J. ICT Res. Appl., Vol. 10, No. 1, 2016, 1-14 1

Dynamic Path Planning for Mobile Robots with Cellular
Learning Automata

Judhi Santoso*, Bambang Riyanto & Widyawardhana Adiprawita

Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung
Jalan Ganesha 10, Bandung 40132, Indonesia
*E-mail: judhi@stei.itbh.ac.id

Abstract. In this paper we propose a new approach to path planning for mobile
robots with cellular automata and cellular learning automata. We divide the
planning into two stages. In the first stage, global path planning is performed by
cellular automata from an initial position to a goal position. In this stage, the
minimum distance is computed. To compute the path, we use a particular two-
dimensional cellular automata rule. The process of computation is performed
using simple arithmetic operations, hence it can be done efficiently. In the
second stage, local planning is used to update the global path. This stage is
required to adapt to changes in a dynamic environment. This planning is
implemented using cellular learning automata to optimize performance by
collecting information from the environment. This approach yields a path that
stays near to the obstacles and therefore the total time and distance to the goal
can be optimized.

Keywords: cellular automata; cellular learning automata; global path; learning
automaton; local planning.

1 Introduction

Path planning for mobile robots has been studied by researchers and
practitioners to find optimal path planning solutions. Designing an optimal path
is a difficult task [1,2]. There are many aspects that must be considered, such as
the model of the environment, existing constraints, kinematics and the dynamic
properties of the robot itself. These aspects should be identified carefully to
yield efficient planning.

However, recent improvements in path planning have been developed to
consider many factors such as the factors mentioned above and other factors
such uncertainties, errors in modeling and optimality. Among these approaches,
there is one common objective, i.e. finding the best and optimal trajectory.
Some algorithms use a discrete and probabilistic approach [3] that is integrated
with the basic theory of searching and dynamic programming with some minor
changes [4,5].
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Some researchers have developed path planning for mobile robots with cellular
automata [6-9]. Cellular automata are a group of cells with a certain structure in
which each cell has its own state, on or off. The state of the cell is able to
change every time step according to a local rule with a simple arithmetic
computation [10-13]. By exploiting the characteristics of the rule, the process of
updating the states can be done efficiently with simple calculations.

An important part of planning design is optimization. In a static environment,
the path is optimal if the distance is minimum. In a dynamic environment, the
best path is not always the minimum path. Instead, we seek the path that guides
the robot to the goal in the minimum amount of time without colliding with
obstacles. In two previous works [8,9], we applied cellular automata to compute
the shortest path between two points in a static environment. For the case of a
dynamic environment, addressed in this paper, we expanded the cellular
automata to cellular learning automata in order to optimize the path by
exploring information from the environment. Cellular learning automata has
been used before in other areas of problem optimization [14,16].

The main contribution of this study is to provide path planning alternatives for
mobile robots using cellular learning automata. Existing path planning methods
for mobile robots implemented in ROS (Robot Operating System) [17] were
designed using Dijkstra’s algorithm and the A* algorithm, where the path
planning is computed step by step between two nodes of an irregular mesh. Our
approach extends the existing method by exploiting the regularity of cellular
automata in which the distance between two adjacent cells is equal.
Furthermore, we use cellular learning automata to optimize the path generated
in the first stage.

This paper is structured as follows: in Section 2, we review the theory of
cellular automata, in Section 3 the path planning problem and its optimization
are formulated, in Section 4 we discuss the complexity of the algorithm, in
Section 5 we show our experimental results, and in the last section we conclude
our work.

2 Cellular Automata

2.1 Two Dimensional Cellular Automata

Two-dimensional cellular automata are a group of cells in which one has a
maximum of eight neighbors. There are two common structures, the von
Neumann and Moore neighborhoods. These two models are distinguished by
the number of neighbors. The von Neumann model has four neighbors while the
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Moore model has eight neighbors. The Von Neumann and Moore models are
shown diagrammatically in Figure 1.

Each cell in elementary cellular automata has two states, ‘0’ or ‘1’. The state
can change every time step when a local rule is applied. The next state of a cell
at time t + 1 is affected by the state of its neighbors and its own state at time t.

H N

Figure 1 Von Neumann model (left) and Moore model (right).

The state of the cellular automata is computed based on local rules. The local
rule for two-dimensional cellular automata with von Neumann’s neighborhood
structure is defined as follows:

sE = £[59,50, 5O, 5@ s, ] )

ij i.j Sij+1 Siv1,jr Sij-1 Si-1,j

The above rule can be expressed in another form, called totalistic, i.e. the sum
of all neighbors, and is written as:

(t+1) _ ® ® ®) ®) ®)
sij  =f [Si,j R I S Si—l,j] )
It can also be written in a simple form:

C =Y, fn)k" 3

Each position of the cells is numbered, as shown in Figure 2. This numbering is
used to compute the local rule. The rule for a cell with Moore’s neighborhood
structure is defined as the sum of the number of its neighbors.

64 128 256

16 8 4

Figure 2 Totalistic 2D cellular automata.
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From Figure 2, for example, rule C = 170 (128 + 32 + 8 + 2) has only top,
bottom, left, and right neighbors. Hence, in Moore’s model, there are 512 rules.
The rule for each cell can be similar (uniform) or different (hybrid).

2.2  Cellular Learning Automata

Cellular learning automata are cellular automata in which each cell has learning
capability [14,16]. Such a cell is called a learning automaton. A learning
automaton requires information from its environment to select the right action
in order to get the best response. Each action has a certain probability, which
will be updated regularly according to the response of the environment. The
response type can be reward or penalty. A learning automaton interacts with its
environment to collect the information, as shown in Figure 3.

Random Environment

— Distance to Obstacle
— Distance to Goal
— Distance to Global Path

Action o Response [

Learning Automaton

Figure 3 Interaction between a learning automaton and its environment.

2.3 Model of Environment

An environment is defined as a set of three tuples E = {«a, 8, p}, where

a={ay,ay, ..., a,} > a set of actions
B = {B1, B2, ) Bn} : a set of responses
P = {P1, P2 ) Pr} - a set of probability of actions

The environment of type P has two kind of responses, 8; = 1. penalty and
B> = 0: reward. The components of the automata consist of four tuples
{o.pp, T} where a = {ay,a,,...,a,} is a set of actions, f = {f1, B2, -, Bn}
represents the input, p = {p1,p2, ..., Pn} IS the probability of actions, and
p(n + 1) = T(a(n),B(n),p(n)) represents the local rule.
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2.4 Updating Probability Action

The probability of actions is variable. If a learning automaton gets a reward, p
increases and p of the other cells decreases. The probability of an action is
updated according to the following rule:

Ifg =0

Pi(n+1) = Pi(n) +a[l - P(n)]

Pi(n+1) = (1-a)P(n)Vj,j #i 4)
Ifp =1

P(n+1)= (1-b)P;(n)
P(n+1)= =+ (1—-b)Pm)Vjj #i )

where a and b are parameters of reward and penalty respectively.

3 Problem Formulation

In this paper, we use two-dimensional cellular automata with Moore’s
neighborhood structure, i.e. there are eight neighbors for each cell. Each cell
interacts with its nearest neighbors, as shown in Figure 4. The distance between
two cells is computed based on the Manhattan rule.

Q_Q O

O
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Figure 4 Model of two-level interaction.

3.1  Computing Global Path

Let N! be the neighborhood of cell i at time step t, and s} the state of cell i. This
state represents the distance to the goal. The rule to compute the distance to the
goal is defined by:
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min{st} + 1if s}: a free cell, st: are filled cell, st € Nf
sttt = (6)
f if sf: is not a free cell

Si

The above rule maintains the minimum distance to the goal because it always
selects the cell in the neighborhood with the minimum state. Therefore, the
distance from any point to the goal will be minimum.

3.2 Optimizing Local Planning

The distance between the initial position and the goal position needs to be
recomputed when new obstacles arise. In this case, the global path is modified
to adapt to the change. In this process, we consider three variables that will
influence the overall performance and particularly the total distance to the goal.

1. The obstacle variable indicates the proximity to the obstacles. It is denoted
by cops(i,j), i,j = 1,2,...,N.

2. The goal variable indicates the distance to a goal position that is obtained
from the global path. It is denoted by ¢, (i, ), i,j = 1,2,...,N.

3. The path variable indicates the distance to the nearest global path. It is
denoted by cpaen(i,)), i,j =1,2,..,N.

3.3 Cost Function

In this model, we have to minimize the objective function of the three distance
variables. A small value of the first variable shows that the robot’s position is
farther from the obstacle, whereas the second and the third variable show the
remaining distance to the goal and the global path. The cost function is defined
as follows:

Ngoal Ngoal
Min F(C) = 2 Z Wobs Cobs(i:j) +

i=ip  j=jo
Ngoal Ngoal

2 Z Wgoal Cgoar (i, J) + )

i=ip j=Jo

Ngoal Ngoal

Z 2 Wpath Cpath (i,j)

i=ip j=Jo

where:
Ngoa: : the number of steps required to reach the goal.
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W,ps - the weighting factor of the obstacle variable.
Wgoar - the weighting factor of the goal variable
Wpatn - the weighting factor of the path variable
Cobs) Cgoal Cpath € C,4,j = 1,2,...,N.

As given in Eq. (7), the cost function that is represented as the weighted sum of
the three selected variables must be minimum in order to obtain the optimal
path.

3.4  Updating Individual Cells

Each cell is updated according to the following rule and the next cell will be
selected from its neighbors with the minimum value.

AF(C(i:j)) =Ym fobs(c(k: D, Dij (k, D), Wobs) +

8
Z fgoal (C(k: D), Dij (k, D), Wgoal) + Z fpath (C(k, D, bij (k, D), Wpath) ®)

where:
c(i,j) :costatcell (i}).

p;j(k, 1) - probability to select cell (k,I) from cell (i,j).

If there is no penalty in the learning scheme, then the probability is updated as
follows:

pij () + a(l —p; (1) if ¢;;(£) < ¢ (t)
pijt+1) = 9)
p;j(t) otherwise

pij(k, (@) — apj(k, (@), ifci(6) < cru(?)
pij(k, D(t) otherwise

The reinforcement signal, defined as r(t) = {r;:i = 1,2, ... ,m}, is positive
(+1) if ¢;j(t) < ¢4 (t) and is negative (-1) ifc;;(t) = ¢y ().
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35 Initial Probability Action

Initially, p is assigned a certain value. We can use one of the following rules. In
this case we use Rule 3, in which the cell with the minimum cost will be the
best candidate cell.

1. The value of p is set to 1/m for all cells.
2. The value of p is set to 0 or 1 as follows:

py (k1) = {1' pij(k, 1) = maXe() en(e(i, ) pij(k, D} (11)
0 otherwise

3. The value of p is computed from the cost function. If the value of c is small,
the value of p is large according to the following relation,

B _ _(/etkb) -
P l) = & NG el l) # c(i.j),
c(k,l) € N(c(i,))) (12)

where: N(c(i,j)) : neighbors of c(i, )

4 Complexity

The path is determined using a backward search algorithm. As long as the initial
position and the goal position are not in an area surrounded by obstacles, the
goal position is reachable from the initial position. Hence, the algorithm is
complete. The cost required to execute the algorithm depends on the size of the
cells. If the size of the environment is (X;qx X Ymax), then the number of steps
required is:

(Xmax X Ymax)(@ +m) (13)

where:
a : the number of access, read and write operations.
m : the number of neighbors.

The number of steps from initial to goal position is used to measure the
distance. We assume the distance is computed based on the Manhattan rule. The
number of steps IS (Xax X Ymax)(a +m) X d, where d is the distance from
the initial position to the goal position. The worst case occurs if d approaches
(Xmax X Ymax)/2, and the number of steps is:

(xmax X Ymax)(a + m)(xmax X ymax) (14)
Hence, the order of the algorithm is 0 (x2,4, X Vi24x), Which is the same order
as Dijkstra’s algorithm without min-priority queue, that is O(|V | ), where |V | is
the number of vertices. If a global path is given, the number of steps required is
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(@+ m) xdxIin the worst case and (a + m) x d in the best case, and | is the
level of interaction.

5 Experiments

In this experiment we define the environment as the model of a building with
many rooms and the number of robots is 1, as shown in Figure 5. Before the
robot makes explorations, it creates a map of the environment as shown in
Figure 6-8. The map is used to determine the global path. The global paths
generated by two different planning are shown in Figure 6-8. The first global
path is generated using cellular automata in which the distance is computed
using the Manhattan rule, while the second path is generated based on Dijkstra’s
algorithm.

Figure 5 The model of environment.

In this experiment, we use a model of a mobile robot, Pioneer3AT, and the
Gazebo simulator [18] to model the environment. The robot is controlled by
programs executed in an ROS environment. The programs execute global and
local path planning, implemented using cellular automata. The program works
as follows. Initially, the global path is generated and the robot starts to move
along it. Then, the local path planning is activated to update the global path if
required, for example if the global path is blocked by new obstacles such that it
is not available anymore. The program will stop when the robot reaches the goal
position.

The results of the experiment with global path planning are shown in Figures 6-
8. The first path, generated using cellular automata, was closer to the obstacles
than the second one, which was generated using Dijkstra’s algorithm. However,
it generated more segments than Dijkstra’s algorithm.
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Figure 6 Global path to Goal | generated using cellular automata (left) and
Dijkstra’s algorithm (right).

Figure 7 Global path to Goal Il generated using cellular automata (left) and
Dijkstra’s algorithm (right).

=\l ot

Figure 8 Global path to Goal Il generated using cellular automata (left) and
Dijkstra’s algorithm (right).

The performance of local path planning is determined by the cost function as
defined in Eq. 7. Here, we set the weighting factor for all distance variables as
follows: wgps = 0.06, wWgeq = 0.08, wyee, = 0.01. The central cell of the
cellular automata interacts with its neighbors at Level 1 and Level 2 as shown in
Figure 4. The map resolution is 0.05 measured in meters and the granularity of
the cells is 0.05. Details of the simulation results are shown in Table 1.

In the other experiment we computed the global path of 3 robots using three
existing algorithms, Dijkstra’s algorithm, the A* algorithm and the Cellular
Learning Algorithm (CLA). A standard algorithm was used for the purpose of
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comparison. The global paths generated using the three algorithms are shown in
Figures 9 and 10.

Table 1  Simulation results for three different goals.

goal-1 goal-2 goal-3
dijks cla dijks cla dijks Cla
Initial (-8,-5) (-8,-5) (-8,-5) (-8,-5) (-8,-5) (-8,-5)
Goal (8,-14)  (8,-14) (0,5) (0,5) (-8,4) (-8,4)
Direct-Dist 744 745 515 515 356 356
Path-Len 788 840 689 632 621 582
Times in sec. 64.4 77.2 52.6 58.8 48.2 59.8

Figure 9 Global path of three robots generated using Dijkstra’s algorithm (left)
and the A* algorithm (right).

Figure 10 Global path of three robots generated using CLA.

The global path generated using CLA was similar to that generated using
Dijkstra’s algorithm; the difference is not significant. The difference of the path
occurs when the robots are moving, in this case when the local path planning is
active. Details of the results are shown in Table 2.

Table 2 Performance of three robots.

Parameter Dijkstra A* CLA
Robl Rob2 Rob3 Robl Rob2 Rob3 Robl Rob2 Rob3
1. Start pos. -8,-5 -8,-4 54 -8,-5 -8,-4 5-4 -8,-5 -8,-4 54

2. Goal pos. -2,-13° -2,-14 -2,-15 -2,-13 -2,-14 -2,-15 2-13  -2-14 -2,-15
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p ; Dijkstra A* CLA
arameter Robl Rob2 Rob3 Robl Rob2 Rob3 Robl Rob2 Rob3
3. Pathto R1 - 655 755 - 704 796 - 564 594
4. Path to R2 662 - 669 649 - 670 570 - 626
5. Path to R3 727 610 - 814 684 - 594 524 -
6. Path R1-G 480 503 520 486 549 589 550 550 550
7. Path R2-G 931 951 1004 861 882 941 922 904 922
8. Path R3-G 881 918 953 902 9 982 850 850 850
9.Pathto G 480 951 953 486 882 982 550 904 850

10. Distto G 408 738 813 408 738 813 408 738 813

11. Maze 1.176 1.288 1.172 1.191 1.195 1.208 1.348 1.225 1.046
level

12. Time to 63.6 128.8 164.0 63.4 1324 135.4 62.4 116.0  156.6
G

Note: the map resolution is 0.025; 1 unit coordinates = 40 steps (path length)

Three parameters were used as a measure of performance: path length, total
time to the destination, and complexity of the path. The complexity of the path
is defined as the ratio between the actual path length and the direct distance to
the destination assuming there are no obstacles on the way to the destination.
Path length is a suitable parameter if the environment is static, otherwise total
time is a better choice to measure performance. The path length is also
influenced by the algorithm used. Using the three different algorithms in these
experiments, the resulting trajectories had different lengths. Dijkstra’s algorithm
had the shortest trajectory, then the A* algorithm, and the longest was CLA’S.
In fact, Dijkstra’s algorithm does not turn frequently and does not emphasize
the shortest distance to the nearest obstacle. On the other hand, CLA generates a
path that is straight, because the curves follow the shape of the obstacles and it
emphasizes the closest distance to the obstacles.

Total time is a measure of the actual time it took the robot to reach the goal
position. In the case of a dynamic environment, total time is a suitable choice to
measure performance. From the experimental results, the best performance
based on total time measurement was CLA, then the A* algorithm, and the
worst was Dijkstra’s algorithm.

The last parameter is the complexity of the path (maze level). The greater the
number, the more twists and turns in the trajectory were generated. From the
experimental results, Dijkstra’s algorithm had the lowest maze level, then the
A* algorithm, and the highest one was CLA’s.

6 Conclusion

Path planning for mobile robots can be implemented efficiently with cellular
automata. Its computational process is suitable for being implemented on low-
cost hardware such as an on-board computer or microcontroller that is
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integrated with the robot. By using cellular automata, the process of updating
the states to select the optimal path can be done in parallel due to the
asynchronous properties of the cells.

In the second stage of planning, CLA is used to handle the dynamic properties
of the environment. In comparison with existing algorithms, such as Dijkstra’s
algorithm and the A* algorithm, the algorithm with learning automata (CLA) is
able to produce a path that stays closer to the obstacles and has a shorter
travelling time than other two. However, it also causes the robot to turn
frequently and produce straight segments along the whole path.
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