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Abstract. In contemporary society, the Internet has evolved into an indispensable 

facet of daily life, serving myriad functions across various domains. Intrusion 

detection, as a cornerstone of information security, plays a pivotal role in fortifying 

networks against potential threats, emphasizing the necessity for robust and 

reliable methods capable of discerning and mitigating network vulnerabilities 

effectively. In this work, a pioneering network intrusion detection model is 

introduced, leveraging Adaptive Quantum-Inspired KGMO with Dynamic 

Molecular Grouping (AQ-KGMO-DMG) for feature selection and employing 

Simplified Support Vector Machines (SVM) for the classification of intrusion 

data. The utilization of the UNSW-NB15 dataset serves as the litmus test for 

evaluating the efficacy of the developed intrusion detection model. Notably, this 

approach enhances the accuracy in categorizing classes with minimal instances 

while concurrently mitigating the false alarm rate (FAR). A notable innovation in 

this methodology involves the transformation of raw traffic vector data into a 

visual representation, thereby reducing computational costs significantly. To 

reduce the computation cost further, the raw traffic vector data is converted into 

picture format. The experimental findings showed that the proposed model 

performed better than conventional techniques in terms of FAR, accuracy, and 

computation cost. 

 

Keywords: cyber-attacks; intrusion detection; internet of things; quantum-inspired 

KGMO with dynamic molecular grouping (AQ-KGMO-DMG); support vector machines 

(SVM). 

1 Introduction 

Network assaults are common due to how swiftly Internet technologies have been 

embraced worldwide. Extortion viruses exploit an information network system’s 

weaknesses and security gaps to attack the network and its capabilities and gain 

accessibility to website data, private user details, and other confidential material. 

The proliferation of industrial Internet of Things (IoT) devices is prone to 

revealing privacy and security flaws and tempting criminals to transmit harmful 

content. For instance, several academics have outlined the most crucial security 

issues, current threats, and privacy protection strategies for each layer of IoT 
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devices. Due to the connectivity between communication and power facilities, 

the smart grid unavoidably suffers from network security issues [1]. 

The method for detection and mitigation accounts for random uncertainty caused 

by communication noise at this time. Along with several examples of smart grid 

attacks, a full description of the underlying network security issues in the 

architecture of a smart grid is also offered. These enormous network 

vulnerabilities have a detrimental effect on both public safety and quality of life 

[2]. Applications that are based on the IoT make use of lightweight 

communication protocols and have restricted capabilities in both computing and 

storage, while traditional security methods need a significant amount of powerful 

computer resources. Because of the varied nature and characteristics of the 

applications that are based on IoT, this technique cannot be implemented for those 

applications. As a result of the characteristics of IoT applications, which cannot 

identify internal threats since they function within a network, it would appear that 

this method is insufficient to protect them. Due to the exponential growth of IoT 

risks and vulnerabilities, which have proven ineffectual in avoiding targeted 

attacks and anomalies, it may be difficult to assess what hazards or attacks the 

IoT ecosystem is prone to [3]. 

Machine learning (ML) techniques are used to discover common characteristics 

of networks. Anomaly-based intrusion detection systems are favored over 

signature- and specification-based intrusion detection systems because of their 

capacity to uncover previously unknown dangers. However, this comes at the 

expense of a high false alarm rate. The quality of the network traffic patterns used 

for the engine’s training is directly impacted by the goodness of the detection 

engine, also known as the model or classifier. In turn, it determines the 

effectiveness of anomaly-based intrusion detection systems (IDS). After being 

taught, the detection engine can accurately recognize newly launched attacks. 

Intrusion detection in IoT networks involves distinguishing network traffic into 

normal or attack classifications with the best accuracy and the fewest false alarms 

possible [4]. 

In the case of IoT networks, the network’s security must be maintained by early 

identification of attacks to keep the network safe. Help in accomplishing this 

objective can be provided by network intrusion detection systems (NIDS). These 

systems monitor network traffic and employ cutting-edge machine-learning 

algorithms to identify hostile behavior. However, the network in these models 

must be extensive and comprise several layers following one another. 

Consequently, these models need significant computing power and a sizeable 

memory footprint [5]. 

The major objectives of this work were as follows: 
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1. To improve the intrusion classification performance by performing SVM 

optimization using the AQ-KGMO-DMG algorithm. 

2. To reduce the complexity of the detection process, which improves the 

potential real-time testing. 

This paper’s remaining sections are organized as follows. Section 2 overviews 

federated learning and intrusion detection for the Internet of Things. Section 3 

describes the recommended intrusion detection method. Section 4 discusses the 

experimental setting, the performance metrics that were employed, the results of 

the experiment, and a comparison of this work to rival tactics. Finally, the results 

and future study objectives are described in Section 5. 

2 Literature Survey 

Intrusion detection can be carried out in various ways. This section explains a few 

of the older methods employed to accomplish intrusion detection with minimal 

latency. 

Kan, et al. [6] proposed sensing intrusions into IoT networks based on 

Convolutional Neural Networks with Adaptive Particle Swarm Optimization 

(APSO-CNN). To be more specific, the management constraints of a one-

dimensional CNN were adaptively optimized by the use of the Particle Swarm 

Optimization (PSO) approach, which incorporates variations in inertia weight. 

Thus, they created a new assessment approach, one that compares the proposed 

APSO-CNN algorithm with CNN set parameters. Jingyu, et al. [7] developed an 

IDS using particle swarm optimization-based gradient descent (PSO-

LightGBM). PSO-LightGBM is utilized in this technique to extract the 

characteristics of the data. Then that information is fed into One-Class SVM 

(OCSVM) to discover and identify harmful data. To verify the intrusion detection 

model, the UNSW-NB15 dataset is utilized. The results of the experiments 

revealed that the model was quite reliable in identifying both normal data and a 

wide variety of dangerous data, particularly tiny sample data such as backdoors, 

shellcodes, and worms. Yazan, et al. [8] proposed a new intrusion detection 

system (DLIDS) based on deep learning that can identify potential security risks 

in Internet of Things settings. To improve the reliability of the detection process, 

the proposed module utilizes a combination of two algorithms: the Spider 

Monkey Optimization method (SMO) and the Stacked-Deep Polynomial 

Network (SDPN). SMO selects the most useful characteristics from a dataset, 

while the SDPN determines if the data are typical or out of the ordinary. Saif, et 

al. [9] proposed a novel strategy for fighting swarms based on the Bird Swarm 

Algorithm (BSA) and improved the performance of the Gorilla Troops Optimizer 

(GTO). Because it has a great capacity to locate feasible regions with optimal 

solutions, BSA was employed in the newly produced GTO-BSA to increase the 
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performance exploitation of GTO. As a direct consequence of this, the standard 

of the completed product is higher, which contributes to an increase in 

convergence. 

Midi, et al. [10] proposed Kalis as a self-adapting, knowledgeable, and skilled 

intrusion detection system. On a wide range of IoT devices, it can detect assaults 

in real time. On IoT devices, Kalis can monitor a wide range of protocols without 

requiring any modifications to the existing software. It does not impact the 

performance of the apps installed and supports cooperative security situations. 

An extensive investigation demonstrated that Kalis can effectively and efficiently 

identify attacks on Internet of Things devices. Treepop and Mason [11] 

introduced a Double-Layered Hybrid Approach (DLHA) to improve intrusion 

detection. They found that R2L and U2R attacks behave similarly to normal 

users, and used a Naive Bayes classifier for DoS and Probe detection, followed 

by an SVM for distinguishing R2L and U2R from normal instances. DLHA 

outperformed existing techniques, achieving a 96.67% detection rate for R2L and 

100% for U2R. Jie and Shan [12] developed an intrusion detection framework 

using SVM with Naive Bayes feature embedding, achieving high accuracy across 

multiple datasets. Sandeep, et al. [13] used semi-supervised SVM and Random 

Forest classifiers, combined with a genetic algorithm for feature selection, to 

classify the NSL-KDD dataset. Their approach showed better performance with 

GA. Abhishek and Sunil [14] proposed a system using a genetic algorithm, the 

Discrete Wavelet Transform, and an ANN-SVM hybrid to effectively detect 

cyber-attacks, showing superior precision, recall, and f-measure compared to 

existing methods. 

The prevailing existing methods face various challenges, including issues like 

over-fitting and probing. These methods typically rely on training with a singular 

extensive dataset, necessitating prolonged data collection periods. Moreover, 

many of these established existing techniques lack support for an automated 

online learning process, mandating repeated retraining and consuming substantial 

computational resources. This research presents the development of an SVM 

employing AQ-KGMO-DMG optimization. This feature extraction technique 

stands as a robust approach in IDS. The SVM method with AQ-KGMO-DMG 

optimization is aimed at overcoming these intricate challenges. 

3 Proposed Method 

Filtering, normalization, and data clustering pre-processing methods were applied 

to the N/W parameter database. Then arithmetic features and derivative features 

were extracted from the pre-processed data. All extracted features are then 

cascaded. KGM optimization and SVM are used for training and classifying the 

output. Figure 1 shows a block diagram of the proposed method.  
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3.1 Block Diagram 

Figure 1 illustrates the intrusion detection system optimized with an AQ-KGMO-

DMG optimized SVM. The system operates in two phases: training and testing 

with pre-processing, feature extraction, and classification steps in both. In the 

training phase, data from the network intrusion database is pre-processed through 

data filtering, normalization, and data clustering. This ensures that the input is 

clean and uniform. After pre-processing, the data undergoes feature extraction, 

where arithmetic operations and discrete derivatives are applied to capture key 

characteristics. These features are passed through a cascade process for 

refinement and are then used by the SVM for classification. To enhance the 

SVM’s performance, AQ-KGMO-DMG optimization is applied.  

  

Figure 1 Block diagram of proposed method. 
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This technique combines KGMO optimization with quantum-inspired 

algorithms, ensuring the SVM can effectively tune its parameters to handle 

various network intrusion types. The optimization’s dynamic molecular grouping 

allows the system to adapt to diverse intrusion scenarios. In the testing phase, the 

testing data undergoes the same pre-processing and feature extraction steps. The 

extracted features are input into the trained SVM, which now benefits from the 

optimized parameters. The SVM then predicts whether the traffic is normal or 

intrusive based on its prior training. Finally, the system’s performance was 

measured using standard metrics, including accuracy, sensitivity, specificity, and 

precision. These metrics evaluate the system’s ability to accurately detect 

intrusions, minimizing false positives and false negatives. The AQ-KGMO-

DMG-enhanced SVM ensures robust and efficient intrusion detection, making it 

a reliable approach for network security. 

3.2 Pre-Processing 

The data are scrubbed clean in preparation for pre-processing. In this process, 

redundant features and features that do not produce a high information gain (IG) 

are omitted. In their place, derived features or features derived from other 

characteristics in the data are added. 

3.2.1 Filtering  

On the client side, filtering or allowing poisoned data may be an option. Given 

that customers, such as security gateways, have complete control of the training 

data, one possible option is to implement a poisoned data filtering or tolerating 

technique. The idea of employing already established poisoning protections for 

centralized learning, such as noisy data tolerance or outlier data mitigation, can 

be further investigated [15]. 

3.2.2 Normalization  

This pre-processing kind is important for the classification process because the 

learning step is sped up by performing normalization on the input data. Some 

form of data normalization may be required to prevent numerical issues such as 

loss of accuracy caused by arithmetic overflows. Regarding distance 

measurement, qualities with larger ranges have a greater impact than attributes 

with narrower ranges [16], however, this may be seen as a kernel of the pre-

processing step. The data are mapped onto an advantageous plane using another 

kernel approach called normalization, which enables calculations to be performed 

more easily. A sophisticated normalization procedure significantly increases the 

time required for processing due to the enormous amount of data. A quick and 

efficient strategy was chosen [17]. SoftMax Normalization is given this name 
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because it softly approaches both its maximum and minimum value, but it never 

quite arrives at either one.  

 𝑥′ =  
1

1+𝑒−𝑎 (1) 

where 𝑎 is  

 𝑎 =  
𝑥𝑖=𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑
 (2) 

The practically linear zone of the softmax is assigned to data points within a 

standard deviation of the mean. The transformation exhibits a smooth 

nonlinearity at both ends and is roughly linear in the intermediate range. The 

transformation ensures that no current value falls outside the output range of 0 to 

1, which covers the whole output range. 

3.2.1 Data Clustering 

K-means is a method used in machine learning that does not require human 

supervision. The foundation of this methodology is identifying groups within the 

data and a variable may be used to indicate the total number of groups. The K-

means approach is utilized rather frequently [18] when it comes to the process of 

determining patterns in time series data. It allows us to categorize the data into 

several categories and offers a workable approach to automatically determining 

those categories inside an unlabeled dataset without training [19]. It also allows 

us to classify the dataset into several categories automatically. Because this is a 

centroid-based technique, each cluster is provided with its own unique centroid. 

The primary purpose of this methodology is to cut down on the total distance 

between each data point and the clusters connected to it [20]. 

3.2.3 Feature Extraction 

Feature extraction using arithmetic features involves applying mathematical 

operations, such as mean, kurtosis, skewness, and moment, to raw data. This 

process helps highlight important characteristics or patterns in the data, making 

it easier for the machine learning model, like the optimized SVM, to detect and 

classify network intrusions effectively. 

3.2.4 Arithmetic Features 

Standard Deviation: The amount of difference in the spread of a collection of 

data in statistics is the standard deviation. Higher standard deviations are 

distributed across a wider range, whereas smaller standard deviations are 

typically set as means. The sample standard deviation formula is as follows: 
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 𝑠 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1  (3) 

where xi are the observed values, 𝑥̅ is the mean value, and N is the number of 

observations. 

Mean: The mean of a collection of observed data is determined by summing the 

numerical values of all the observations and dividing the result by the total 

number of observations [21]. The arithmetic means of a set of numbers x1, x2, ..., 

xn is typically denoted by 𝑥,̅ where n is the number of items in the sample: 

 𝑥̅ =
1

𝑛
(∑ 𝑥𝑖

𝑛
𝑖=1 )  =  

𝑥1 +𝑥2 + ⋯ +𝑥𝑛

𝑛
   (4) 

Kurtosis: The kurtosis is a statistic that expresses how tailed a real-valued random 

variable’s probability distribution is. The fourth standardized moment, which is 

known as the kurtosis, can be described as follows: 

  Kurtosis[X] = E [(
𝑋−𝜇

𝜎
)

4
] =

𝐸[(𝑋−𝜇)4]

(𝐸[(𝑋−𝜇)2])2  =   
𝜇4

𝜎4  (5) 

where μ4 is the fourth central moment, and σ is the standard deviation.  

Skewness: In statistics, the degree to which the probability distribution of a real-

valued random variable is asymmetrical concerning its mean is referred to as the 

variable’s skewness [22]. The skewness of a random variable X is the third 

standardized moment. 𝜇̃3 defined as follows: 

 𝜇̃3 = 𝐸 [(
𝑋−𝜇

𝜎
)

3
] =

𝜇3

𝜎3 =   
𝐸[(𝑋−𝜇)3]

(𝐸[(𝑋−𝜇)2])3 2⁄   =
𝑘3

𝑘2
3 2⁄       (6) 

where μ is the mean, and E is the expectation operator.  

Moment: In statistics, if the function represents mass, the entire mass corresponds 

to the zero-th moment [23].  

A real-valued continuous function f(x) of a real variable around a value c can be 

represented as follows: 

 𝜇𝑛 = ∫ (𝑥 − 𝑐)𝑛∞

−∞
𝑓(𝑥) 𝑑𝑥                                                                     (7) 

3.2.5 Discrete Derivatives (DDs)  

DD is based on computing the derivatives at each sample point of the spike 

waveform:  

 𝛿(𝑛)  =  𝑠(𝑛)  −  𝑠(𝑛 −  𝛿)      (8) 
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where s is the point indication, n is the trial point, and 𝛿 the time interruption. 

Three different values for the interruption: 𝛿 = 1, 3, 7. The strongest DD 

coefficients are chosen to reduce the dimensionality [24].  

3.3 Mathematical Model for Training SVM with AQ-KGMO-

DMG 

The optimization of key SVM hyperparameters is essential to mathematically 

model the training of a support vector machine (SVM) using Adaptive Quantum-

inspired KGMO with Dynamic Molecular Grouping (AQ-KGMO-DMG). These 

hyperparameters include the regularization parameter C, kernel parameters such 

as 𝛾 for the RBF kernel, and possibly others. AQ-KGMO-DMG is used to search 

for the optimal values. The fitness function is based on the SVM’s classification 

accuracy or another performance metric. 

Key Hyperparameters to Optimize in SVM 

Let’s consider the following hyperparameters for SVM: 

1. C (regularization parameter): controls the balance between maximizing 

margin and minimizing classification error. 

2. 𝛾 (kernel parameter for RBF kernel): governs the influence of individual 

training examples. 

3. Kernel type: specifies the kernel used in the SVM (e.g., linear, RBF, 

polynomial). 

4. Additional kernel parameters include, for example, the degree of the 

polynomial kernel. 

 
The goal is to find the optimal set of  𝜃 = {𝐶, 𝛾,kernel type} that minimizes the 

classification error of the SVM. 

Step 1: Initialization 

AQ-KGMO-DMG starts by initializing a population of gas molecules, where 

each molecule represents a candidate solution (i.e., a set of hyperparameters). 

Let 𝜃𝑖 = {𝐶𝑖, 𝛾𝑖, kernel type
𝑖
} be the i-th molecule (candidate solution), 𝑃 =

{𝜃1, 𝜃2, … , 𝜃𝑛} represent the entire population of n molecules. The search space 

for each molecule’s hyperparameters is: 

𝐶 ∈ [𝐶min, 𝐶max],  𝛾 ∈ [𝛾min, 𝛾max],  kernel type ∈ {linear,RBF,polynomial} 
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Step 2: Quantum-inspired Position Update 

Each molecule’s position 𝜃𝑖 (hyperparameter set) is updated probabilistically 

using quantum mechanics principles. The molecule’s new position is determined 

by its probability density function (PDF), allowing it to explore different regions 

of the search space. 

The wave function ψ(θ), modeled as a Gaussian distribution cantered around the 

molecule’s current position θ𝑖, and the PDF are expressed in Eq. (9): 

𝑃(θ𝑖) = |ψ(θ𝑖)|2 =
1

√2πσ2
exp (−

(θ𝑖−μ)2

2σ2 )                                 (9) 

where 𝜇 is the molecule’s current position, 𝜎 controls the spread of the quantum 

movement (initially large for exploration). 

The molecule’s new position is sampled from the following distribution: 

 θ𝑖
(𝑡+1)

∼ 𝒩 (μ𝑖
(𝑡)

, σ𝑖
(𝑡)

) (10) 

The quantum-inspired tunnelling mechanism helps molecules escape local 

optima by probabilistically moving them to distant areas of the search space. 

Step 3: Fitness Function (SVM Performance Evaluation) 

The fitness of each molecule is evaluated by training an SVM using the 

corresponding hyperparameters and measuring its classification performance 

(e.g., using cross-validation accuracy). Let 𝑓(θ𝑖) represent the fitness function: 

 𝑓(θ𝑖) =
1

𝑘
∑ Accuracy(SVM(θ𝑖), 𝐷𝑗)𝑘

𝑗=1    (11) 

where k is the number of cross-validation folds, 𝐷𝑗 is the training data for fold j,  

SVM(θ𝑖) is the SVM trained with hyperparameters  θ𝑖, and accuracy is the chosen 

performance metric. 

The objective is to minimize classification error (or equivalently, maximize 

accuracy): 

min
θ

(1 − 𝑓(θ))  (12) 

Step 4: Dynamic Molecular Grouping (DMG) 

Molecules are grouped based on their fitness values. Define a fitness threshold T 

and divide the molecules into two groups: 
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Exploitation group: Molecules with fitness  𝑓(𝜃) ≥ 𝑇 undergo local refinement. 

Exploration group: Molecules with fitness  𝑓(𝜃) < 𝑇 explore new regions of the 

search space. 

For the exploitation group, the Gaussian distribution’s variance σ is reduced to 

focus on fine-tuning. For the exploration group, the variance 𝜎 is increased to 

encourage broader exploration: 

σ𝑖
(𝑡+1)

= {
𝜎𝑖

(𝑡)
. α 𝑓(𝜃) ≥ 𝑇

𝜎𝑖
(𝑡)

/α 𝑓(𝜃) < 𝑇
 } (13) 

where α is a factor that controls the adjustment of 𝜎 (with α <  1 ). 

 Step 5: Adaptive Parameter Control 

– Energy-Based Learning Rate: The learning rate  η𝑖
(𝑡)

 for updating a molecule’s 

position is adjusted based on its fitness: 

η𝑖
(𝑡+1)

= η𝑖
(𝑡)

⋅ (1 −
𝑓(θ𝑖

(𝑡)
)

𝑓best
)  (14) 

where  𝑓best is the best fitness achieved so far. 

– Adaptive Temperature: The temperature  𝑇𝑖
(𝑡)

, which governs the exploration 

range, is dynamically adjusted based on the population diversity. If the population 

converges prematurely, the temperature is increased to promote exploration: 

𝑇𝑖
(𝑡+1)

= 𝑇𝑖
(𝑡)

⋅ (1 +
Diversity

𝑁
)   (15) 

where Diversity is the variance of fitness values in the population and N is the 

number of molecules. 

Step 6: Fitness Memory and Reinforcement Learning 

Each molecule maintains a memory of its best fitness values and 

hyperparameters. The reinforcement learning mechanism updates the molecule’s 

position based on past success: 

θ𝑖
(𝑡+1)

= θ𝑖
(𝑡)

+ η𝑖
(𝑡)

⋅ Δθ𝑖
(𝑡)

⋅ 𝟙{𝑓 (θ𝑖
(𝑡)

) > 𝑓mem}  (16) 

where  𝑓mem is the best fitness in memory, and  𝟙{⋅}  ensures updates are only 

made if the current fitness exceeds the stored value. 
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Step 7: Convergence and Solution 

AQ-KGMO-DMG continues iterating until a stopping criterion is met, such as 

reaching the maximum number of iterations or achieving satisfactory accuracy. 

The optimal SVM hyperparameters correspond to the molecule with the best 

fitness: 

θopt = arg max
θ

𝑓 (θ) (17) 

Table 1 Parameter specification of SVM 

Parameter Method 

Iteration 800 

Step size 500 

Batch size 300 

Weight decay 0.00004 

Optimizer ADAM 

Degree 3 

Kernel rbf 

4 Results and Discussions 

For the performance analysis, a PC was utilized with 64-bit Windows 10 Pro 

installed, an Intel i7-7700 processor with four cores clocked at 3.60 GHz, and 12 

gigabytes of main memory. The simulation model for this experiment was created 

using the Matlab 2014a program. The datasets were obtained from the UNSW-

NB15 and NSL-KDD databases. 

4.1 Datasets 

Many datasets are at one’s disposal to assess network intrusion detection systems. 

Many academics utilize datasets such as KDDCUP99 and UNSW-NB15 to 

evaluate the quality of their work because they are among the most extensively 

used datasets. 

4.1.1 KDDCup99 

One of the most well-known benchmark datasets for IDS research is called 

KDDCup99 [25]. The almost 5 million feature vectors that comprise the 

collection represent a single connection record with 41 attributes, including 

numeric and category information [26]. Three of these 41 characteristics are 

categorical and must be pre-processed using label encoding.  

 



Securing IoT-Cloud Applications with AQ-KGMO-DMG               187 

4.1.2 UNSW-NB15 

The Australian Centre for Cyber Security's (ACCS) Cyber Range Lab has 

generated the UNSW-NB15 by combining genuine everyday activities with 

fictitious modern attack behaviors. In addition to regular traffic, it includes nine 

actual assault scenarios [27]. There are over 2.5 million packets that have been 

recorded and made public. This data collection is accessible in BroIDS, csv, pcap, 

and argus formats. In addition to the total traffic, the authors extracted 10% of the 

data from the whole data set and stored it in csv files. The most recent benchmark 

data set for the NIDS scenario is this one. 

4.2 Performance Metrics 

A high accuracy requires high precision and trueness since accuracy, as defined, 

is a blend of all observational error types. The following is the procedure for 

calculating accuracy.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (18) 

where TP = True positive; FP = False positive; TN = True negative; FN = False 

negative. 

The sensitivity (Se) expressed as  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
 𝑇𝑃

 𝑇𝑃+ 𝐹𝑁
  (19) 

The specificity can be expressed as 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (20) 

The precision (Pr) is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
 𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 (21) 

4.3 Result Analysis 

Table 2 shows the accuracy of classified attacks for KDDCup99. For each attack 

category identified within the KDDCup99 dataset, the table provides accuracy, 

sensitivity, and specificity measurements. The Normal category showed an 

accuracy of 97.56%, sensitivity of 98.14%, and specificity of 96.49%. In the DoS 

category, an accuracy of 98.12% was achieved, with a sensitivity of 97.86% and 

a specificity of 98.13%. For Probe attacks, an accuracy of 98.74% was attained, 

with a sensitivity of 97.96% and a specificity of 97.82%. U2R attacks 

demonstrate an accuracy of 97.16%, a notably high sensitivity of 99.73%, and a 
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specificity of 99.16%. Finally, in the R2L category, an accuracy of 99.46% was 

reported, along with a sensitivity of 98.89% and a specificity of 96.49%. 

Table 2 Accuracy for classified attacks for KDDCup99 

 SVM without optimization 
SVM with AQ-KGMO-DMG 

optimization 

Attacks Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Normal 88.63 76.12 45.36 97.56 98.14 96.49 

DoS 74.20 72.28 80.10 98.12 97.86 98.13 

Probe 62.35 85.62 74.02 98.74 97.96 97.82 

U2R 79.02 58.13 64.31 97.16 99.73 99.16 

R2L 72.36 63.42 63.04 99.46 98.89 96.49 

Table 3 depicts the accuracy of classified attacks for UNSW-NB15. For each 

categorized attack within the UNSW-NB15 dataset, this table presents the 

accuracy, sensitivity, and specificity measurements achieved by the classification 

model. The Fuzzer category obtained an accuracy of 94.52%, a sensitivity of 

96.34%, and a specificity of 97.19%. In the Backdoor category, an accuracy of 

97.24% was achieved, along with a sensitivity of 97.52% and a specificity of 

97.76%. The Analysis category demonstrated an accuracy of 98.31%, a high 

sensitivity of 99.17%, and a specificity of 98.32%. Similarly, Reconnaissance 

attacks showed an accuracy of 96.35%, a sensitivity of 98.45%, and an impressive 

specificity of 99.84%. Exploits achieved an accuracy of 98.85%, with a 

sensitivity of 99.41% and a specificity of 97.20%. Generic, DoS, shell code, and 

worms categories also showed varying levels of accuracy, sensitivity, and 

specificity in their classification. 

Table 3 Accuracy for classified attacks for UNSW-NB15 

Attacks Accuracy Sensitivity Specificity 

Fuzzer 94.52 96.34 97.19 

Backdoor 97.24 97.52 97.76 

Analysis 98.31 99.17 98.32 

Reconnaissance 96.35 98.45 99.84 

Exploits 98.85 99.41 97.20 

Generic 98.74 94.37 92.63 

DoS 93.67 97.47 98.52 

Shellcode 97.74 94.85 98.74 

Worms 98.77 97.81 98.70 

Table 4 shows the performance of KDDCup99 based on training and testing ratio. 

For the different combinations of training and testing ratios, the corresponding 

accuracy, sensitivity, and specificity metrics were recorded. When the training-

testing split was set at 30-70, the accuracy achieved was 59.79%, with a 

sensitivity of 54.74% and a specificity of 57.18%. As the training proportion 
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increased to 40% with a corresponding testing ratio of 60%, the accuracy 

improved to 61.84%, demonstrating an increase in model performance. Notably, 

at an equal split of 50% for training and testing, the accuracy notably increased 

to 69.48%, with a sensitivity of 77.24% and a specificity of 79.45%, suggesting 

a balanced dataset split facilitated enhanced model learning. Further, with a 

training ratio of 60% and a testing ratio of 40%, a substantial accuracy of 89.41% 

was achieved, indicating improved model performance with a higher emphasis 

on training data. The highest accuracy of 99.5% was attained when 70% of the 

data was used for training and 30% for testing, demonstrating remarkable model 

proficiency in this configuration. 

Table 4 Performance of KDDCup99 based on training and testing ratio 

Training Testing Accuracy Sensitivity Specificity 

30 70 59.79 54.74 57.18 

40 60 61.84 67.54 73.15 

50 50 69.48 77.24 79.45 

60 40 89.41 81.63 87.31 

70 30 99.5 99.45 99.42 

Table 5 shows the performance of UNSW-NB15 based on the training and testing 

ratio. At a training-testing split of 30-70, the accuracy observed was 54.35%, with 

a sensitivity of 53.74% and a specificity of 56.89%. As the proportion of training 

data increased to 40% with a corresponding 60% testing ratio, the accuracy 

notably improved to 59.49%, demonstrating enhanced model performance. 

Equally balanced splits of 50% for training and testing resulted in a significantly 

higher accuracy of 87.36%, with a sensitivity of 76.89% and a specificity of 

78.97%, indicating the effectiveness of a balanced dataset distribution in model 

learning. When the training ratio was increased to 60% with a testing ratio of 

40%, a notable accuracy of 93.46% was achieved, showing substantial 

improvement in model performance with a larger emphasis on training data. The 

highest accuracy of 99.37% was obtained when 70% of the data was allocated for 

training and 30% for testing, showcasing exceptional model proficiency in this 

particular split configuration. 

Table 5 Performance of UNSW-NB15 based on training and testing ratio 

Training Testing Accuracy Sensitivity Specificity 

30 70 54.35 53.74 56.89 

40 60 59.49 63.47 64.79 

50 50 87.36 76.89 78.97 

60 40 93.46 82.18 82.61 

70 30 99.37 98.36 99.17 

Table 6 shows the comparative performance of existing work. The CNN [5] 

method achieved an accuracy of 98.84% and a precision of 97.84%. However, 
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specific sensitivity and specificity values were not provided for this model. 

FedACNN [22] method attained an accuracy of 98.73% with a precision of 

94.67%. Similar to the CNN model, detailed sensitivity and specificity values 

were not specified. LSTM [23] method obtained an accuracy of 98.87% and a 

specificity of 98.26%. However, the sensitivity value is not explicitly stated. This 

work demonstrated a notably higher accuracy of 99.5% compared to the other 

methods listed. 

Table 6 Comparative performance of existing work 

Methods Accuracy Sensitivity Specificity Precision 

CNN [5] 98.84 - - 97.84 

FedACNN [22] 98.73 - - 94.67 

LSTM [23] 98.87   98.26 

AQ-KGMO-DMG 99.5 99.45 99.42 99.56 

The diagram in Figure 2 illustrates the performance of an AQ-KGMO-DMG-

optimized IDS across different network attacks from the UNSW-NB15 dataset, 

evaluated by accuracy, sensitivity, and specificity. Accuracy (green) reflects the 

system’s ability to correctly identify both normal and intrusive traffic. Sensitivity 

(blue) measures its capacity to detect actual attacks, and specificity (yellow) 

shows how well it minimized false positives. The IDS demonstrated high 

accuracy for most attack types, especially Analysis and Exploits, while some 

variability was observed for Generic and DoS, indicating areas for further 

refinement. 

 

Figure 2 Performance of attacks for UNSW-NB15. 
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The diagram in Figure 3 showcases the performance of an IDS optimized using 

the AQ-KGMO-DMG technique on the KDDCup99 dataset, evaluated by 

accuracy, sensitivity, and specificity. 

 

Figure 3 Performance attacks for KDDCup99. 
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as for Normal and DoS, while off-diagonal values indicate misclassifications, 

which are minimal. This demonstrates the effectiveness of the AQ-KGMO-DMG 

optimization in enhancing the SVM’s ability to classify network traffic 

accurately, minimizing detection errors. 

 

Figure 4 Confusion matrix of UNSW-NB15 dataset. 

 

Figure 5 Confusion matrix of KDDCup99 dataset. 
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5 Conclusions 

This study proposed an intrusion detection system specifically designed for the 

IoT domain using AQ-KGMO-DMG optimization techniques. IDS operates by 

performing several critical processes, such as filtering, normalization, and data 

clustering on the dataset’s inherent properties during the initial data preparation 

phase. These steps help in refining and structuring the data for further analysis. 

Once the features are extracted, they are fed into an SVM during the training 

phase. This enables the IDS to effectively learn the distinction between normal 

and abnormal data patterns, ensuring accurate classification during real-time 

detection. The model’s capacity to separate regular from anomalous behavior is 

critical in safeguarding IoT networks, which are particularly vulnerable to 

sophisticated cyber threats. The training and testing procedures for the IDS were 

conducted using the authentic UNSW-NB15 datasets, with the training set 

employed for learning the data patterns and the test set used to evaluate the 

performance. Additionally, the sampled data from these sets served as the 

experimental benchmark for validating the system’s effectiveness.  

The performance of the proposed IDS was exceptional, achieving an accuracy 

rate of 99.50%, a sensitivity of 99.45%, a specificity of 99.42%, and a precision 

of 99.50%. These metrics are vital in determining the system’s ability to correctly 

identify true positives while minimizing false positives and ensuring the model’s 

precision in detection. These results collectively emphasize the robustness and 

efficiency of the proposed intrusion detection model, highlighting its ability to 

precisely and reliably detect anomalies in IoT networks, making it a strong 

contender for enhancing security within the IoT ecosystem. 
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