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Abstract. If a communicatio networkN with n stations has every station linked
with at Ieast|_n/2J other stations, thethe edge-connectivity ol equals its
minimum degree Also, in general, this limitation is stated to be the tbes
possibility, as wagproved by Chartrand in 1966. A modeveloped notion of
edge-connectivityis introduced, which is called k-component order edge-
connectivity. Itis the minimum number of edges required to be resd®o tha
the order of eactlisconnected compont is less thark.
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1 I ntroduction

Any network, be it aing fiber optic network, satellite communicatioretwor},
terrestrial microwaveetwork, o social relationships networkan be modele
using graph-theoreticmethod. Network vulneability is an importan
consideration in network desic

The utilization of communication networks has grotn@mendously in the la
decade, for example faransmitting voice, data, and images around thddw
With the widespread dependence upon sietworks, it becomes important
find networks that yield a high level of reliabfitand a low level ©
vulnerability to disruption

It is desirable to considéne quantitative measures of a network’s vulnerabi
To obtain such measurese can modethe network by a graph in which t
station terminalsare represented by the nodes of the graph andrtke dre
represented by the edges.

An important measure @ network’s vulnerability is its edge-connectivithe
minimum number of edges whose removal from the agtwlisconnects it int
two or more componentWe assume thaelecommunication networks he
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stations that are perfectly reliable, but linksttbauld fail in accordance with
some known probabilistic model or due to purposeftack.

In the classical model, a network is consideredmperating if every station
can communicate with every other station througmesgpath connecting
stations and operating links. If any failure ofirgklresults in a pair of stations
no longer being able to communicate, then the mit\as failed. In this case,
we say that the network has become disconnected.

The traditional vulnerability concept for this méde the minimum number of
links whose failure results in a disconnected netwd herefore, if all links

originating from a particular station fail, thenathstation is unable to
communicate with other stations and the network esome disconnected.
Equivalently, the value of the traditional edge4vectivity is at most the
minimum degree of any station. In 1966, Chartrabfddroved that if each
station is linked to at least half of the othertistss, the network cannot be
disconnected if fewer than a minimum number ofdifi&il, i.e. the network is
invulnerable to failure if fewer than the minimumaunt of links to any station
fail.

Under the supervision of Frank Boesch, togetheh Wharles Suffel, Daniel

Gross, John Saccoman, and L.W. Kazmierczak, | hadpportunity to study a

new network vulnerability model callédcomponent order edge-connectivity in
which a network is considered operating as londhase is a predetermined
number of stations, sdythat can still communicate regardless of whether t
network is connected [2],[3].

We introduced a new concept calledomponent order edge-connectivity as a
new vulnerability parameter, which is the minimummber of links whose
failure results in a disconnected graph and the bmunof stations in each
subnetwork containing less than the predeterminsdberk. Hence the value
of the new vulnerability model é¢component order edge-connectivity depends
onk, the minimum number of stations that is needetbtomunicate. It is clear
that if k increases, then the value of paramdteromponent order edge-
connectivity decreases, i.e. fewer links need toifisorder for the network to
fail.

When we need all stations to communicate, thisomponent order edge-
connectivity equals the edge-connectivity of tlagifional parameter. Also, the
failure of all the links to one station resultsaiisconnected network only if we
need all stations to communicate. Thus, the vafueamponent order edge-
connectivity can be greater than the minimum degfdaks to any station. In
this paper, we study the relationship between th@nmum number of links to
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any station, edge-connectivity, anklcomponent order edge-connectivity
parameters [4].

2 Vulner ability M odels

2.1  Traditional Edge-Connectivity A(G)

Given a connected communication netwdtkwith n stations,n= 2, we can

makeN into a disconnected network by removing certaikRdibetween stations
in N. The interest in this problem is usually maximizeg minimizing the

number of links whose removal will disconnétt Chartrand [1] presents the
result of a disconnected network by those linkglilggto the station having the

fewest links. In particular, he proved the follogitheorem, Wherﬁxj denotes
the largest integer not exceedixg

Theorem 2.1 [1]. If a communications networkl with n stations has every
station linked with at Ieastnlzj other stations, then the minimum number of
links whose removal will disconnebt is equal to the least number of links to
any station irN. Also, the numbel’_n/ZJ cannot, in general, be improved.

With every communication netwoi an ordinary grapks is associated, whose
setV of nodes corresponds to the stationsNofind whose seE of edges
corresponds to the links

Without a doubt, the problem of communications urdiscussion is equivalent
to determining the minimum number of edges whoseokeal will disconnect
the associated network. This leads to two defingio

Definition 1 [1]. A connected grapks is medge connected if the removal of
any k edges fromG, 0<k <m, results in a connected graph. A disconnected
graph is defined to be 0-edge connected.

Definition 2 [1]. The maximum value of for which a graphG is m-edge
connected is referred to as #mge-connectivitgf G and is denoted by (G). It
follows immediately that the edge-connectivity ofgeaph is the minimal
number of edges whose removal disconnects the graph
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Theorem 2.2 [4]. Let G be a connected graph of ordenf §(G) = EJ then

A(G) = 4(G).Furthermore, there possibly exists a connectedhgdpof order

n>6 with 6(G) <EJ—1 and @G’y < 5").

This theorem is illustrated by grapﬁ? and 62 in Figure 1 [4],[5].

Figurel GraphsG; andG, with A(G)) < d(G) and/](Gz) = 5(G,) :EJ

2.2  k-Component Order Edge-Connectivity Aik) (G)

It is reasonable to consider a model of networliiich it is not necessary that
the surviving edges form a connected subgraphragds they form a subgraph
with a component of some predetermined order. Thugtroduce a new edge-
failure model, th&k-component order edge-failure model. In this moadélen a
set of edged- fail, we refer toF as ak-component edge-failure set and the
surviving subgraplé — Fas ak-component edge-failure stateGf- F contains
no component of order at ledstwherek is a predetermined threshold value.

Definition 3 [3],[4]. Let 2<k < n be a predetermined threshold value. khe
component order edge-connectivity or component order edge connectivity

of G, denoted by )lék)(G) or simply )l(ck), is defined to be

A(ck)(G):min{|F|:FDE,F is k-component edge-failure set}, i.e. all

components o6 — F have ordex k -1.

Definition 4 [3],[4]. A set of edge§ of graphG is Agk) -edge set if and only if

it is ak-component order edge-failure set gre|= /l(ck).
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We give two examples for showing the above debnitof this parameter in a
cycle graph,G(Cn), and a star graptG(K, ,,_;), with n nodes.

Example 1 [1],[4],[5]. /lék) (C,)): We start with removing one edge, then it

becomes a path with nodes withn — 1 edges. Leff be the set of edges of the
new graph (or a path) which is divisible ky- 1. It will be an easy exercise to

see that each component(DIf] - (F +1) has order no more th&+ 1 andH| is

minimum. Thereforea® (¢ ) = Ln—_lJ +1= {L—‘
c n k-1 k-1

Example 2 [1],[4],[5]. )lf:k) (Kl N _1) :Deletion of any set afn edges results in

a subgraph consisting ai+1 components, one isomorphic ml n—m—1 and

the remaining components isolated nodes. Therefolecomponent edge-

failure state exists if the componeNi n—m-1 contains at mogt — 1 nodes.

Thusn-m< k-1 or n-k+1< m. Since component order edge connectivity is
the minimum number of edges whose removal resal&sk-component edge-

failure state, we obtain the following resunfc:k) (Kl 0 _1) =n-k+1

3 Bounds on Edge- and k-Component Order Edge-Connectivity

If we remove all edge incidents on a single nol& treates &-component
order edge-failure state only whirr n; therefore, ifk < n we cannot conclude

that /I(Ck) (G) < 4(G), such that it may possible that

/]E:k) (G) < 5(G),/1(Ck) = 5(G), or ﬂik) (G) > (G).

We now consider the grap(hl from Figure 1,
(6) -,® @ _ ©)
A (@) =A"(G) =47 =1<8(G), 4.7 (G) > 3(G)).

@ _
and1 7 (G))=7>5(G)).
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Hence, it is a fact that & — F is ak-component order edge-failure state, then it

is also a edge-failure state; therefdre /lfzk) for everyk.
() _ (n-1)
Theorem 3.1 [4],[5]. For any graph G, A= Ac < Ac <
AN72 o @ Zg
c c
Since 4 < J < e, we will find k that fits into the string of this inequality, such

that /KD < 5< 1K)
C C

4 Preliminary Result

We will present two lemmas required for our maisutes. The first lemma

establishes a lower bound fﬂ&k) (G), whereG is a connected graph of order

Lemma 4.1 [4]. Given G be a connected graph of ordeiand let2<k < n.

Then /l(k) G) = Ln—_lJ

c k-1
Proof. AssumeF O E is k-component edge-failure set a®l- F :Uip_ 1Ci’
where Cl,cz,---,cp are the component subgraphs®#f F, each of order no

more than k — 1. Thus n:Zipzlorder(Ci)s p(k =1, which implies

k-1

(k) ) LIRS PRI I
612,21 |21

We conclude that the proof of the above lemma @dsablishes the fact that any

pz{i—‘. Upon G is connected, if |F|:/1(Ck)(G) then

k-component order edge-failure state contains at han——‘ components.
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The second lemma gives a sufficient condition @iG) for the conclusion

Aik) G) = 5(G).

Lemma 4.2 [5]. GivenG be a connected graph of ordeand let2< k < n. If

L%J(J(G) +1) > n, then /lik) (G) = 5(G).

Proof. AssumeF 0O E is ak-component edge-failure set atd-F = Uip_ 1Ci ,

where Cl,cz,---,cp are the component subgraphs®f F, each of order no

more thark — 1.

If )l(ck) (G) < o(G), then order(Ci) > J(G) +1 for eachi. For this, we consider an

arbitrary componentCi and letu be a node ofCi. Since the degreeu)

> J(G) 2 /lf:k) =|F |, u must be adjacent to at least one additional ncfxcmi p

thus orderCi > 2. Using the nodes ilmi, produces inequality

order(Ci )(order(Ci ) - 1)+ A(Ck) (G) = order(Ci )3(G), which implies
order(Ci )(order(Ci ) —1)+ o(G) = order(Ci )o(G)
Hence,

order(Ci )(order(Ci ) - 1) > a'(G)(order(Ci ) - 1)

Dividing both sides by(order(C,) -1) yields the result. Finally, iﬂ(ck) < 5(G),
then

order(Ci )= p(b’(G) + 1) > [ﬁ—‘(d(e) + 1)
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In Figure 1, consider graprGZ. If k = 6, A((:G)(GZ):S:J(GZ), but
n _ 6 _
[k—_l—‘(a'((;zﬁl)— (6—_1—‘(3+1)—8> n.

We conclude from the proof of lemmas 4.1 and 4& tiwo other sufficient

conditions for/l(ck) > 9(G) are given in the following lemma without proof.

Lemma 4.3 [5]. GivenG be a connected graph of oreesind let2 < k < n.

N (k)
|f{k_11 12 5(G), thenA ” (G) 2 (G).

If 5>k-1 then /l(ck) (G) = 5(G).

5 M ain Results

Now we establish the basis theorem for determithiegoest possible solutidn
such that there exists a connected g@puti ordern where in such inequality of

/15:" D) <o) < A(c") ).

I=r(z1) p

n n

— |+1
Figure2 A graph c/ with J(G/) anda(['—‘ 2 <6(G/)5A([I-‘(G/).
Theorem 5.1 [4,5]. Consider G be a connected graph of order If
5(G) %”J,ls l<n-1, thenj'w(e) > J(G). Furthermore, ifn21(1 +1) this is
I+1 ¢

the best possible solution in the sense that fod auch that[LJ <5< LEJ -1
I +1 [
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there exists a connected grarﬂa/ of order n with 5(G/):5(G/) and

HE
ACI ey <asch.

Proof. We first show that ifi<| <n-1, then| n If | does not divide

AR

n, then “—‘_1{” But n:HJI+r,O<rsl—1 so " .,
n

{ :

HE

n [ and as before n . Finally

wl f | divides n, then nznlz_ﬂl:(
> +1. |

D s+ = +1)Q”J+1) >n.
[D-‘_l I +1

The conclusion follows by applying Lemma 4.2 [4] ﬂwik:ﬁ—‘. To

demonstrate the best possible condition we cortstguaph G/. Assume

n>I(+1) and Writen:HJHr {H(Hr)%ﬂr, whereosr<I-1 Let

us start with distinct complete graphb;- r of order HJ andr of order Lﬂ—‘

These cliques are connected in a path-like marsmshawn in Figure 2.
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Finally, sincel =1 and HJ >| +1> 2, there exists a nodein a distinguished

K N of degree HJ—l and edges are removed if necessary to obtain
i
/ . n n
I(G")=4. SincenzI(l +1),{—J =1, we have{—J 21
I +1 I +1

Thus,
A (G/)=I—1<IsLanJ.
c I +1

Corollary 5.1 [1]. Let G be a connected graph of orderlf 5(G) = EJ then

A(G) = 5(G).

Proof. If we setl = 1, then Theorem 5.1 becomes: Gebe a connected graph
on n=2 nodes. IfEJ < J(G) then Agk) (G) = 4(G). Since/l(ck) (G) = J(G), the
conclusion follows.

Corollary 5.1 is the first part of Chartrand’s Themm (Theorem 2.2). Since any

i
A[I (G) < dG), thenk = H—‘ is not the best possible condition. We need to do

more work to discuss and further investigate appbo in telecommunication
networks that mention the second part of Chartiaiitieorem.

Applications in telecommunication networks can takeample of the terrestrial
communications network connecting the various gjtighich can be described
in a graph as a network topology pa#(G). To provide reliability of local

connections in every city, you need complete netviapology K, (G).

For example,n = 10, andl = 3 and 4. Then fol = 3, the value of

HJ = L%J =3 and [I—n—‘ = 4. Thus, for a number of nodasz= 10, the network
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topology forl = 3 will consist two complete graphs d{S(G), and a complete

graph of K4(G).

Similar to the value df = 4, the value - the vah.{eFJ = L%J =2, and HW =2

Then, related to the number of nodes 10, the shape network topology will
consist of two complete graphs Kfz (G) and two complete graphs dif3(G).

This example is illustrated in Figure 3 for the sanumber of nodes) = 10,
and for different values df| = 3 and = 4.

N TN TN Y
4 K, (G o (o
S O L S
K,.(G) K, G, K,G)  K,G, K,.G,) K,G,)

3-1=2 4-2=2

Figure3 (a) Path GraptR;(G) contains twoK, (G) and oneK 4, (G) with
159@) > 6(6) for 25k <5 and A (G) < 8(G) for 5<k=n. (b) Path
Graph B 5 (G) contains twoK, (G) and two K5 (G) with /lék) (G) =2 5(G)

for2<ks<7 and)l((:k)(G)<5(G) for 7<k<n.

6 Conclusion

In 1966, Chartrand proved that &(G) ZEJ where 5(G) is the minimum

degree of any node in the connected gr&bf ordern, then A(G) = 5(G),
where A(G) is the edge connectivity, which is the minimum femof edges
that must be removed in order to make the grapbodigected. We have

demonstrated that the analogous result holds /fg?)(G), which is the

minimum number of edges that must be removed tocodisect the graph into
components, each of order no more thanl. Namely, for all connected graphs
G of ordern there exists a value &fsuch that ifd(G) is sufficiently large then

/l(ck) > J(G). Moreover, the value d&f can be chosen such th/écf( D . I(G).
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When k = n, /l(ck) (G) = A(G), and the lower bound oBd(G) is EJ thus

Chartrand’s result follows from ours.
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