
 

112 

 

ITB J. ICT, Vol. 6, No. 2, 2012, 112-130 
 

 

Received April 4
th
, 2012, Revised August 14

th
, 2012, Accepted for publication August 27

th
, 2012. 

Copyright © 2012 Published by LPPM ITB, ISSN: 1978-3086, DOI: 10.5614/itbj.ict.2012.6.2.2 

A Low-Complexity and High-Throughput RTL Design  

of a BCH (15,7) Decoder 

Hendra Setiawan 

Electrical Engineering Department, Islamic University of Indonesia 
Jl. Kaliurang Km.14.5 Yogyakarta, Indonesia, 55583  

Email: hendra.setiawan@uii.ac.id 

 

 

Abstract. The Bose, Chaudhuri and Hocquenghem (BCH) codes form a large 

class of powerful random-error correcting cyclic codes. However, the 

implementation of its decoder requires high-complexity computation resources 

with a huge number of sequential circuits. This paper presents a low-complexity 

register transfer level (RTL) circuit design of a BCH decoder. In accordance with 

the table relationship between the syndrome and the error bit position, we 

propose a circuit that is mostly occupied by combinational elements without any 

sequential evolvement. Therefore the designed system has a low complexity and 
high throughput properties. The implementation of the BCH (15,7)decoder on 

Virtex 5 FX70TFF1136 requires 77 look-up tables (LUTs) with the maximum 

throughput reaching 1.7 Gbps. 

Keywords: BCH decoder; cyclic code; error correction; RTL; syndrome. 

1 Introduction 

Today, error-correcting codes are used throughout digital communication 
systems. Satellite communications, cell-phones, compact disc players, DVDs, 

disk drives, two-dimensional bar code systems and many other communication 

devices use varying amounts of error control to achieve a certain degree of 
accuracy in transmitting information. The Binary Bose, Chaudhuri and 

Hocquenghem (BCH) codes, discovered by Hocquenghem in 1959 and 

independently investigated by Bose and Chaudhuri in 1960, are a remarkable 

generalization of the Hamming codes for multiple-error correction. BCH codes 
containing Reed-Solomon codes have been widely adopted in practical error-

control applications, owing to their good performance against degradation and 

the flexibility they allow in setting appropriate parameters [1]. Digital Video 
Broadcasting (DVB) [2] and Worldwide Interoperability for Microwave Access 

(WiMAX) [3] are examples of current standards that utilize BCH in their 

system.  

One of the well-developed algorithms to decode binary BCH code uses a 

Euclidean algorithm [4]. However, its process requires high computation 

resources due to the error-locator polynomial. Other algorithms are step-by-step 



 RTL Design of BCH (15,7) Decoder 113 
 

algorithms [5],[6] that consist of procedure tests to check whether the error 

pattern weight falls by changing the received symbols one at a time. This 

decoding procedure does not terminate until the error pattern weight has been 

reduced to zero or all received information symbols have been tested. Hence, 
this is called an iterative method of decoding. Even though the hardware 

implementation [7] is less complex than that of the first decoding algorithm, the 

throughput may not be higher due to the iterative procedures.  

In this paper, we propose a simple hardware implementation procedure with low 

complexity and high throughput properties. This simple combinational circuit 

was developed based on the table relationship between the syndrome and the 

error bit position. Thus, a low-complexity BCH decoder could be developed. 
Furthermore, the decoder throughput could be increased by employing 

pipelining and parallelization. 

This paper is organized as follows. In Section 2, the architecture of the encoder 
and the decoder is detailed. The design complexity is explained in Section 3. In 

Section 4, the compilation and synthesis results are presented. Finally, 

conclusions are drawn in Section 5. 

2 Architecture Description 

2.1 Encoder Specification 

The architecture of a BCH encoder using shift register has been introduced by 

Massy in 1969 [8]. This paper considers a BCH (15,7) encoder consisting of 7 

information bits and 8 parity bits as target implementation. The sending bit (SB) 

of this BCH (15,7) encoder are based on the polynomial given by: 

 

 

7

7

6

6

5

5

4

4

3

3

2

2

1

10

14

6

13

5

12

4

11

3

10

2

9

1

8

0

xrxrxrxr

xrxrxrrxuxu

xuxuxuxuxuxS B







 (1) 

where u0, u1, u2, u3, u4, u5, u6 represent information, and r0, r1, r2, r3, r4, r5, r6, r7 

express the parity bits. This can be implemented using the remainder 

polynomial, based on: 

 
7648 1 xxxx  . (2) 

Furthermore, Eq. (2) can be realized by a simple circuit, as shown in Figure 1, 

where u6, u5, …, u0 inputted serially in signal input port (SIN), and r7, r6, …, r0 

generated after seven clock cycles. 



114 Hendra Setiawan 

 

Figure 1 Circuit implementation of the BCH (15,7) encoder. 

 
A parallel process to get the parity bits is introduced in order to reach a higher 

throughput. Parallel computation is performed based on the remainder 

polynomial of 

 

         
     14

6

13

5

12

4

11

3

10

2

9

1

8

0

xuxuxu

xuxuxuxuxR




   . (3) 

Based on Eq. (2), we can derive the remainder polynomial x
9
, x

10
, x

11
, x

12
, x

13 

and x
14

,and then substitute to Eq. (3). Hence, we get 

 

       

   

   

  7

620

6

65210

5

65421

4

54310

3

643

2

532421310

xuuu

xuuuuuxuuuuu

xuuuuuxuuu

xuuuxuuuuuuxR









 (4) 

Therefore,  3100 uuur  ;  
4211 uuur  ; 

 5322 uuur  ;  6433 uuur  ; 

543104 uuuuur  ;  654215 uuuuur  ; 

652106 uuuuur  ;  6207 uuur 
.
 

 

Eq. (4) can be realized easily in a circuit, as shown in Figure 2, where the adder 
symbol is implemented using XOR gates. 

 



 RTL Design of BCH (15,7) Decoder 115 
 

U0 U1 U2 U3 U4 U5 U6

+ + + + + + + +

r0 r1 r2 r3 r4 r5 r6 r7

 

Figure 2 Parallel computation of a BCH (15,7) encoder. 

2.2 Proposed BCH (15,7) Decoder 

This paper proposes parallel computation for the BCH (15,7) decoder to reach a 

higher throughput. The proposed system consists of 7 main blocks, as shown in 

Figure 3.  

Syndrome S1

Syndrome S2

Error Possibility 1

Detection

Error Possibility 2

Detection

Column Group

Detection

Error

Correction

Error Possibility 2

Decoder

[14:0] [3:0]

[14:0]

[4:0] [3:0] [14:0]

[3
:0

]

[3:0]

[14:0]

[3
:0

]

[3:0]

[14:0]

[14:0]

RBWE

RBEC

 

Figure 3 Block diagram of the BCH (15,7) decoder. 

2.2.1 Syndrome Calculation 

In this process, syndrome blocks S1 and S2 generate the syndrome bits of 

received bits with error (RBWE). The generation polynomial G(x) for error-

checking is given by, 

   41 xxxG1   (5) 

   4321 xxxxxG2  . (6) 



116 Hendra Setiawan 

 

G1(x) and G2(x) are related to syndrome S1 and syndrome S2 respectively. If 

there is no error in the received code, both the remainder polynomial of G1(x) 

and that of G2(x) remain zero. Suppose the received bits with error (RBWE) are 
expressed as, 

 

 

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

0

9

1

1 0

2

1 1

3

1 2

4

1 3

5

1 4

6

ˆˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆˆˆ

rxrxrxrxr

xrxrxrxuxu

xuxuxuxuxuxRBW E







  . (7) 

Based on Eq. (5), we can derive the remainder polynomial for x
5
, x

6
,…,x

14  
and 

then substitute it in Eq.(7), hence syndrome S1 is: 

 

       
     
       
  0

1

1

2

2

3

34

2

5

32

6

3

7

2

0

3

1

2

2

32

3

32

4

32

5

3

6

ˆˆˆˆ1ˆ

ˆˆ1ˆ1ˆ

ˆ1ˆˆ

1ˆ1ˆ1ˆ

rxrxrxrxr

xxrxxrxxrxu

xxuxxuxxxu

xxxuxxuxuxS 1









. (8) 

Thus,  

   04702456
ˆˆˆˆˆˆˆˆ0 rrruuuuuS1  ; 

   14571234
ˆˆˆˆˆˆˆˆ1 rrrruuuuS1  ;  

   25602345
ˆˆˆˆˆˆˆˆ2 rrruuuuuS1  ; 

   36713456
ˆˆˆˆˆˆˆˆ3 rrruuuuuS1 

.
 (9) 

 

In the same way, syndrome S2 can be expressed as, 

  045126
ˆˆˆˆˆˆ0 rrruuuS2  ;   146136

ˆˆˆˆˆˆ1 rrruuuS 2  ;  

  247146
ˆˆˆˆˆˆ2 rrruuuS2  ;   340156

ˆˆˆˆˆˆ3 rruuuuS 2   (10) 

By replacing each (+) sign with an XOR gate, in total 48 XOR gates are required 

for the syndrome calculation block. However, this can be reduced by sharing the 

same logic, such as û6 XOR û5, used in S1(3) as well as in S1(0). This will 

reduce the number of XOR gates from 48 to 37. 

2.2.2 Error Position Detection 

The next process is error position detection based on the values of syndrome S1 

and S2. Eq. (10) will be re-applied and rearranged, becoming: 



 RTL Design of BCH (15,7) Decoder 117 
 

      416052
ˆˆˆˆˆˆ0 ruurruS2   

      416163
ˆˆˆˆˆˆ1 ruurruS2   

      416274
ˆˆˆˆˆˆ2 ruurruS2   

      416305
ˆˆˆˆˆˆ3 ruuruuS2   (11) 

It is clear that an error occurs in û2, 5̂r or 0̂r and has only resulted on S2(0). In the 

same way, an error in û4, 7̂r or
2̂r only has an effect on S2(2). In Table 1, from 

the table relationship between the syndrome bits and error bits position, it can 
be seen that they occupy the same column. Thus, there are 5 column groups 

(CG), i.e.  

CG0, consisting ofû2, 5̂r  and 0̂r , corresponds to S2 = “1000”; 

CG1, consisting of û3, 6̂r  and
1̂r , corresponds to S2 = ”0100”; 

CG2, consisting of û4, 7̂r  and
2̂r , corresponds to S2 = “0010”; 

CG3, consisting of û5,û0 and 3̂r , corresponds to S2 = “0001”; 

CG4, consisting of û6,û1 and
4̂r , corresponds to S2 = “1111”. 

Table 1 Relation between syndrome bits and error bits position. 

Error 

Position 
S2 (S20, S21, S22, S23) 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

S
1

 (
S

1
0
, 

S
1

1
, 
S

1
2
, 
S

1
3
) 

0000 None                
0001 8,13 3     2,6 0,14   10,12 1,9 5,11 4,7   
0010 7,12  2   3,6  4,10  0,8  9,11 1,5  13,14  
0011 1,11   2,3 6   5,9  0,13 7,10   4,12 8,14  
0100 6,11   12,13 1   0,4  8,10 2,5   7,14 3,9  
0101 4,14   8,12  1,3 2,11   10,13 0,7  5,6   9 
0110 0,10   7,13  3,11 1,2  5   6,9  12,14 4,8  
0111 1,6   7,8 11   10,14  3,5 0,12   2,9 4,13  
1000 5,10   2,8  6,13 11,12  0   1,4  7,9 3,14  
1001 4,9   2,13  6,8 1,7   0,3 5,12  10,11   14 
1010 3,13 8     7,11 4,5   0,2 6,14 1,10 9,12   
1011 3,8 13     1,12 9,10   5,7 4,11 0,6 2,14   
1100 9,14   3,7   11,13 6,12   5,8 2,10  0,1   4 
1101 2,12  7   8,11  0,9  5,13  1,14 6,10  3,4  
1110 0,5   3,12  1,8 6,7  10   11,14,  2,4 9,13  
1111 2,7  12   1,13  5,14  3,10  4,6 0,11  8,9  

 
Therefore, the recognition of a CG can be based on the position of bit „1‟ in S2. 

For example, S2 = “0101” means there is an error in CG1 and an error in CG3.  

However, if an error in CG4is introduced from another CG, the recognition 

scheme becomes different. For example, an error occurs in CG4 as well as an 
error in CG2, where S2 = “1101” cannot be recognized from the bit „1‟ position. 

In this case, an inverter is required before recognition of the bit „1‟ position 

takes place. However, the inverter only works if the number of bit „1‟ is more 



118 Hendra Setiawan 

than two. Therefore, the code group detection system consists of the number of 

bit „1‟ calculation, selectors, and bit „1‟ position recognition. 

The first component in the code group detection system is the number of bit „1‟ 

calculation. A 4-bit adder can be used to implement it. However, it may need 
big resources since an adder consist of XOR and AND gates in four bits. Since 

our target does not actually count the number of bit „1‟ but only recognizes that 

the number of bit „1‟ is more than two, we propose a combinational circuit that 
only uses four AND gates and three OR gates. This is expressed in term of 

syndrome S2 as SEL. 

SEL is „1‟ when the number of bit „1‟ within S2 bits is more than two. This 

equation also expresses CG4 detection, since CG4 always exists if the number 
of bit „1‟ is more than two. The next component is the selector. Its function isto 

select between S2 and (NOTS2). The XOR gate has been chosen as the selector. 

The inputs are S2 and SEL, and the output belongs to the code group. 
Therefore, bit „1‟ position recognition is no longer required. Finally, the code 

group detection circuit shown in Figure 4consists of 4 AND gates, 3 OR gates, 

and 4 XOR gates. 

S2(3)

S2(2)

S2(1)

S2(0)

CG4

CG３

CG２

CG１

CG０

（Number of bit '1'） > ２　
Detector

Selector
 

Figure 4 Code group detection circuit. 

Furthermore, to simplify the error detection process, we divide the error 

possibilities into two groups: error possibility 1 (EP1) and error possibility 2 
(EP2). EP1 consists of two errors occurring at the same time and in the same 

CG. Notice Eq. (11), when two errors in the same CG occur at the same time, it 

makesS2 = “0000”. In the next discussion, all error possibilities in the S2 = 
“0000” column of Table 1 are categorized as EP1. 

SEL 



 RTL Design of BCH (15,7) Decoder 119 
 

The next error group is error possibility 2 (EP2). This group includes all errors 

in every column of Table 1 except column S2 = 0000. Note that “all errors” 

means, all errors that can be recognized and recovered by this error correction 

algorithm.  

2.2.2.1 Error Possibility 1 (EP1) 

EP1 occurs when two errors come from the same CG. The property of this case 

is syndrome S2 = “0000” AND S1 “0000”. The only way to detect the errors is 
direct mapping between S1 and the error bit position within 15 received bits. 
Based on Table 1, column S2 = “0000”, the combinational circuit for 

ERROR1(14:0) can be expressed as: 

ERROR1(14) =  S1_12 OR S1_5 ERROR1(13) =  S1_1 OR S1_10 
ERROR1(12) =  S1_2 OR S1_13 ERROR1(11) =  S1_4 OR S1_3 

ERROR1(10) =  S1_6 OR S1_8  ERROR1(9) =  S1_9 OR S1_12 

ERROR1(8) =  S1_1 OR S1_11  ERROR1(7) =  S1_2 OR S1_15 

ERROR1(6) =  S1_4 OR S1_7  ERROR1(5) =  S1_8 OR S1_14 
ERROR1(4) =  S1_5 OR S1_9  ERROR1(3) =  S1_10 OR S1_11 

ERROR1(2) =  S1_13 OR S1_15 ERROR1(1) =  S1_3 OR S1_7 

ERROR1(0) =  S1_6 OR S1_14 (12) 

where, 

S1_1 = (NOT S1(0)) AND (NOT S1(1)) AND (NOT S1(2)) AND S1(3) 

S1_2 = (NOT S1(0)) AND (NOT S1(1)) AND S1(2) AND (NOT S1(3)) 

S1_3 = (NOT S1(0)) AND (NOT S1(1)) AND S1(2) AND S1(3) 
S1_4 = (NOT S1(0)) AND S1(1) AND (NOT S1(2)) AND (NOT S1(3)) 

S1_5 = (NOT S1(0)) AND S1(1) AND (NOT S1(2)) AND S1(3) 

S1_6 = (NOT S1(0)) AND S1(1) AND S1(2) AND (NOT S1(3)) 
S1_7 = (NOT S1(0)) AND S1(1) AND S1(2) AND S1(3) 

S1_8 = S1(0) AND (NOT S1(1)) AND (NOT S1(2)) AND (NOT S1(3)) 

S1_9 = S1(0) AND (NOT S1(1)) AND (NOT S1(2)) AND S1(3) 
S1_10 = S1(0) AND (NOT S1(1)) AND S1(2) AND (NOT S1(3)) 

S1_11 = S1(0) AND (NOT S1(1)) AND S1(2) AND S1(3) 

S1_12 = S1(0) AND S1(1) AND (NOT S1(2)) AND (NOT S1(3)) 

S1_13 = S1(0) AND S1(1) AND (NOT S1(2)) AND S1(3) 
S1_14 = S1(0) AND S1(1) AND S1(2) AND (NOT S1(3)) 

S1_15 = S1(0) AND S1(1) AND S1(2) AND S1(3)  

This requires 45 AND gates, 15 OR gates and 28 NOT gates. However, sharing 
computation is introduced in S1_1 to S1_15, so that: 



120 Hendra Setiawan 

S1_1 = C1_00 AND C0_01  S1_2 = C1_00 AND C0_10 

S1_3 = C1_00 AND C0_11 S1_4 = C1_01 AND C0_00 

S1_5 = C1_01 AND C0_01 S1_6 = C1_01 AND C0_10 

S1_7 = C1_01 AND C0_11 S1_8 = C1_10 AND C0_00 
S1_9 = C1_10 AND C0_01 S1_10 = C1_10 AND C0_10 

S1_11 = C1_10 AND C0_11 S1_12 = C1_11 AND C0_00 

S1_13 = C1_11 AND C0_01 S1_14 = C1_11 AND C0_10 
S1_15 = C1_11 AND C0_11  (13) 

where, 

C1_00 = (NOT S1(0)) AND (NOT S1(1))  

C1_01 = (NOT S1(0)) AND S1(1) 
C1_10 = S1(0) AND (NOT S1(1))  

C1_11 = S1(0) AND S1(1) 

C0_00 = (NOT S1(2)) AND (NOT S1(3))  
C0_01 = (NOT S1(2)) AND S1(3) 

C0_10 = S1(2) AND (NOT S1(3))  

C0_11 = S1(2) AND S1(3) 

This scheme only needs 23 AND gates (a half less than before) and 8 NOT gates 

(reduced to 28%).  

EP1 consists of three parts, as shown in Figure 5. The first part computes 

C0_00, C0_01, C0_10, C0_11, C1_00, C1_01, C1_10 and C1_11 
simultaneously. The second part computes S1_1 up to S1_14 as expressed in 

Eq. (13). The last part computes ERROR1(14:0) based on Eq. (12). All 

computations are done without buffer and latency. Finally, the EP1 block 
requires 23 AND gates, 15 OR gates and 8 NOT gates. 

 

Figure 5 Block diagram of EP1. 



 RTL Design of BCH (15,7) Decoder 121 
 

2.2.2.2 Error Possibility 2 (EP2) 

Error detection in this group is performed based on the code group and 

syndrome S1. There are 105 possible error positions in this group. The detection 
concept consists of three steps. First, the code group is used to generate a 

maximum of nine candidates in term of syndrome Ŝ1. Next, all possible 

combinations of the syndrome Ŝ1candidates are prepared and compared with the 

actual syndrome S1. As a result, a syndrome Ŝ1 candidate that has the same 
pattern as the actual syndrome S1 is recognized. Finally, this result is converted 

to the error position, within 0 to 15. The general architecture of EP2 detection is 

shown in Figure 6. Each step is explained in detail below. 

Step 1

Step 2

Step 3

CG(4…0)

same_ind

Comp1_out1(7…0)

Comp1_out2(7…0)

Comp1_out1(10…8)

Comp1_out2(10…8)

C
o

m
p
2

_
o

u
t0

C
o

m
p
2

_
o

u
t2

C
o

m
p

2
_

o
u

t3

C
o

m
p

2
_

o
u

t4
Syndrome S1 

(3…0)

Out_pos1

Out_pos2

C
o

m
p

2
_
o

u
t1

C
o

m
p

2
_

o
u

t5

 

Figure 6 General architecture of EP2. 

The main process of Step 1 is to generate all Ŝ1 candidates based on the 

received code group (CG). A maximum of two groups can be detected at the 

same time, where each group belongs to three Ŝ1 candidates; a maximum of 

nine Ŝ1 candidate combinations are produced in the Step 1 block. The Ŝ1 
candidates are based on Table 1. They are: 

CG0Ŝ1 = “1000”, “0110”, “1110” 

CG1Ŝ1 = “0100”, “0011”, “0111” 
CG2Ŝ1 = “0010”, “1101”, “1111” 

CG3Ŝ1 = “0001”, “1010”, “1011” 

CG4Ŝ1 = “1100”, “0101”, “1001”. 

Note that S1, S2 and Ŝ1 have the same configuration, where the most left is the 

least significant bit (LSB –e.g. S1(0)) and the most right is the most significant 

bit (MSB –e.g. S1(3)). 



122 Hendra Setiawan 

Notice that one Ŝ1 occurring in a CG is equal to the XOR of two other Ŝ1s. 

Therefore, two Ŝ1s must be mentioned in the process of Step 1. The details of 

the architecture of Step 1 are shown in Figure 7; it consists of ten selectors and a 

comparator to recognize a single error, since a single error will give the same 
value in both outputs. The ten bits on each selector represent two Ŝ1s (each 4 

bits) and a representative error position (3 bits). 

`0`

`1`
`0`

`1`
`0`

`1`
`0`

`1`
`0`

`1`

‘0’

CG(0)

Comp1_out1 

(10 bits)

Comp1_out1 

(10 bits)

`0`

`1`

`0`

`1`
`0`

`1`
`0`

`1`
`0`

`1`

CG(0)

CG(1)

CG(1)

CG(2)

CG(2)

CG(3)

CG(3)

CG(4)

CG(4)

Comparator

[1
0

:8
]

[1
0

:8
]

Same 

ind

Pattern CG0 = 

000 1000 0110

Pattern CG0 = 

000 1000 0110

Pattern CG1 = 

001 0100 0011

Pattern CG1 = 

001 0100 0011

Pattern CG2 = 

010 0010 1101

Pattern CG2 = 

010 0010 1101

Pattern CG3 = 

011 0001 1010

Pattern CG3 = 

011 0001 1010

Pattern CG4 = 

100 1100 0101

Pattern CG4 = 

100 1100 0101  

Figure 7 Detailed architecture of Step 1. 

The main process of Step 2 consists of Ŝ1 combinations generation and a 

comparison of Ŝ1 combinations with the actual syndrome S1. Since each CG 

contributes three Ŝ1s and there is a maximum of two errors with a different CG, 

the maximum number of combinations is nine. For example, the first CG gives 
Ŝ1 = A1, B1, and C1, and the other CG gives Ŝ1 = A2, B2, and C2. Therefore, 

the combinations of Ŝ1 are (A1 XOR A2), (A1 XOR B2), (A1 XOR C2), (B1 XOR 

A2), (B1 XOR B2), (B1 XOR C2), (C1 XOR A2), (C1 XOR B2) and (C1 XOR 
C2). One of them should be the same as the actual S1. Figure 8 shows the 

details of the architecture of Step 2. 

In Step 3, error positions are recognized based on comparing the results of Step 

2 with a representative error from Step 1. A representative error is the smallest 
error position in each CG, for example, the representative error in CG2is “010”. 

We can recognize two other errors because they have a special pattern, i.e. 



 RTL Design of BCH (15,7) Decoder 123 
 

interval five. Thus, when the representative error is “010”, the other errors are 

“0111” and “1100”. However, to recognize the actual error, the output of Step 2 

has to be considered. 

Compare

Comp1_out1

Comp1_out2

[7:0]

[7:0]

[3:0]

[7:4]

[3:0]

[7:4]

Compare

Compare

Compare

Compare

Compare

Compare

Compare

Compare

S1

[3:0]

Comp2_out0

Compare

Same ind

Comp2_out1

Comp2_out2

Comp2_out3

Comp2_out4

Comp2_out5

 

Figure 8 Detailed architecture of Step 2. 

Figure 9 shows the architecture of the process of Step 3, which consists of OR 

gates, adders and a selector. The Step 3 output is served in 4-bit format. 
However, the bit correction pattern is in 15-bit format. Therefore an EP2 

decoder is required. 

<<

+

5

Comp1_out1

[10:8]

Comp2_out1

Comp2_out2

0

1

Same with above

Comp1_out2

[10:8]

Comp2_out4

Comp2_out5

Same_ind

Out_pos1

Out_pos2

1

0

 

Figure 9 Detailed architecture of Step 3. 



124 Hendra Setiawan 

2.2.2.3 EP2 Decoder 

The function in this section converts EP2 output from 4-bit format to the error 

position within 15 bits. These 15-bit patterns are also called ERROR2. The 
relationship between the two port inputs (out_pos1 and out_pos2) and the 15-

bits ERROR2 is expressed as: 

ERROR2(0) = out_pos1_0000 OR out_pos2_0000 

ERROR2(1) = out_pos1_0001 OR out_pos2_0001 
ERROR2(2) = out_pos1_0010 OR out_pos2_0010 

ERROR2(3) = out_pos1_0011 OR out_pos2_0011 

ERROR2(4) = out_pos1_0100 OR out_pos2_0100 
ERROR2(5) = out_pos1_0101 OR out_pos2_0101 

ERROR2(6) = out_pos1_0110 OR out_pos2_0110 

ERROR2(7) = out_pos1_0111 OR out_pos2_0111 
ERROR2(8) = out_pos1_1000 OR out_pos2_1000 

ERROR2(9) = out_pos1_1001 OR out_pos2_1001 

ERROR2(10)= out_pos1_1010 OR out_pos2_1010 

ERROR2(11)= out_pos1_1011 OR out_pos2_1011 
ERROR2(12)= out_pos1_1100 OR out_pos2_1100 

ERROR2(13)= out_pos1_1101 OR out_pos2_1101 

ERROR2(14)= out_pos1_1110 OR out_pos2_1110 (14) 

where, 

out_pos1_0000 = (NOT out_pos1(0)) AND (NOT out_pos1(1)) AND  

 (NOT out_pos1(2)) AND (NOT out_pos1(3)) 
… 

out_pos1_1110 = (NOT out_pos1(0)) AND out_pos1(1) AND out_pos1(2) AND 

out_pos1(3) 

 
out_pos2_0000 = (NOT out_pos2(0)) AND (NOT out_pos2(1)) AND  

 (NOT out_pos2(2)) AND (NOT out_pos2(3)) 

… 
out_pos2_1110 = (NOT out_pos2(0)) AND out_pos2(1) AND out_pos2(2) AND 

out_pos2(3) 

 

Therefore, it can be implemented using a combinational circuit consisting of 
AND  and OR gates. Some parts of this circuit are shown in Figure 10. 



 RTL Design of BCH (15,7) Decoder 125 
 

Out_pos1

[3:0]

Out_pos2

[3:0]

[3]

[2]

[1]

[0]

[1]

[0]

[3]

[2]

ERROR2[0]

ERROR2[1]

ERROR2[11]

ERROR2[14]

 

Figure 10 Architecture of the EP2 decoder. 

Finally, the total complexity of EP2 and its decoder is given in Table 2, 

consisting of two multiplexers, a comparator, 20 XOR gates, 32 OR gates, 49 

AND gates, 18 NOT gates, and two adders. 

Table 2 Complexity of EP2 and EP2 decoder. 

Block Component Number of gate Total number of gate 

EP2 Step 1 MUX = 10 MUX = 13 
Comparator = 1 
XOR = 20 
OR = 32 
AND = 49 
NOT = 18 
Adder = 2 

Comparator = 1 

Step 2 XOR = 20 
OR = 15 
AND = 1 
NOT = 10 

Step 3 OR = 2 
MUX = 3 
Adder = 2 

EP2 decoder EP2 decoder AND = 48 
NOT = 8 
OR = 15 

2.2.3 Error Correction 

The last step is error correction. The main concept of the error correction system 

is XOR-ing the received information with the pattern correction built from EP1 



126 Hendra Setiawan 

and EP2. However, we must also consider syndrome S1 and S2 for selecting 

correction patterns, which can be expressed as, 

















o t h e r swh e n  ,

0  a n d0wh e n  ,

0  a n d0wh e n  ,0

ERROR2RBW E

S 2S 1ERROR1RBW E

S 2S 1

RBEC  (15) 

where, 

RBEC = received bit error correction, [14:0]  

RBWE = received bit with error, [14:0] 
S1, S2 = syndrome S1, S2 [3:0]  

ERROR1 = error possibility 1, [14:0]  

ERROR2 = error possibility 2, [14:0] 

 = XOR operation 

 
Therefore, the implementation uses six OR gates and one XOR gate, as well as a 

multiplexer, as shown in Figure11. 

[1
:0

]

‘0’

ERROR1

ERROR2

[14:0]

[14:0]

[14:0]

[1
4

:0
]

[14:0]Received Bit 

(RBWE)

S1(3)
S1(2)

S1(1)
S1(0)

S2(3)
S2(2)

S2(1)
S2(0)

Error Correction 

(RBEC)

 
 

Figure 11 Error correction architecture. 

3 Proposed Design Complexity 

In section 2, the proposed RTL design was presented along with the complexity. 

Furthermore, the total complexity of each block is re-typed and shown in table 

3. Note that a multiplexer is equal to 3 logic gates, and a comparator is equal to 

an adder and a logic gate.  



 RTL Design of BCH (15,7) Decoder 127 
 

Table 3 Total complexity of the proposed design. 

No. Block 
Complexity 

Logic gate Adder 

1 Syndrome calculation 37 - 

2 Column group detection 11 - 

3 EP1 detection 46 - 

4 EP2 detection 88 3 

5 EP2 decoder 71 - 

6 Error correction 10 - 

 Total 263 3 

Based on the calculation shown in Table 3, the proposed BCH (15,7) decoder 

needs 263 logic gates and 3 adders. We now consider a simple algorithm 
proposed by Hong [9] as a comparer. Hong‟s algorithm for 2-bit errors gives a 

result of in total 110 multipliers, excluding the other components such as 

adders. The 110 multipliers are distributed such that 56 multipliers are used for 

syndrome evaluation, 6 multipliers for the error locator polynomial, 44 
multipliers for root finding, and 4 multipliers for error evaluation. 

Considering a 2-bit multiplier, its complexity is equal to 4 logic gates and an 

adder [10]. Thus, Hong‟s algorithm for 2-bit errors is equal to 440 logic gates 
and 110 adders. Therefore, the proposed system has a lower complexity than 

Hong‟s algorithm. 

4 Simulation, Compilation and Synthesis Results 

In order to ensure that the developed system has been worked out properly, we 

did a verification based on the block diagram in Figure 12. All parts were 

implemented in Very High Hardware Description Language (VHDL) and 
simulated using ModelSim 6.3. A snapshot of the functional simulation is 

shown in Figure 13. It is clear that all errors can be recovered by the decoder.  

 

 

 

 

 

Figure 12 Block diagram for verification. 

 



128 Hendra Setiawan 

 

Figure 13 Snapshot of simulation result. 

Furthermore, using a clock period of 200 ns, a long simulation was performed 

in 3 seconds, or 15 x 10
6
 clock cycles. Within this period, the BCH decoder 

received approximately 1,000,000 data. The result was that there were no errors, 

as shown in Figure 14, which means the bit error rate was zero, or all received 

bits were corrected perfectly. 

 

 

Figure 14 Simulation snapshot of one million data. 

The compilation was processed using design tool ISE 11.2. The result shows 

that the critical path appears from register input RBWE(0) to register output 
RBEC(14), as shown in the snapshot of the compilation result in Figure 15. This 

path is through syndrome S2, column group detection, error possibility 2, and 

the error correction block. The critical path delay is 8.713 ns for Virtex 5 

FX70TFF1136 implementation. The critical path can be reduced by pipelining. 
Without pipelining the proposed design has a maximum clock frequency of 

114.771 MHz. Since the computation process is done in 15-bit parallel 

processing, the maximum throughput that can be achieved is 1.7 Gbps. 



 RTL Design of BCH (15,7) Decoder 129 
 

 

Figure 15 Snapshot of the timing report. 

From a circuit area point of view, the proposed architecture of the BCH (15,7) 
decoder requires 77 slice LUTs without flip-flop, as shown in Figure 16. Since 

all components are made from a combinational circuit, there are no sequential 

components such as a register or a memory. Thus, clock latency is zero. 

 

Figure 16 Snapshot of the resource summary. 

The 1.7 Gbps throughput is higher than the decoder architecture proposed by A. 

Kumar, et.al. [11], which can reach a data rate of up to 1.6 Gbps with a 
maximum clock of 200 MHz in an application-specific integrated circuit (ASIC) 

implementation. In addition, the proposed system has no latency since no 

sequential circuit is included. The decoder proposed by A. Kumar, et.al. [11] 

has a clock latency of 284. Thus, the proposed system has a lower latency than 
Kumar‟s decoder.  



130 Hendra Setiawan 

5 Conclusions 

We have designed a BCH (15,7) hardware implementation in a combinational 

circuit instead of a sequential circuit to avoid high computation requirements 
and iteration processes. The simulation results using ModelSim 6.3 show that 

the developed circuit has correct functional processes. Furthermore, based on 

the compilation and synthesis results, the BCH decoder occupies 77 LUTs out 

of the 44800 LUTs on the target device Virtex 5 FX70TFF1136. The critical 
path delay is 8.713 ns in 15-bit parallel processing. Thus the maximum 

throughput can reach 1.7 Gbps. Since sequential circuits are no longer involved, 

there is no process latency and the output can be executed in one clock cycle. 

References 

[1] Costello Jr., D.J., Hangenauer, J., Imai, H. & Wicker, S.B., Applications 

of Error Control Coding, IEEE Transactions on Information Theory, 

44(6), pp. 2531-2560, Oct. 1998. 

[2] ETSI, Digital Video Broadcasting (DVB); Frame Structure Channel 

Coding and Modulation for A Second Generation Digital Terrestrial 
Television Broadcasting System (DVB-T2), European Std. ETSI EN 302 

755, V1.1.1, Sept. 2009. 

[3] IEEE, Part 16: Air Interface for Fixed and Mobile Broadband Wireless 
Access Systems, IEEE Std. 802.16e-2005, Feb. 2006. 

[4] Lin, S. & Costello Jr., D.J., Error Control Coding, Prentice Hall, 2004. 

[5] Massey, J., Step By Step Decoding of The Bose Chaudhuri Hocquenghem 

Codes, IEEE Transactions on Information Theory, 11(4), pp. 580-585, 
Oct. 1965. 

[6] Szwaja, Z., On Step By Step Decoding of The BCH Binary Codes, IEEE 

Transactions on Information Theory, 13(2), pp.350-351, Apr. 1967 
[7] Wei, S.W. & Wei, C.H., A High Speed Real Time Binary BCH Decoder, 

IEEE Transactions on Circuits and Systems for Video Technology, 3(2), 

pp.138-147, April 1993. 
[8] Massey, J.L., Shift-Register Synthesis and BCH Decoding, IEEE 

Transactions on Information Theory, 15(1), pp. 122-127, Jan.1969. 

[9] Hong, J. & Vetterli, M., Simple Algorithms for BCH Decoding, IEEE 

Transactions on Communications, 43(8), pp. 2324-2333, Aug. 1995. 
[10] Carter, N., Schaum’s Outlines of Theory and Problems of Computer 

Architecture, Indian Special Edition, McGraw Hill, 2002. 

[11] Kumar, A. & Sawitzki, S., High-Throughput and Low-Power 
Architectures for Reed Solomon Decoder, Proc. of IEEE 39

th 
Asilomar 

Conference on Signal, Systems, and Computers, pp.990-994, Nov. 2005.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sawitzki,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sawitzki,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sawitzki,%20S..QT.&newsearch=partialPref

