in Section 4 we discuss the complexity of the algorithm, in 
Section 5 we show our experimental results, and in the last section we conclude 
our work. 

2 Cellular Automata 

2.1 Two Dimensional Cellular Automata 
Two-dimensional cellular automata are a group of cells in which one has a 
maximum of eight neighbors. There are two common structures, the von 
Neumann and Moore neighborhoods. These two models are distinguished by 
the number of neighbors. The von Neumann model has four neighbors while the 
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Moore model has eight neighbors. The Von Neumann and Moore models are 
shown diagrammatically in Figure 1. 

Each cell in elementary cellular automata has two states, ‘0’ or ‘1’. The state 
can change every time step when a local rule is applied. The next state of a cell 
at time t + 1 is affected by the state of its neighbors and its own state at time t. 

 
Figure 1 Von Neumann model (left) and Moore model (right). 

The state of the cellular automata is computed based on local rules. The local 
rule for two-dimensional cellular automata with von Neumann’s neighborhood 
structure is defined as follows: 

 𝑠𝑖,𝑗
(𝑡+1) = 𝑓 �𝑠𝑖,𝑗

(𝑡), 𝑠𝑖,𝑗+1
(𝑡) , 𝑠𝑖+1,𝑗

(𝑡) , 𝑠𝑖,𝑗−1
(𝑡) , 𝑠𝑖−1,𝑗

(𝑡) � (1) 

The above rule can be expressed in another form, called totalistic, i.e. the sum 
of all neighbors, and is written as: 

 𝑠𝑖,𝑗
(𝑡+1) = 𝑓 �𝑠𝑖,𝑗

(𝑡) + 𝑠𝑖,𝑗+1
(𝑡) + 𝑠𝑖+1,𝑗

(𝑡) + 𝑠𝑖,𝑗−1
(𝑡) + 𝑠𝑖−1,𝑗

(𝑡) � (2) 

It can also be written in a simple form:  

 𝐶 = ∑ 𝑓(𝑛)𝑘𝑛𝑛  (3) 

Each position of the cells is numbered, as shown in Figure 2. This numbering is 
used to compute the local rule. The rule for a cell with Moore’s neighborhood 
structure is defined as the sum of the number of its neighbors. 

 
Figure 2 Totalistic 2D cellular automata. 
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From Figure 2, for example, rule C = 170 (128 + 32 + 8 + 2) has only top, 
bottom, left, and right neighbors. Hence, in Moore’s model, there are 512 rules. 
The rule for each cell can be similar (uniform) or different (hybrid). 

2.2 Cellular Learning Automata 
Cellular learning automata are cellular automata in which each cell has learning 
capability [14,16]. Such a cell is called a learning automaton. A learning 
automaton requires information from its environment to select the right action 
in order to get the best response. Each action has a certain probability, which 
will be updated regularly according to the response of the environment. The 
response type can be reward or penalty. A learning automaton interacts with its 
environment to collect the information, as shown in Figure 3. 

 
Figure 3 Interaction between a learning automaton and its environment. 

2.3 Model of Environment 
An environment is defined as a set of three tuples 𝐸 = {𝛼,𝛽,𝑝}, where  

𝛼 = {𝛼1,𝛼2, … ,𝛼𝑛}  : a set of actions 

𝛽 = {𝛽1,𝛽2, … ,𝛽𝑛}  : a set of responses 

𝑝 = {𝑝1,𝑝2, … ,𝑝𝑛}  : a set of probability of actions  

The environment of type P has two kind of responses, 𝛽1 = 1: penalty and 
𝛽2 = 0: reward. The components of the automata consist of four tuples 
{α,β,p,T} where 𝛼 = {𝛼1,𝛼2, … ,𝛼𝑛} is a set of actions, 𝛽 = {𝛽1,𝛽2, … ,𝛽𝑛} 
represents the input, 𝑝 = {𝑝1,𝑝2, … ,𝑝𝑛} is the probability of actions, and 
p(n + 1) = T(α(n),β(n),p(n)) represents the local rule. 
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2.4 Updating Probability Action 
The probability of actions is variable. If a learning automaton gets a reward, p 
increases and p of the other cells decreases. The probability of an action is 
updated according to the following rule: 

If 𝛽 = 0 

 𝑃𝑖(𝑛 + 1) =  𝑃𝑖(𝑛) + 𝑎[1 −  𝑃𝑖(𝑛)] 

 𝑃𝑗(𝑛 + 1) =  (1 − 𝑎)𝑃𝑗(𝑛) ∀𝑗, 𝑗 ≠ 𝑖 (4) 

If 𝛽 = 1 

 𝑃𝑖(𝑛 + 1) =  (1 − 𝑏)𝑃𝑖(𝑛) 

 𝑃𝑗(𝑛 + 1) =  𝑏
𝑟−1

+  (1 − 𝑏)𝑃𝑗(𝑛) ∀𝑗, 𝑗 ≠ 𝑖 (5) 

where a and b are parameters of reward and penalty respectively. 

3 Problem Formulation 
In this paper, we use two-dimensional cellular automata with Moore’s 
neighborhood structure, i.e. there are eight neighbors for each cell. Each cell 
interacts with its nearest neighbors, as shown in Figure 4. The distance between 
two cells is computed based on the Manhattan rule. 

 
Figure 4 Model of two-level interaction. 

3.1 Computing Global Path 
Let 𝑁𝑖𝑡 be the neighborhood of cell i at time step t, and 𝑠𝑖𝑡 the state of cell i. This 
state represents the distance to the goal. The rule to compute the distance to the 
goal is defined by: 
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 𝑠𝑖𝑡+1 = �
min{𝑠𝑥𝑡} + 1 if 𝑠𝑖𝑡: a free cell, 𝑠𝑥𝑡 : are filled cell, 𝑠𝑥𝑡  ∈  𝑁𝑖𝑡

𝑠𝑖𝑡                       if 𝑠𝑖𝑡: is not a free cell                                      
   (6) 

The above rule maintains the minimum distance to the goal because it always 
selects the cell in the neighborhood with the minimum state. Therefore, the 
distance from any point to the goal will be minimum. 

3.2 Optimizing Local Planning 
The distance between the initial position and the goal position needs to be 
recomputed when new obstacles arise. In this case, the global path is modified 
to adapt to the change. In this process, we consider three variables that will 
influence the overall performance and particularly the total distance to the goal. 

1. The obstacle variable indicates the proximity to the obstacles. It is denoted 
by 𝑐𝑜𝑜𝑜(𝑖, 𝑗), 𝑖, 𝑗 = 1,2, … ,𝑁. 

2. The goal variable indicates the distance to a goal position that is obtained 
from the global path. It is denoted by 𝑐𝑔𝑔𝑔𝑔(𝑖, 𝑗), 𝑖, 𝑗 = 1,2, … ,𝑁. 

3. The path variable indicates the distance to the nearest global path. It is 
denoted by 𝑐𝑝𝑝𝑝ℎ(𝑖, 𝑗), 𝑖, 𝑗 = 1,2, … ,𝑁. 

3.3 Cost Function 
In this model, we have to minimize the objective function of the three distance 
variables. A small value of the first variable shows that the robot’s position is 
farther from the obstacle, whereas the second and the third variable show the 
remaining distance to the goal and the global path. The cost function is defined 
as follows: 

Min 𝐹(𝐶) = �    

𝑁𝑔𝑔𝑔𝑔

𝑖=𝑖0

�  𝑤𝑜𝑜𝑜 𝑐𝑜𝑜𝑜(𝑖, 𝑗) +                              

𝑁𝑔𝑔𝑔𝑔

𝑗=𝑗0

 

�    

𝑁𝑔𝑔𝑔𝑔

𝑖=𝑖0

�  𝑤𝑔𝑔𝑔𝑔  𝑐𝑔𝑔𝑔𝑔(𝑖, 𝑗) +  

𝑁𝑔𝑔𝑔𝑔

𝑗=𝑗0

 

�    

𝑁𝑔𝑔𝑔𝑔

𝑖=𝑖0

�  𝑤𝑝𝑝𝑝ℎ 𝑐𝑝𝑝𝑝ℎ(𝑖, 𝑗)      

𝑁𝑔𝑔𝑔𝑔

𝑗=𝑗0

 

 

 
 
 
 
 
(7) 

where: 
𝑁𝑔𝑔𝑔𝑔 : the number of steps required to reach the goal. 
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𝑤𝑜𝑜𝑜 : the weighting factor of the obstacle variable. 

𝑤𝑔𝑔𝑔𝑔 : the weighting factor of the goal variable 

𝑤𝑝𝑝𝑝ℎ : the weighting factor of the path variable 

𝑐𝑜𝑜𝑜, 𝑐𝑔𝑔𝑔𝑔 , 𝑐𝑝𝑝𝑝ℎ ∈ 𝐶, 𝑖, 𝑗 = 1,2, … ,𝑁. 

As given in Eq. (7), the cost function that is represented as the weighted sum of 
the three selected variables must be minimum in order to obtain the optimal 
path.  

3.4 Updating Individual Cells 
Each cell is updated according to the following rule and the next cell will be 
selected from its neighbors with the minimum value. 

 ∆𝐹�𝑐(𝑖, 𝑗)� = ∑ 𝑓𝑜𝑜𝑜�𝑐(𝑘, 𝑙),𝑝𝑖𝑖(𝑘, 𝑙),𝑤𝑜𝑜𝑜� +𝑚  

�𝑓𝑔𝑔𝑔𝑔�𝑐(𝑘, 𝑙),𝑝𝑖𝑖(𝑘, 𝑙),𝑤𝑔𝑔𝑔𝑔� +
𝑚

�𝑓𝑝𝑝𝑝ℎ�𝑐(𝑘, 𝑙),𝑝𝑖𝑖(𝑘, 𝑙),𝑤𝑝𝑝𝑝ℎ�
𝑚

 

 

(8) 

where: 
𝑐(𝑖, 𝑗)   : cost at cell (i,j). 

𝑝𝑖𝑖(𝑘, 𝑙)  : probability to select cell (k,l) from cell (i,j). 

If there is no penalty in the learning scheme, then the probability is updated as 
follows: 

𝑝𝑖𝑖(𝑡 + 1)          = �
𝑝𝑖𝑖(𝑡) + 𝑎(1 − 𝑝𝑖𝑖(𝑡))          if 𝑐𝑖𝑖(𝑡) < 𝑐𝑘𝑘(𝑡)  

𝑝𝑖𝑖(𝑡) otherwise               
        (9) 

 

𝑝𝑖𝑖(𝑘, 𝑙)(𝑡 + 1) = �
𝑝𝑖𝑖(𝑘, 𝑙)(𝑡) − 𝑎 𝑝𝑖𝑖(𝑘, 𝑙)(𝑡)),    if 𝑐𝑖𝑖(𝑡) < 𝑐𝑘𝑘(𝑡)  

𝑝𝑖𝑖(𝑘, 𝑙)(𝑡) otherwise               
 (10) 

 
The reinforcement signal, defined as 𝑟(𝑡) = {𝑟𝑖 : 𝑖 = 1,2, … ,𝑚}, is positive 
(+1) if 𝑐𝑖𝑖(𝑡) < 𝑐𝑘𝑘(𝑡) and is negative (-1) if𝑐𝑖𝑖(𝑡) ≥  𝑐𝑘𝑘(𝑡). 
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3.5 Initial Probability Action 
Initially, p is assigned a certain value. We can use one of the following rules. In 
this case we use Rule 3, in which the cell with the minimum cost will be the 
best candidate cell. 

1. The value of p is set to 1/m for all cells. 
2. The value of p is set to 0 or 1 as follows: 

 𝑝𝑖𝑖(𝑘, 𝑙) = �1,            𝑝𝑖𝑖(𝑘, 𝑙) = max𝑐(𝑘,𝑙) ∈𝑁(𝑐(𝑖,𝑗)){𝑝𝑖𝑖(𝑘, 𝑙)}
0             otherwise                                                  

 (11)             

3. The value of p is computed from the cost function. If the value of c is small, 
the value of p is large according to the following relation, 

 𝑝𝑖𝑖(𝑘, 𝑙) =  (1/𝑐(𝑘,𝑙))
∑ 1/𝑁(𝑐(𝑖,𝑗))𝑚

,             𝑐(𝑘, 𝑙) ≠ 𝑐(𝑖, 𝑗),   

 𝑐(𝑘, 𝑙)  ∈ 𝑁(𝑐(𝑖, 𝑗)) (12) 

      where: 𝑁�𝑐(𝑖, 𝑗)�  ∶ neighbors of 𝑐(𝑖, 𝑗) 

4 Complexity 
The path is determined using a backward search algorithm. As long as the initial 
position and the goal position are not in an area surrounded by obstacles, the 
goal position is reachable from the initial position. Hence, the algorithm is 
complete. The cost required to execute the algorithm depends on the size of the 
cells. If the size of the environment is (𝑥𝑚𝑚𝑚 ×  𝑦𝑚𝑚𝑚), then the number of steps 
required is: 

 (𝑥𝑚𝑚𝑚 ×  𝑦𝑚𝑚𝑚)(𝑎 + 𝑚) (13) 

where: 
a  : the number of access, read and write operations. 
m  : the number of neighbors. 

The number of steps from initial to goal position is used to measure the 
distance. We assume the distance is computed based on the Manhattan rule. The 
number of steps is (𝑥𝑚𝑚𝑚 ×  𝑦𝑚𝑚𝑚)(𝑎 + 𝑚) × 𝑑, where d is the distance from 
the initial position to the goal position. The worst case occurs if d approaches 
(𝑥𝑚𝑚𝑚 ×  𝑦𝑚𝑚𝑚)/2, and the number of steps is: 

 (𝑥𝑚𝑚𝑚 ×  𝑦𝑚𝑚𝑚)(𝑎 + 𝑚)(𝑥𝑚𝑚𝑚 ×  𝑦𝑚𝑚𝑚) (14) 

Hence, the order of the algorithm is 𝑂(𝑥𝑚𝑚𝑚
2 ×  𝑦𝑚𝑚𝑚

2 ), which is the same order 
as Dijkstra’s algorithm without min-priority queue, that is O(|V |2 ), where |V | is 
the number of vertices. If a global path is given, the number of steps required is 
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(a + m) × d × l in the worst case and (a + m) × d in the best case, and l is the 
level of interaction. 

5 Experiments 
In this experiment we define the environment as the model of a building with 
many rooms and the number of robots is 1, as shown in Figure 5. Before the 
robot makes explorations, it creates a map of the environment as shown in 
Figure 6-8. The map is used to determine the global path. The global paths 
generated by two different planning are shown in Figure 6-8. The first global 
path is generated using cellular automata in which the distance is computed 
using the Manhattan rule, while the second path is generated based on Dijkstra’s 
algorithm. 

 
Figure 5 The model of environment. 

In this experiment, we use a model of a mobile robot, Pioneer3AT, and the 
Gazebo simulator [18] to model the environment. The robot is controlled by 
programs executed in an ROS environment. The programs execute global and 
local path planning, implemented using cellular automata. The program works 
as follows. Initially, the global path is generated and the robot starts to move 
along it. Then, the local path planning is activated to update the global path if 
required, for example if the global path is blocked by new obstacles such that it 
is not available anymore. The program will stop when the robot reaches the goal 
position. 

The results of the experiment with global path planning are shown in Figures 6-
8. The first path, generated using cellular automata, was closer to the obstacles 
than the second one, which was generated using Dijkstra’s algorithm. However, 
it generated more segments than Dijkstra’s algorithm. 
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Figure 6 Global path to Goal I generated using cellular automata (left) and 
Dijkstra’s algorithm (right). 

  
Figure 7 Global path to Goal II generated using cellular automata (left) and 
Dijkstra’s algorithm (right). 

  
Figure 8 Global path to Goal III generated using cellular automata (left) and 
Dijkstra’s algorithm (right). 

The performance of local path planning is determined by the cost function as 
defined in Eq. 7. Here, we set the weighting factor for all distance variables as 
follows: 𝑤𝑜𝑜𝑜 = 0.06, 𝑤𝑔𝑔𝑔𝑔 = 0.08, 𝑤𝑝𝑝𝑝ℎ = 0.01. The central cell of the 
cellular automata interacts with its neighbors at Level 1 and Level 2 as shown in 
Figure 4. The map resolution is 0.05 measured in meters and the granularity of 
the cells is 0.05. Details of the simulation results are shown in Table 1. 

In the other experiment we computed the global path of 3 robots using three 
existing algorithms, Dijkstra’s algorithm, the A* algorithm and the Cellular 
Learning Algorithm (CLA). A standard algorithm was used for the purpose of 
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comparison. The global paths generated using the three algorithms are shown in 
Figures 9 and 10. 

Table 1 Simulation results for three different goals. 

 goal-1 goal-2 goal-3 
dijks cla dijks cla dijks Cla 

Initial (-8,-5) (-8,-5) (-8,-5) (-8,-5) (-8,-5) (-8,-5) 
Goal (8,-14) (8,-14) (0,5) (0,5) (-8,4) (-8,4) 
Direct-Dist 744 745 515 515 356 356 
Path-Len 788 840 689 632 621 582 
Times in sec. 64.4 77.2 52.6 58.8 48.2 59.8 
 

  
Figure 9 Global path of three robots generated using Dijkstra’s algorithm (left) 
and the A* algorithm (right). 

 
Figure 10 Global path of three robots generated using CLA. 

The global path generated using CLA was similar to that generated using 
Dijkstra’s algorithm; the difference is not significant. The difference of the path 
occurs when the robots are moving, in this case when the local path planning is 
active. Details of the results are shown in Table 2. 

Table 2 Performance of three robots. 

Parameter 
Dijkstra A* CLA 

Rob1 Rob2 Rob3 Rob1 Rob2 Rob3 Rob1 Rob2 Rob3 
1. Start pos. -8,-5 -8,-4 5,4 -8,-5 -8,-4 5-4 -8,-5 -8,-4 5,4 
2. Goal pos. -2,-13 -2,-14 -2,-15 -2,-13 -2,-14 -2,-15 2,-13 -2,-14 -2,-15 
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Parameter 
Dijkstra A* CLA 

Rob1 Rob2 Rob3 Rob1 Rob2 Rob3 Rob1 Rob2 Rob3 
3. Path to R1 - 655 755 - 704 796 - 564 594 
4. Path to R2 662 - 669 649 - 670 570 - 626 
5. Path to R3 727 610 - 814 684 - 594 524 - 
6. Path R1-G 480 503 520 486 549 589 550 550 550 
7. Path R2-G 931 951 1004 861 882 941 922 904 922 
8. Path R3-G 881 918 953 902 9 982 850 850 850 
9. Path to G 480 951 953 486 882 982 550 904 850 
10. Dist to G 408 738 813 408 738 813 408 738 813 
11. Maze  
      level 

1.176 1.288 1.172 1.191 1.195 1.208 1.348 1.225 1.046 

12. Time to  
      G 

63.6 128.8 164.0 63.4 132.4 135.4 62.4 116.0 156.6 

Note: the map resolution is 0.025; 1 unit coordinates = 40 steps (path length)  
 

Three parameters were used as a measure of performance: path length, total 
time to the destination, and complexity of the path. The complexity of the path 
is defined as the ratio between the actual path length and the direct distance to 
the destination assuming there are no obstacles on the way to the destination. 
Path length is a suitable parameter if the environment is static, otherwise total 
time is a better choice to measure performance. The path length is also 
influenced by the algorithm used. Using the three different algorithms in these 
experiments, the resulting trajectories had different lengths. Dijkstra’s algorithm 
had the shortest trajectory, then the A* algorithm, and the longest was CLA’s. 
In fact, Dijkstra’s algorithm does not turn frequently and does not emphasize 
the shortest distance to the nearest obstacle. On the other hand, CLA generates a 
path that is straight, because the curves follow the shape of the obstacles and it 
emphasizes the closest distance to the obstacles. 

Total time is a measure of the actual time it took the robot to reach the goal 
position. In the case of a dynamic environment, total time is a suitable choice to 
measure performance. From the experimental results, the best performance 
based on total time measurement was CLA, then the A* algorithm, and the 
worst was Dijkstra’s algorithm.  

The last parameter is the complexity of the path (maze level). The greater the 
number, the more twists and turns in the trajectory were generated. From the 
experimental results, Dijkstra’s algorithm had the lowest maze level, then the 
A* algorithm, and the highest one was CLA’s. 

6 Conclusion 
Path planning for mobile robots can be implemented efficiently with cellular 
automata. Its computational process is suitable for being implemented on low-
cost hardware such as an on-board computer or microcontroller that is 
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integrated with the robot. By using cellular automata, the process of updating 
the states to select the optimal path can be done in parallel due to the 
asynchronous properties of the cells.  

In the second stage of planning, CLA is used to handle the dynamic properties 
of the environment. In comparison with existing algorithms, such as Dijkstra’s 
algorithm and the A* algorithm, the algorithm with learning automata (CLA) is 
able to produce a path that stays closer to the obstacles and has a shorter 
travelling time than other two. However, it also causes the robot to turn 
frequently and produce straight segments along the whole path. 
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