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Abstract. The Bose, Chaudhuri and Hocquenghem (BCH) codes form a large
class of powerful random-error correcting cyclic codes. However, the
implementation of its decoder requires high-complexity computation resources
with a huge number of sequential circuits. This paper presents a low-complexity
register transfer level (RTL) circuit design of a BCH decoder. In accordance with
the table relationship between the syndrome and the error bit position, we
propose a circuit that is mostly occupied by combinational elements without any
sequential evolvement. Therefore the designed system has a low complexity and
high throughput properties. The implementation of the BCH (15,7)decoder on
Virtex 5 FX70TFF1136 requires 77 look-up tables (LUTS) with the maximum
throughput reaching 1.7 Gbps.
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1 Introduction

Today, error-correcting codes are used throughout digital communication
systems. Satellite communications, cell-phones, compact disc players, DVDs,
disk drives, two-dimensional bar code systems and many other communication
devices use varying amounts of error control to achieve a certain degree of
accuracy in transmitting information. The Binary Bose, Chaudhuri and
Hocquenghem (BCH) codes, discovered by Hocquenghem in 1959 and
independently investigated by Bose and Chaudhuri in 1960, are a remarkable
generalization of the Hamming codes for multiple-error correction. BCH codes
containing Reed-Solomon codes have been widely adopted in practical error-
control applications, owing to their good performance against degradation and
the flexibility they allow in setting appropriate parameters [1]. Digital Video
Broadcasting (DVB) [2] and Worldwide Interoperability for Microwave Access
(WIMAX) [3] are examples of current standards that utilize BCH in their
system.

One of the well-developed algorithms to decode binary BCH code uses a
Euclidean algorithm [4]. However, its process requires high computation
resources due to the error-locator polynomial. Other algorithms are step-by-step
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algorithms [5],[6] that consist of procedure tests to check whether the error
pattern weight falls by changing the received symbols one at a time. This
decoding procedure does not terminate until the error pattern weight has been
reduced to zero or all received information symbols have been tested. Hence,
this is called an iterative method of decoding. Even though the hardware
implementation [7] is less complex than that of the first decoding algorithm, the
throughput may not be higher due to the iterative procedures.

In this paper, we propose a simple hardware implementation procedure with low
complexity and high throughput properties. This simple combinational circuit
was developed based on the table relationship between the syndrome and the
error bit position. Thus, a low-complexity BCH decoder could be developed.
Furthermore, the decoder throughput could be increased by employing
pipelining and parallelization.

This paper is organized as follows. In Section 2, the architecture of the encoder
and the decoder is detailed. The design complexity is explained in Section 3. In
Section 4, the compilation and synthesis results are presented. Finally,
conclusions are drawn in Section 5.

2  Architecture Description

2.1 Encoder Specification

The architecture of a BCH encoder using shift register has been introduced by
Massy in 1969 [8]. This paper considers a BCH (15,7) encoder consisting of 7
information bits and 8 parity bits as target implementation. The sending bit (SB)
of this BCH (15,7) encoder are based on the polynomial given by:

SEX)=u,-x*+u, - X° +U, - X' +u, - X +u, - X
FU XU X G X X X (1)
+0, X+ X+ - X+ X

where Ug, Uy, Uy, Us, U4, Us, Ug represent information, and ro, ry, rp, I3, g, s, I, 7
express the parity bits. This can be implemented using the remainder
polynomial, based on:

X2 =1+x*+x®+x". 2)

Furthermore, Eq. (2) can be realized by a simple circuit, as shown in Figure 1,
where Ug, Us, ..., Uginputted serially in signal input port (SIN), and r, rg, ..., o
generated after seven clock cycles.
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Figure 1 Circuit implementation of the BCH (15,7) encoder.

A parallel process to get the parity bits is introduced in order to reach a higher
throughput. Parallel computation is performed based on the remainder
polynomial of
R(x)= [u0 ~x8]+ [u1 : x9]+ [u2 -x1°]+ [u3 -x“]
+ [u4 -x12]+ [u5 -x13]+ [u6 ~x1“]
11 12 13

Based on Eq. (2), we can derive the remainder polynomial x°, x*°, x**, x*2, x
and x* and then substitute to Eq. (3). Hence, we get

3)

R(X) = (U +U, +Ug)+(U, +U, +U,)- X+ (U, +Uy +Ug)- X
+(Uy +U, +Ug)- X3 +(Uy +U, +U; +U, +Ug )- x* @

(U, +U, +U, +Ug +Ug )- X +(Uy +U, +U, +Ug +U )- X
+(Uy +U, +Uy)- X’

Therefore, I, =U,+U, +U;; L=u +u,+Uu,;
f,=U,+U, +U,; [, = U, +U, +U;
L, =Uy+U +U, +U, +U; [ =U +U,+U, +U +Ug;
o =U +U +U, +U +Ug; 1 =Ug+ U, +Ug

Eqg. (4) can be realized easily in a circuit, as shown in Figure 2, where the adder
symbol is implemented using XOR gates.
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Figure 2 Parallel computation of a BCH (15,7) encoder.

2.2  Proposed BCH (15,7) Decoder

This paper proposes parallel computation for the BCH (15,7) decoder to reach a
higher throughput. The proposed system consists of 7 main blocks, as shown in
Figure 3.
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Figure 3 Block diagram of the BCH (15,7) decoder.

2.2.1 Syndrome Calculation

In this process, syndrome blocks S1 and S2 generate the syndrome bits of
received bits with error (RBWE). The generation polynomial G(x) for error-
checking is given by,

G,(x)=1+x+x* 5)

G,(X)=1+x+x% +x* +x*. (6)
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Gi(x) and G,(x) are related to syndrome S1 and syndrome S2 respectively. If
there is no error in the received code, both the remainder polynomial of G;(x)
and that of G,(x) remain zero. Suppose the received bits with error (RBWE) are
expressed as,

RBW Hx) =G, - x" “+ 0, - X" *+ 4, - x* 24+ 0, - X" 4+ 0, - x* ¢
~ 9 ~ 8 o 7 A 6 I 5
+0, X2+ 0, - X3+ F X +F X+ X _ (7)
A 4 o 3 o 2 o 1 o
+ B X R X+, XP X+
Based on Eq. (5), we can derive the remainder polynomial for x°, x°,....x** and
then substitute it in Eq.(7), hence syndrome S1 is:

S (&)= - (1+ )+ G5 - (142 +3°)+0, - (L+ X+ +°)
+0, -(x+x2 +x3)+02 -(1+x+x2)+01-(x+x3)

.(8)

+0, -(1+ x2)+ F, -(1+x+x3)+ f, -(x2 +x3)+f5 -(x+x2

4+ X)+B X +F, - X +F - X+
Thus,

(©)

In the same way, syndrome S2 can be expressed as,
$2(0) =0+, + 0, +fy +F, +F,; S @ =06 + 05 + 0+ + 6, +F;
S2(2)=0, +0, +0, +F, +F, +F,; S @)=Us +0s +0, +0, +F, +F  (10)

By replacing each (+) sign with an XOR gate, in total 48 XOR gates are required
for the syndrome calculation block. However, this can be reduced by sharing the
same logic, such as Ug XOR (s, used in S1(3) as well as in S1(0). This will
reduce the number of XOR gates from 48 to 37.

2.2.2 Error Position Detection

The next process is error position detection based on the values of syndrome S1
and S2. Eq. (10) will be re-applied and rearranged, becoming:
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SZ(O) = (02 +15
52(1) = (As + A6
s2(2)=(a, +,
$2(3)=(d, + 4,

117

(11)

It is clear that an error occurs in U, f; or f, and has only resulted on S2(0). In the

same way, an error in Uy, F;, or £, only has an effect on S2(2). In Table 1, from

the table relationship between the syndrome bits and error bits position, it can
be seen that they occupy the same column. Thus, there are 5 column groups
(CG), i.e.

CGO, consisting ofly, f; and f,, corresponds to S2 = <1000”;
CG1, consisting of Us, f; and f, , corresponds to S2 = 0100™;
CG2, consisting of U4, f, and f,, corresponds to S2 = “0010;
CG3, consisting of Us,l and f; , corresponds to S2 = “0001”;
CG4, consisting of Us,0, and f, , corresponds to S2 = «“1111”.

Table 1 Relation between syndrome bits and error bits position.

Error S2 (Szo, So1, S22, 523)
Position 0000 0001 1010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000  None
0001 8,13 3 26 0114 10,12 19 511 47
0010 712 2 3,6 4,10 08 9,11 1,5 13,14
’a oot 11 2,3 6 59 013 7,10 412 814
w 0100 6,11 1213 1 0,4 810 25 7,14 39
g 0101 4,14 8,12 13 21 10,13 07 5,6 9
w 0110 0,10 713 31 1,2 5 6,9 12,14 48
= 0111 1,6 78 1 10,14 35 012 29 413
) 1000 5,10 2,8 6,13 11,12 0 14 79 3,14
s 1001 4,9 2,13 6,8 1,7 03 512 10,11 14
o 1010 313 8 71 45 02 614 110 912
: 1011 38 13 1,12 910 57 4N 06 214
wn 1100 9,14 37 113 6,12 58 210 0,1 4
101 212 7 8,11 0,9 513 1,14 6,10 34
1110 05 3,12 1,8 6,7 10 11,14, 2,4 9,13
1M1 2,7 12 1,13 5,14 3,10 46 011 8,9

Therefore, the recognition of a CG can be based on the position of bit ‘1’ in S2.
For example, S2 = “0101” means there is an error in CG1 and an error in CG3.

However, if an error in CG4is introduced from another CG, the recognition
scheme becomes different. For example, an error occurs in CG4 as well as an
error in CG2, where S2 = “1101” cannot be recognized from the bit ‘1’ position.
In this case, an inverter is required before recognition of the bit ‘1’ position
takes place. However, the inverter only works if the number of bit ‘1’ is more
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than two. Therefore, the code group detection system consists of the number of
bit ‘1’ calculation, selectors, and bit ‘1’ position recognition.

The first component in the code group detection system is the number of bit ‘1’
calculation. A 4-bit adder can be used to implement it. However, it may need
big resources since an adder consist of XOR and AND gates in four bits. Since
our target does not actually count the number of bit ‘1’ but only recognizes that
the number of bit ‘1’ is more than two, we propose a combinational circuit that
only uses four AND gates and three OR gates. This is expressed in term of
syndrome S2 as SEL.

SEL is ‘1’ when the number of bit ‘1’ within S2 bits is more than two. This
equation also expresses CG4 detection, since CG4 always exists if the number
of bit ‘1’ is more than two. The next component is the selector. Its function isto
select between S2 and (NOTS2). The XOR gate has been chosen as the selector.
The inputs are S2 and SEL, and the output belongs to the code group.
Therefore, bit ‘1’ position recognition is no longer required. Finally, the code
group detection circuit shown in Figure 4consists of 4 AND gates, 3 OR gates,
and 4 XOR gates.

S2(3)
S2(2) —

CG4

S2(1) ——1
S2(0) ————+

(Number of bit ‘1) > 2
Detector —

r CG3

SEL
r CG2

- CG1

- CGO

Selector

Figure 4 Code group detection circuit.

Furthermore, to simplify the error detection process, we divide the error
possibilities into two groups: error possibility 1 (EP1) and error possibility 2
(EP2). EP1 consists of two errors occurring at the same time and in the same
CG. Notice Eq. (11), when two errors in the same CG occur at the same time, it
makesS2 = “0000”. In the next discussion, all error possibilities in the S2 =
“0000” column of Table 1 are categorized as EP1.
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The next error group is error possibility 2 (EP2). This group includes all errors
in every column of Table 1 except column S2 = 0000. Note that “all errors”
means, all errors that can be recognized and recovered by this error correction
algorithm.

2.2.2.1 Error Possibility 1 (EP1)

EP1 occurs when two errors come from the same CG. The property of this case
is syndrome S2 = “0000” AND S1= “0000”. The only way to detect the errors is
direct mapping between S1 and the error bit position within 15 received bits.
Based on Table 1, column S2 = “0000”, the combinational circuit for
ERROR1(14:0) can be expressed as:

ERROR1(14) = S1 120RS1 5 ERROR1(13) = S1 1 ORS1_10
ERROR1(12) = S1 2 ORS1_13 ERROR1(11) = S1 40ORS1_3
ERROR1(10) = S1 6 ORS1 8 ERROR1(9) = S1 90ORS1 12
ERROR1(8) = S1 10ORS1 11 ERROR1(7) = S1 20RS1 15
ERROR1(6) = S1 4ORS1 7 ERROR1(5) = S1 8ORS1 14
ERROR1(4) = S1 50RS1 9 ERROR1(3) = S1 100RS1_11
ERROR1(2) = S1 130RS1_15 ERROR1(1) = S1 30ORS1 7
ERROR1(0) = S1 6 ORS1 14 (12)
where,

S1_1=(NOT S1(0)) AND (NOT S1(1)) AND (NOT S1(2)) AND S1(3)
S1_2 = (NOT S1(0)) AND (NOT S1(1)) AND S1(2) AND (NOT S1(3))
S1_3 = (NOT S1(0)) AND (NOT S1(1)) AND S1(2) AND S1(3)

S1_4 = (NOT S1(0)) AND S1(1) AND (NOT S1(2)) AND (NOT S1(3))
S1_5 = (NOT S1(0)) AND S1(1) AND (NOT S1(2)) AND S1(3)

S1_6 = (NOT S1(0)) AND S1(1) AND S1(2) AND (NOT S1(3))

S1_7 = (NOT S1(0)) AND S1(1) AND S1(2) AND S1(3)

S1_8 = S1(0) AND (NOT S1(1)) AND (NOT S1(2)) AND (NOT S1(3))
S1_9 = S1(0) AND (NOT S1(1)) AND (NOT S1(2)) AND S1(3)

S1_10 = S1(0) AND (NOT S1(1)) AND S1(2) AND (NOT S1(3))
S1_11 = S1(0) AND (NOT S1(1)) AND S1(2) AND S1(3)

S1_12 = S1(0) AND S1(1) AND (NOT S1(2)) AND (NOT S1(3))
S1_13 = S1(0) AND S1(1) AND (NOT S1(2)) AND S1(3)

S1_14 = S1(0) AND S1(1) AND S1(2) AND (NOT S1(3))

S1_15 = S1(0) AND S1(1) AND S1(2) AND S1(3)

This requires 45 AND gates, 15 OR gates and 28 NOT gates. However, sharing
computation is introduced in S1_1to S1_15, so that:
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S1 1=C1 00 AND CO 01 S1 2=C1 00AND CO0_10

S1 3=C1 00AND CO0 11 S1 4=C1 01 AND CO_00

S1 5=C1 01AND CO 01 S1 6=C1 01AND CO0_10

S1 7=C1 01ANDCO 11 S1 8=C1 10 AND CO_00

S1 9=C1 10AND CO 01 S1 10=C1 10AND CO0_10
S1 11=C1 10ANDCO0 11 S1 12=C1 11 AND CO0_00
S1 13=C1 11 AND CO0 01 S1 14=C1 11 ANDCO0_10
S1 15=C1 11 ANDCO0 11 (13)
where,

C1_00 = (NOT S1(0)) AND (NOT S1(1))
C1_01 = (NOT S1(0)) AND S1(1)
C1_10 = S1(0) AND (NOT S1(1))
C1_11 = S1(0) AND S1(1)

C0_00 = (NOT S1(2)) AND (NOT S1(3))
C0_01 = (NOT S1(2)) AND S1(3)
C0_10 = S1(2) AND (NOT S1(3))
CO_11 = S1(2) AND S1(3)

This scheme only needs 23 AND gates (a half less than before) and 8 NOT gates
(reduced to 28%).

EP1 consists of three parts, as shown in Figure 5. The first part computes
C0_00o, CO0. 01, C0_10, CO_ 11, C1.00, C1 01, C1.10 and C1 11
simultaneously. The second part computes S1 1 up to S1_14 as expressed in
Eg. (13). The last part computes ERROR1(14:0) based on Eg. (12). All
computations are done without buffer and latency. Finally, the EP1 block
requires 23 AND gates, 15 OR gates and 8 NOT gates.

Compute C1_00
wute ©1_01

e C1_10

ute C1_11 Compute
] 511512 ...51.16 (=] COTOME ERRORY L
b .12

ERROR1
14:0

Syrdrome 3

S

ute CO_01

i

Iliiiiil

co_10

Campute CO_11

Figure 5 Block diagram of EP1.
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2.2.2.2 Error Possibility 2 (EP2)

Error detection in this group is performed based on the code group and
syndrome S1. There are 105 possible error positions in this group. The detection
concept consists of three steps. First, the code group is used to generate a
maximum of nine candidates in term of syndrome S1. Next, all possible
combinations of the syndrome S1candidates are prepared and compared with the
actual syndrome S1. As a result, a syndrome S1 candidate that has the same
pattern as the actual syndrome S1 is recognized. Finally, this result is converted
to the error position, within 0 to 15. The general architecture of EP2 detection is
shown in Figure 6. Each step is explained in detail below.

Syndrome S1

:

Compl_outl(7-:-0)
Compl _out2(7---0) Step 2
same_ind
o0l Qoo
S35 Bl
CeE0,) step 1 RRR RRR
glez lglole
[ NS N [ O
» —» Out_posl
Compl outl(10-8) | Sten 3 -
Compl_out2(10---8) —» Out_pos2

Figure 6 General architecture of EP2.

The main process of Step 1 is to generate all S1 candidates based on the
received code group (CG). A maximum of two groups can be detected at the
same time, where each group belongs to three S1 candidates; a maximum of
nine S1 candidate combinations are produced in the Step 1 block. The S1
candidates are based on Table 1. They are:

CG0->S1 =1000~, “0110”, “1110”
CG1->S1 =0100", “0011”, “0111”
CG2->S1 =0010", “1101”, “1111”
CG3->S1 =0001, “1010”, “1011”
CG4->S1 = 11007, “0101”, “1001”.

Note that S1, S2 and S1 have the same configuration, where the most left is the
least significant bit (LSB —e.g. S1(0)) and the most right is the most significant
bit (MSB —e.g. S1(3)).
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Notice that one S1 occurring in a CG is equal to the XOR of two other Sis.
Therefore, two S1s must be mentioned in the process of Step 1. The details of
the architecture of Step 1 are shown in Figure 7; it consists of ten selectors and a
comparator to recognize a single error, since a single error will give the same
value in both outputs. The ten bits on each selector represent two S1s (each 4
bits) and a representative error position (3 bits).

Pattern CGO =
000 1000 0110—|,
Pattern CG1 = Compl_outl
001 0100 0011 ——], (10 bits)
Pattern CG2 =
010 0010 1101——W]
Pattern CG3 =
011 0001 1010—¥. ..
Pattern CG4 =
100 1100 0101——» Sk
2
S
-
10| -
CG(4) Same
I arator —p ind
A
@
)
Pattern CGO =
000 1000 0110 N
Pattern CG1 = ——
001 0100 0011 v
Pattern CG2 = —p
010 0010 1101 ° C 1 1
Pattern CG3 = — > ng leOUt
011 0001 1010 ( )

Pattern CG4 =—]
100 1100 0101

Figure 7 Detailed architecture of Step 1.

The main process of Step 2 consists of S1 combinations generation and a
comparison of S1 combinations with the actual syndrome S1. Since each CG
contributes three S1s and there is a maximum of two errors with a different CG,
the maximum number of combinations is nine. For example, the first CG gives
S1 = Al, B1, and C1, and the other CG gives S1 = A2, B2, and C2. Therefore,
the combinations of S1 are (A1 XOR A2), (A1 XOR B2), (A1 XOR C2), (B1 XOR
A2), (B1 XOR B2), (B1 XOR C2), (C1 XOR A2), (C1 XOR B2) and (C1 XOR
C2). One of them should be the same as the actual S1. Figure 8 shows the
details of the architecture of Step 2.

In Step 3, error positions are recognized based on comparing the results of Step
2 with a representative error from Step 1. A representative error is the smallest
error position in each CG, for example, the representative error in CG2is “010”.
We can recognize two other errors because they have a special pattern, i.e.
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interval five. Thus, when the representative error is “010”, the other errors are
“0111” and “1100”. However, to recognize the actual error, the output of Step 2
has to be considered.

Comp1_outl

3:0)
74

Compare |

Comp2_out0

Comp2_outl

Compl_out2

Comp2_out2

Comp2_out3

Comp2_out4

j > Compare

@@%@@@

Comp2_out5

HOBobHOHY |

Figure 8 Detailed architecture of Step 2.

Figure 9 shows the architecture of the process of Step 3, which consists of OR
gates, adders and a selector. The Step 3 output is served in 4-bit format.
However, the bit correction pattern is in 15-bit format. Therefore an EP2
decoder is required.

Out_posl

Compl_outl _i 1
[10:8]

Comp2_out2
Comp2_outl -

Compl_out2 — Out_pos2
[10:8]

Same with above
Comp2_out5 —!

Comp2_out4 —

Same_ind

Figure 9 Detailed architecture of Step 3.
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2.2.2.3 EP2 Decoder

The function in this section converts EP2 output from 4-bit format to the error
position within 15 bits. These 15-bit patterns are also called ERROR2. The
relationship between the two port inputs (out_posl and out_pos2) and the 15-
bits ERROR?2 is expressed as:

ERROR2(0) = out_pos1_0000 OR out_pos2_0000
ERROR2(1) = out_posl_0001 OR out_pos2_0001
ERROR2(2) = out_posl1_0010 OR out_pos2_0010
ERROR2(3) = out_posl_ 0011 OR out_pos2_0011
ERROR2(4) = out_posl_0100 OR out_pos2_0100
ERROR2(5) = out_posl_0101 OR out_pos2_0101
ERROR2(6) = out_posl 0110 OR out_pos2_0110
ERROR2(7) = out_pos1_0111 OR out_pos2_0111
ERROR2(8) = out_pos1_ 1000 OR out_pos2_1000
ERROR2(9) = out_posl_ 1001 OR out_pos2_1001
ERROR2(10)= out_posl_1010 OR out_pos2_1010
ERROR2(11)= out_posl_1011 OR out_pos2_1011
ERROR2(12)= out_posl_1100 OR out_pos2_1100
ERROR2(13)= out_posl_1101 OR out_pos2_1101
ERROR2(14)= out_posl_1110 OR out_pos2_1110 (14)

where,
out_posl 0000 = (NOT out_pos1(0)) AND (NOT out_posl1(1)) AND
(NOT out_pos1(2)) AND (NOT out_pos1(3))

(')'Lit_posl_lllo = (NOT out_pos1(0)) AND out_pos1(1) AND out_posl(2) AND
out_pos1(3)

out_pos2_0000 = (NOT out_pos2(0)) AND (NOT out_pos2(1)) AND
(NOT out_pos2(2)) AND (NOT out_pos2(3))

6ﬁt_p052_1110 = (NOT out_pos2(0)) AND out_pos2(1) AND out_pos2(2) AND
out_pos2(3)

Therefore, it can be implemented using a combinational circuit consisting of
AND and OR gates. Some parts of this circuit are shown in Figure 10.
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Figure 10 Architecture of the EP2 decoder.

Finally, the total complexity of EP2 and its decoder is given in Table 2,
consisting of two multiplexers, a comparator, 20 XOR gates, 32 OR gates, 49
AND gates, 18 NOT gates, and two adders.

Table 2 Complexity of EP2 and EP2 decoder.

Block Component Number of gate Total number of gate
EP2 Step 1 MUX =10 MUX =13
Comparator = 1 Comparator = 1
Step 2 XOR =20 XOR =20
OR=15 OR =32
AND=1 AND =49
NOT =10 NOT =18
Step 3 OR=2 Adder =2
MUX =3
Adder =2
EP2 decoder EP2 decoder AND =48
NOT =8
OR=15

2.2.3 Error Correction

The last step is error correction. The main concept of the error correction system
is XOR-ing the received information with the pattern correction built from EP1
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and EP2. However, we must also consider syndrome S1 and S2 for selecting
correction patterns, which can be expressed as,
0, whe®1=0andS2=0
RBEC=<RBW ®ERRORIwhe$1x0andS2=0 (15)
RBW ® ERROR2whemt hers

where,

RBEC = received bit error correction, [14:0]
RBWE = received bit with error, [14:0]
S1,S2  =syndrome S1, S2 [3:0]

ERROR1 = error possibility 1, [14:0]

ERROR2 = error possibility 2, [14:0]

® = XOR operation

Therefore, the implementation uses six OR gates and one XOR gate, as well as a
multiplexer, as shown in Figurell.

S1(3)
31(2)
s131) f)i—_,\:z>;
S1(0)
S2(3)
$2(2)
s2() %
S2(0)

o

[1:0]

[14:0]

[14:0]
ERROR1 1

[14:0]
ERROR2 et

. . Error Correction
Received Bit [14:0] (RBEC)

(RBWE)

Figure 11 Error correction architecture.

3 Proposed Design Complexity

In section 2, the proposed RTL design was presented along with the complexity.
Furthermore, the total complexity of each block is re-typed and shown in table
3. Note that a multiplexer is equal to 3 logic gates, and a comparator is equal to
an adder and a logic gate.
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Table 3 Total complexity of the proposed design.

Complexity
No. Block Logic gate Adder
1 Syndrome calculation 37 -
2 Column group detection 11 -
3 EP1 detection 46 -
4 EP2 detection 88 3
5 EP2 decoder 71
6 Error correction 10 -
Total 263 3

Based on the calculation shown in Table 3, the proposed BCH (15,7) decoder
needs 263 logic gates and 3 adders. We now consider a simple algorithm
proposed by Hong [9] as a comparer. Hong’s algorithm for 2-bit errors gives a
result of in total 110 multipliers, excluding the other components such as
adders. The 110 multipliers are distributed such that 56 multipliers are used for
syndrome evaluation, 6 multipliers for the error locator polynomial, 44
multipliers for root finding, and 4 multipliers for error evaluation.

Considering a 2-bit multiplier, its complexity is equal to 4 logic gates and an
adder [10]. Thus, Hong’s algorithm for 2-bit errors is equal to 440 logic gates
and 110 adders. Therefore, the proposed system has a lower complexity than
Hong’s algorithm.

4 Simulation, Compilation and Synthesis Results

In order to ensure that the developed system has been worked out properly, we
did a verification based on the block diagram in Figure 12. All parts were
implemented in Very High Hardware Description Language (VHDL) and
simulated using ModelSim 6.3. A snapshot of the functional simulation is
shown in Figure 13. It is clear that all errors can be recovered by the decoder.

X
- Serial - SBEC
. _? Decoder
To Parallel SBW
Error v
SB - BER
Serle Bit Error
Inserter

’ Counter

Figure 12  Block diagram for verification.
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Figure 13 Snapshot of simulation result.

Furthermore, using a clock period of 200 ns, a long simulation was performed
in 3 seconds, or 15 x 10° clock cycles. Within this period, the BCH decoder
received approximately 1,000,000 data. The result was that there were no errors,
as shown in Figure 14, which means the bit error rate was zero, or all received
bits were corrected perfectly.

I I I I I I I I I R I I I I IR IR

D o e T T e e e

Figure 14  Simulation snapshot of one million data.

The compilation was processed using design tool ISE 11.2. The result shows
that the critical path appears from register input RBWE(O) to register output
RBEC(14), as shown in the snapshot of the compilation result in Figure 15. This
path is through syndrome S2, column group detection, error possibility 2, and
the error correction block. The critical path delay is 8.713 ns for Virtex 5
FX70TFF1136 implementation. The critical path can be reduced by pipelining.
Without pipelining the proposed design has a maximum clock frequency of
114.771 MHz. Since the computation process is done in 15-bit parallel
processing, the maximum throughput that can be achieved is 1.7 Ghps.
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B.7i3ns [Levels of legic = 10)
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Figure 15  Snapshot of the timing report.

From a circuit area point of view, the proposed architecture of the BCH (15,7)
decoder requires 77 slice LUTs without flip-flop, as shown in Figure 16. Since
all components are made from a combinational circuit, there are no sequential
components such as a register or a memory. Thus, clock latency is zero.

Selected Device : SvEx70tff£1136-3

Slice Logic Utilization:
Nwdber of Slice LUTs: 77 out of 44800 0%
Nunber used as Logic: 77 out of 44800 0%

Slice Logic Distribution:

Number of LUT Flip Flop pairs used: 7
Nuwber with an unused Flip Flop: 77 out of 7 100%
Number with an unused LUT: 0 out of 7 0%
Nuber of fully used LUT-FF pairs: 0 out of 77 0%
Number of unigue control sets: 8]

Figure 16  Snapshot of the resource summary.

The 1.7 Ghps throughput is higher than the decoder architecture proposed by A.
Kumar, et.al. [11], which can reach a data rate of up to 1.6 Gbps with a
maximum clock of 200 MHz in an application-specific integrated circuit (ASIC)
implementation. In addition, the proposed system has no latency since no
sequential circuit is included. The decoder proposed by A. Kumar, et.al. [11]
has a clock latency of 284. Thus, the proposed system has a lower latency than
Kumar’s decoder.
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5 Conclusions

We have designed a BCH (15,7) hardware implementation in a combinational
circuit instead of a sequential circuit to avoid high computation requirements
and iteration processes. The simulation results using ModelSim 6.3 show that
the developed circuit has correct functional processes. Furthermore, based on
the compilation and synthesis results, the BCH decoder occupies 77 LUTs out
of the 44800 LUTs on the target device Virtex 5 FX70TFF1136. The critical
path delay is 8.713 ns in 15-bit parallel processing. Thus the maximum
throughput can reach 1.7 Gbps. Since sequential circuits are no longer involved,
there is no process latency and the output can be executed in one clock cycle.
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