
 

 

J. ICT Res. Appl., Vol. 18, No. 1, 2024, 21-35                        21 

 

Received August 14th, 2023, Revised January 9th, 2024, Accepted for publication April23rd, 2024. 
Copyright © 2024 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2023.18.1.2 

Skin Lesion Segmentation for Melanoma Using Dilated 
DenseUNet  

Ammar S. Al-Zubaidi1, *, Mohammed Al-Mukhtar1, Mina H. Al-hashimi2&           
Haris Ijaz3 

1Computer Center, University of Baghdad, Al-Jadriya,  10070, Baghdad, Iraq 
2Computer Engineering Department, Al-Mansour University College, Al-karadda,  

10069, Baghdad, Iraq 
3School of Electrical Engineering and Computer Science (SEECS), National University 
of Science and Technology (NUST), Scholars Ave, H-12, 44000, Islamabad, Pakistan 

* E-mail: Ammar.Sabah@cc.uobaghdad.edu.iq 
 
 

Abstract. Melanoma, a highly malignant form of skin cancer, affects individuals 
of all genders and is associated with high mortality rates, especially in advanced 
stages. The use of tele-dermatology has emerged as a proficient diagnostic 
approach for skin lesions and is particularly beneficial in rural areas with limited 
access to dermatologists. However, accurately, and efficiently segmenting 
melanoma remains a challenging task due to the significant diversity observed in 
the morphology, pigmentation, and dimensions of cutaneous nevi. To address this 
challenge, we propose a novel approach called DenseUNet-169 with a dilated 
convolution encoder-decoder for automatic segmentation of RGB dermascopic 
images. By incorporating dilated convolution, our model improves the receptive 
field of the kernels without increasing the number of parameters. Additionally, we 
used a method called Copy and Concatenation Attention Block (CCAB) for robust 
feature computation. To evaluate the performance of our proposed framework, we 
utilized the International Skin Imaging Collaboration (ISIC) 2017 dataset. The 
experimental results demonstrate the reliability and effectiveness of our suggested 
approach compared to existing methodologies. Our framework achieved a high 
level of accuracy (98.38%), precision (96.07%), recall (94.32%), dice score 
(95.07%), and Jaccard score (90.45%), outperforming current techniques.  
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1 Introduction 

Cancer is caused by abnormal cells that grow and spread out of control and can 
cause death when they are not diagnosed [1]. Areas of the body that are exposed 
to the most ultraviolet (UV) radiation are where it commonly shows up. For 
instance, the chance of acquiring skin cancer rises when parts of the body are 
frequently exposed to UV radiation and direct sunlight, such as the face, neck, 
arms, and legs. The DNA in skin cells can be damaged over time by excessive 
UV radiation exposure, which can result in the growth of malignant cells. These 
body parts are particularly susceptible to the damaging effects of UV radiation, 
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making them frequent locations for the growth of skin cancers such as melanoma. 
There are three categories of skin cancer: melanoma, basal cell carcinoma, and 
squamous cell carcinoma [2]. One of the most dangerous types of skin cancer is 
melanoma, which arises from melanin-producing melanocyte cells. Recent 
predictions indicated that the number of deaths caused by melanoma skin cancer 
in the United States in 2023 would be considerably greater for men than for 
women [3].  

Early identification of skin cancer is critical for future therapies that can halt 
serious lesions, according to research that showed that those who find melanoma 
early have a survival probability of over 90% [4-6]. Dermoscopy is a significant 
technique for increasing diagnosis accuracy and reducing skin cancer mortality. 
By visual examination, dermatologists analyze almost all globally produced 
dermascopic images, which requires a high level of knowledge and effort, is time-
consuming, and is susceptible to operator bias. Researchers are gradually 
investigating computer-aided diagnosis to help dermatologists avoid these issues 
while simultaneously enhancing diagnostic performance, effectiveness, and 
reliability [7].  

Even for dermoscopy images, melanoma and non-melanoma lesions exhibit a 
significant degree of visual resemblance. In addition to the presence of artifacts 
and unclear borders, obstacles such as hairs and veins make skin lesion diagnosis 
more difficult. Figure 1 shows some infected skin images that illustrate the 
problems. 

Figure 1 Sample dataset of skin lesions captured in dermoscopy images. 
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The two most challenging processes are segmentation and feature extraction [8-
10]. Several current methods simply skip the segmentation process, resulting in 
high misclassification rates. Images have trained deep models that incorporate 
both lesions and backgrounds, leading to an elevated false-positive rate. This 
means that the models may incorrectly classify normal skin regions as lesions, 
leading to potential false alarms and unnecessary interventions. To mitigate this 
issue, it is crucial to develop segmentation models that can accurately 
differentiate between skin lesions and background regions. Similarly, when the 
entire feature vector generates a strong correlation factor between features, the 
effects become unavoidable in the later stages of classification. 

Despite extensive study on melanoma segmentation, establishing accurate and 
efficient melanoma localization remains a difficult endeavor because of the great 
variability found in the shape, pigmentation, and size of cutaneous nevi. In this 
paper, we propose a deep learning model for segmenting skin lesions. It is named 
Dilated DenseUNet-169 with Copy and Concatenation Attention Block (CCAB). 
DenseNet-169 is characterized by its 169-layer structure. It is extensively 
employed in deep learning for classification problems. It possesses much fewer 
trainable parameters in comparison to other DenseNet designs that have fewer 
layers. The key contributions of this research are: 

1. We propose an enhanced UNet technique for key point extraction called 
Dilated DenseUNet-169 to increase its segmentation power. 

2. We propose copy and concatenation attention (CCA-UNET) for strong 
feature computing. 

3. We present a model consisting of an encoder for capturing plentiful features 
and a decoder for fusing these features in order to generate feature maps. 

4. We employ dilated convolution to enhance the kernels’ receptivity. 

The proposed method uses bypass connections with the encoder and decoder to 
compel the model to explore low-level features that feedforward would otherwise 
overlook. On numerous assessment measures from the ISIC 2017 dataset, the 
suggested model delivered cutting-edge performance. 

2 Literature Review 

In Hurtado & Reales [11], the authors presented a novel method for classifying 
skin cancer using photos taken with standard cameras and explored the impact of 
smoothing bootstrapping on the results after expanding the initial dataset. With 
an accuracy of 87.1%, an artificial neural network with data augmentation 
provided the best outcomes and a more balanced classifier. 

In order to categorize skin cancer and decide whether it is melanoma, basal cell 
carcinoma, or squamous cell carcinoma, Chin, et al. [12] used a hybrid 
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convolutional neural network and an autoregressive integrated moving average 
model. Chin, et al.[12] trained the model and found it to provide 92.25% 
accuracy, despite the requirement for more accuracy. Meanwhile, Abd, et al. [13] 
advocated segmenting artificial bee colonies (ABCs). The selection method 
outperformed and effectively neutralized qualities previously disregarded. The 
study’s accuracy was 94.40%. 

In Pratiwi, et al.[14], the author presents a method to improve performance in 
terms of sensitivity, F1-score, accuracy, precision, and specificity. The ensemble 
learning strategy in this work integrates three deep convolutional neural network 
architectures, i.e., Inception DenseNet, ResNet V2, and Inception V3. With 
97.73% specificity, 90.12% sensitivity, 85.01% F1-Score, 82.01% precision, and 
97.23% accuracy, the suggested model performed well in melanoma 
classification.  

In Shao, et al. [15], the author uses a convolutional neural network with extended 
attention (CA-Net) and a multiscale feature fusion network (MSF-Net). In order 
to concentrate on the important regions, a spatial attention mechanism was 
incorporated via the remaining link to the convolution block. They ran a number 
of tests on the open data set ISIC2018, achieving a precision of 92.17%. In [16], 
the authors utilized a multi-scale UNet (MSAU-Net) or a modified UNet for skin 
lesion segmentation. To be more specific, they enhanced the ordinary UNet by 
adding an attention mechanism that resembles a hierarchical structure at the 
network’s choke. 

3 Methodology  

Our proposed work aims to create a fully convolutional network capable of 
autonomously segmenting skin lesions in dermascopic RGB images of the skin. 
We use Dilated DenseUNet-169 as the backbone architecture to segment skin 
lesions. It has two important phases: network training and melanoma mole 
segmentation. 

To train the model, we utilized the International Skin Imaging Collaboration 
(ISIC) 2017 dataset, which consists of 2,000 dermascopic skin images with 
manually or semi-automatically annotated ground-truth labels. We divided the 
dataset into training, validation, and testing sets in an 80:10:10 proportion. During 
training, we employed transfer learning by initializing the model with weights 
from a pre-trained model, which facilitated faster convergence and improved 
performance. We utilized the Adam optimizer with an initial learning rate of 
0.0001 and adjusted the learning rate using the reduce LROnPlateau function to 
optimize the training process. 



                    Skin Lesion Segmentation for Melanoma 25 
 

To improve feature computation and capture relevant information, we introduced 
CCAB architecture. This attention mechanism filters and highlights important 
features, enabling the model to focus on relevant regions for segmentation. We 
evaluated the performance of our proposed model using various metrics, i.e., 
accuracy, dice coefficient, Jaccard score, recall, and precision. We compared the 
results with a baseline UNet model and related works to evaluate the 
improvement in segmentation accuracy that our Dilated DenseUNet-169 model 
achieved. We selected the DenseUNet architecture with dilated convolution and 
incorporated CCAB based on their proven effectiveness in image segmentation 
tasks. Our methodology stems from the need to tackle the unique challenges of 
melanoma segmentation, utilizing the latest developments in deep learning 
technology. 

3.1 Encoder-Decoder Semantic Segmentation  

This section presents Dilated DenseUNet-169, a semantic segmentation network 
capable of reliably and automatically separating dermascopic skin lesion images. 
Its architecture is based on UNet [17]. We can break down the proposed dilated, 
dense UNet-169 architecture into two sections. The first section contains an 
encoder that takes an input image, generates a high-dimensional feature vector, 
and aggregates features at multiple levels for feature extraction. It contains input, 
pooling, and four dense blocks. Following that are sixteen transition blocks that 
allow for a smooth change from one condition to another. 

The purpose of a transition block is to fill the space between different elements, 
improving the coherence and efficiency of the system as a whole. In general, 
transition blocks are crucial in many different applications because they 
guarantee consistency, coherence, and a positive user experience during 
transitions or shifts between diverse portions. They advocate for the preservation 
of flow and the avoidance of abrupt transitions. The decoder, on the other hand, 
uses a high-dimensional feature vector to construct a semantic segmentation mask 
and decode characteristics that the encoder has collected at various levels. It 
consists of five decoding blocks. Each block contains upsampling, concatenation, 
and convolution blocks. Figure 2 presents a representation of the encoder and 
decoder. 

Both encoders and decoders use dilated convolution. This convolution can collect 
and process images at various resolutions depending on the dilation rate. It 
regulates the spacing between kernel locations, effectively expanding their 
receptive field without adding further parameters. As a result, it may be used to 
introduce a broader context into the system. It is integrated into spatial 
convolution, which employs a single convolutional kernel to perform lightweight 
filtering and reduce computing complexity [15]. 
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Figure 2 Proposed architecture for dilated convolution semantic segmentation 
DenseUNet-169. 

Skip connections also recover spatial data lost due to pooling at each encoder 
level. The uniqueness of this study lies in its method, which proposes a dilated 
density neural network that can segment skin lesions with greater accuracy and 
robustness than traditional convolutional neural networks while offering new 
learning capabilities. We modeled the dense blocks and transition blocks after 
DenseUNet to avoid forcing the suggested network's encoder to learn duplicate 
features. Figure 3 illustrates both a dense block and a decoder block. 

The pooling layer in each encoder block reduces the dimensions of the feature 
map. As a result, it reduces the number of network calculations and the number 
of parameters to learn. A convolution layer's feature pooling layer creates a 
feature map that summarizes the features present in a specific area. The decoder 
block incorporates an upsampling layer, a simple, weightless layer that doubles 
the input's dimension and generates output images. The corresponding encoder 
block then joins the image with its output. To get the final mask, there is a 
convolution layer with batch normalization and ReLU activation. 
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Figure 3 construction of the encoder and decoder blocks. 

To increase the network’s capacity for using multimodal information thoroughly, 
we created CCAB to filter the extracted features and eliminate redundant table 
conv block information. Computer vision frequently employs an attention 
mechanism. The attention mechanism may increase the weight of discriminative 
traits while decreasing the weight of irrelevant information, thereby increasing 
recognition accuracy [15].  

To generate an attention map for each step, integrate multi-scale information 
along the spatial axis. In the channel dimension, we employ global average 
pooling (GAV), a pooling technique meant to take on the role of fully linked 
layers in conventional CNNs. The goal is to produce one feature map in the final 
MLPConv layer for each category that corresponds to the classification problem. 
Additionally, max-pooling (MP), a pooling procedure that employs the maximum 
value for patches of a feature map to build a downscaled (pooled) feature map, is 
another option.  

Researchers often use it after a convolutional layer. Then, it concatenates them to 
generate a feature map with two channels while keeping the height and width 
constant. The proposed model constructed a spatial attention map for the stage 
using a dilated convolution with a 3-dilation rate and a 7-kernel size. Finally, as 
shown in Figure 4, we multiply the generated spatial attention map elementwise 
by the original map and combine it with the residual information. 
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The input feature map represents F ∈ R C × H × W with the attention map Ac ∈ 
R 1 × H × W, and the attention process is expressed in Eq. (1):  

            � = ��� ⊗ �                                                                                       (1) 

⊗ represents element-by-element multiplication; F represents the feature input; 
R represents the real image; C represents the image length; H represents the image 
height; W represents the image width; and Ac represents the attention map. 

 

Figure 4 Copy and concatenation attention block architecture. 

After applying the common network to each descriptor, Eq. (2) shows how the 
feature vectors are merged using element-wise summation. Eq. (3) commonly 
expresses ReLU activation. 

           ��(�) = �� ��(�)(�7�7([�������(�);�������(�)]))              (2)     

            �� ��(�) = ���( 0, �)                                                                        (3)                                                                                               

We have demonstrated the helpfulness of the pooling procedures along the 
channel axis in identifying informative locations. Here, σ denotes the ReLU 
function, and f 7 × 7 represents a convolution operation with a filter size of 7 × 
7. The dying ReLU problem may occur when neurons that output zero for all 
inputs (negative and zero values) become inactive during training and stay 
inactive for the duration of the training procedure. This problem arises because 
ReLU sets the output to zero for negative inputs, and the gradient of the function 
is likewise zero for these inputs. Consequently, backpropagation fails to update 
the weights associated with inactive neurons, thereby halting learning. 
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3.2 Training  

We trained both the proposed model and the baseline UNet model on similar 
hyper-parameters for a fair comparison. We divided the dataset into 80:10:10 
proportions. Thus, training accounted for 80% of the budget, while validation and 
testing accounted for 10% each. We previously selected a default batch size of 
16. We used the Adam optimizer with an initial learning rate of 0.0001. We used 
the LROnPlateau function to optimize the learning rate, which lowers the learning 
rate when the validation loss metric no longer improves. When learning stagnates, 
it waits for 25 epochs to observe any change and then automatically stops the 
learning process, which reduces the overall training time. 

4 Experimentation Results and Discussion 

In this section, we address the specific metrics and data set utilized to evaluate 
the proposed approach’s segmentation performance. Furthermore, we conducted 
multiple tests to assess the strategy in a variety of ways and demonstrate the 
robustness of the provided technique. 

4.1 Performance Metrics 

Precision, recall, F1 score, accuracy, Jaccard score, and dice coefficient are well-
known and often employed skin lesion segmentation evaluation metrics that we 
utilized to assess the precision with which our trained model produces 
segmentation results. The terminology used to describe how the metrics were 
calculated is listed below [18]. 

1. True Positive (TP) represents an accurately predicted lesion class label. 
2. False Positive (FP) indicates mistakenly predicted label for lesion class. 
3. True Negative (TN) indicates a predicted label that aligns with the actual 

label of a backdrop pixel. 
4. False Negative (FN) denotes a predicted label that is mistakenly allocated to 

a background pixel. 

Accuracy (ACC) demonstrates the proportion of correct predictions. 

            ��� =
�����

�����������
                  (4)  

Precision is calculated by dividing the total number of real positives by the 
number of predicted positives. 

            ��������� =
��

�����
                         (5)                                                                                       

Recall quantifies the fraction of accurately predicted TPs. 

            ������ =
��

�����
           (6)   
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Jaccard index is frequently referred to as intersection over union (IoU) in the 
context of image segmentation. It evaluates the similarity between the predicted 
values y and the observed values x by comparing the individuals in two sets in 
order to identify which individuals are shared and which individuals are distinct. 

         �������⬚
⬚

����� =
��

��������
                                                                (7) 

Dice Score is an equivalent numerical illustration of IoU. Additionally, it is 
utilized to determine if the projected mask and the reality match. 

            ����⬚
⬚
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                                                                 (8) 

4.2 Performance 

In this subsection, the qualitative and quantitative findings of segmentation that 
were collected from various in-depth experiments are provided. First, the 
accuracy, dice score, and Jaccard index of the proposed Dilated DenseUNet-169 
are compared to those of the previously established baseline U-Net and related 
works. The proposed model performed exceptionally well on the ISIC 2017 data 
set. Table 1 displays the comparison with the baseline network. 

Table 1 Summary results for all trained models. 

Models Accuracy 
Dice 
score 

Jaccard Recall Precision 
No. of 

Parameters 
Model 
Size 

Unet 75.45% 67.436% 71.25% 82.90% 88.78% 31,055,297 355.7 
DenseUNet-121 96.76% 94.25% 81.78% 88.37% 91.40% 35,364,237 406.2 

Dilated 
DenseUNet-169 

98.37% 95.07% 90.45% 94.32% 95.47% 46,867,853 538 

The results reveal that the proposed model outperformed the baseline model in 
terms of accuracy, dice coefficient, Jaccard index, recall, and precision. The 
dilated DenseUNet-169 model achieved 98.37% accuracy, 95.07% dice scores, 
90.45% Jaccard index, 94.32% recall, and 95.42% precision. Meanwhile, UNet 
achieved 75.45% accuracy, 67.43% dice scores, 71.25% Jaccard, 82.90% recall, 
and 88.78% precision. In addition, we compared it with DenseNet-121. It 
achieved 96.76% accuracy, 94.25% dice score, 81.78% Jaccard index, 88.37% 
recall, and 91.40% precision. Clearly, the proposed model outperformed the 
baseline UNet and Dilated DenseUNet-121. These favorable findings refer to our 
model, which contained more parameters and was larger. 

In image segmentation, the receiver operating characteristic (ROC) curve 
graphically illustrates the performance of a binary classifier as it adjusts the 
threshold for classifying a pixel as foreground or background. At various 
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threshold values, the ROC curve compares the true positive rate (TPR) and false 
positive rate (FPR). It is possible to compare the performance of various 
classifiers using the area under the ROC curve (AUC), which is a measurement 
of the classifier’s overall performance. 

A classifier with an AUC of 1.0 is considered to have perfect performance, while 
a classifier with an AUC of 0.5 is considered to have no discriminatory power. 
DenseUNet can segment skin lesion images to some extent; however, there are 
still some untapped characteristics. On the one hand, DenseUNet only 
distinguishes between normal skin and lesion regions and does not further 
classify the different types of lesions, providing insufficient data for upcoming 
procedures. 

Figure 5 shows the quantitative AUC-ROC results for the three models (UNet, 
DenseUNet-121, and DenseUNet-169) with a hyperparameter batch size of 16 
and a training phase learning rate (lr) of 0.0001. Finally, we applied 25 epochs to 
improve the accuracy and precision of all metrics. It clearly reveals the 
effectiveness of our segmentation model. 

 

Figure 5 Comparative AUC-ROC results for three models (UNet, DenseUnet-
121, and DenseUnet-169). 

For further validation, we compared our method to the results of related works, 
as shown in Table 2. It revealed that our proposed method outperformed the 
previously used methods because the Dilated Dense UNet-169 network could 
segment skin lesions with greater accuracy and robustness than traditional CNN. 
This positive result demonstrates the effectiveness of our method. 
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Table 2  Comparison results between our proposed work and related works. 

Figure 6 illustrates some of our model's generated results by placing an RGB 
dermoscopy image with corresponding ground truth, UNet, and DenseUNet-169 
generated binary masks side by side. Therefore, the provided findings show that 
our model accurately separated the melanoma moles and was resistant to changes 
in the structure of skin lesions. 

 

Figure 6   Comparison of generated results with input and ground truth: (a) RGB 
dermoscopy image; (b) annotated ground truth; (c) UNet generated mask; (d) 
DenseUNet-169 generated mask. 

Reference Method Dataset Task Accuracy 

[13] artificial bee colony (ABC)  ISIC2017 Segmentation 94.40% 

[19] FC-DPN ISIC2017 Segmentation 95.14% 

[14] DCNN ISIC2017 Segmentation 97.235 

propose Dilated DensUnet-169 ISIC2017 Segmentation 98.384 
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4.3 Discussion  

The proposed segmentation method outperformed existing methods in accuracy, 
dice score, Jaccard, and precision. Our model’s high segmentation accuracy 
impacts skin cancer detection and diagnosis. First and foremost, our segmentation 
model’s improved accuracy can help detect and treat melanoma early, improving 
patient outcomes and lowering mortality rates. By accurately segmenting skin 
lesions, clinicians can target treatments. This study also showed that dilated 
convolutions improve contextual information capture and receptive fields without 
adding parameters. This feature is beneficial to tele-dermatology applications 
because computational resources are limited. 

The proposed model is efficient and effective for both real-time and near-real-
time segmentation. Our architecture also includes the CCAB attention 
mechanism. This improves feature computation and focuses on salient regions, 
reducing false positives and improving model segmentation. The model’s 
performance on more complex skin lesions can be improved by adding contextual 
cues to this attention-based approach.  

This research adds to the skin lesion segmentation literature and shows the 
potential of deep learning models. Because it works so well, researchers can use 
Dilated Dense UNet-169 to look at larger datasets, different types of skin lesions, 
and how it works with other imaging methods like dermoscopy and 
histopathology. Our findings also highlight the importance of tele-dermatology 
research in filling dermatological care gaps, especially in rural areas. Our model’s 
accurate and efficient segmentation can enable remote consultations, decision 
support systems, and automated triaging, improving dermatological expertise and 
healthcare disparities. Our skin lesion segmentation method is accurate and 
precise. Our findings improve skin cancer detection, early intervention, patient 
outcomes, and tele-dermatology. This research lays the groundwork for future 
advancements in automated skin cancer diagnosis and treatment planning. 

In order to provide clinicians with useful information for diagnosis and further 
investigation, it is critical to do research on how to further segment the region in 
relation to the diagnostic criteria for the treatment of pigmented skin lesions. The 
setup of epochs and other hyperparameters is required for DenseNet training, 
which is time-consuming and usually unsuccessful. Future studies using neural 
network-automated search technology may automatically examine the 
appropriate parameters for the skin lesion image segmentation problem. 
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5 Conclusion  

In this paper, we constructed a dilated convolutional-based network called 
DenseUNet-169 to segment images of skin lesions. DenseNet feature extraction 
blocks equip DenseUNet-169 to gather adequate context information, thereby 
refining the segmentation results of skin lesions. We trained and evaluated our 
models using the ISIC 2017 data set in our experiments. We designed the new U-
Shape CCA-UNet network for dense prediction tasks. The DenseUNet-169 
model incorporates the CCAB architecture in additional stages beyond the feature 
map, which exhibits the highest level of semantic representation. 

This allows for the optimal utilization of this representation in the subsequent 
inference tasks. The present module integrates multi-stage and multi-scale 
information along the spatial axis to produce an attention map for each stage. The 
results showed that dilated convolution-based feature extraction blocks can 
extract more detailed lesion areas, making them very effective at separating skin 
lesions from images. 
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