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Abstract. If a communication

with at least  2/n  other stations, then 

minimum degree. Also, 
possibility, as was proved by Chartrand in 1966. A more 
edge-connectivity is introduced, 
connectivity. It is the minimum number of edges required to be removed so that 
the order of each disconnected component
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1 Introduction 

Any network, be it a ring fiber optic
terrestrial microwave network, or
using graph-theoretic methods
consideration in network design. 

The utilization of communication networks has grown tremendously in the last 
decade, for example for transmitting voice, data, and images around the world. 
With the widespread dependence upon such n
find networks that yield a high level of reliability and a low level of 
vulnerability to disruption. 

It is desirable to consider the 
To obtain such measures,
station terminals are represented by the nodes of the graph and the links are 
represented by the edges.  

An important measure of 
minimum number of edges whose removal from the network disconnects it into 
two or more components. 
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If a communication network N with n stations has every station linked 

other stations, then the edge-connectivity of N equals its 

. Also, in general, this limitation is stated to be the best 
proved by Chartrand in 1966. A more developed notion of 
is introduced, which is called k-component order edge-

is the minimum number of edges required to be removed so that 
disconnected component is less than k.  

tivity; k-component edge-failure set; k-component edge-failure 
component order edge-connectivity; minimum degree 

ring fiber optic network, satellite communication network
network, or social relationships network, can be modeled 

methods. Network vulnerability is an important 
consideration in network design.  

The utilization of communication networks has grown tremendously in the last 
transmitting voice, data, and images around the world. 

With the widespread dependence upon such networks, it becomes important to 
find networks that yield a high level of reliability and a low level of 
vulnerability to disruption.  

the quantitative measures of a network’s vulnerability. 
, we can model the network by a graph in which the 

are represented by the nodes of the graph and the links are 
 

An important measure of a network’s vulnerability is its edge-connectivity, the 
minimum number of edges whose removal from the network disconnects it into 
two or more components. We assume that telecommunication networks have
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network, 
can be modeled 

ability is an important 
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, the 
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telecommunication networks have 
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stations that are perfectly reliable, but links that could fail in accordance with 
some known probabilistic model or due to purposeful attack.  

In the classical model, a network is considered to be operating if every station 
can communicate with every other station through some path connecting 
stations and operating links. If any failure of a link results in a pair of stations 
no longer being able to communicate, then the network has failed. In this case, 
we say that the network has become disconnected.  

The traditional vulnerability concept for this model is the minimum number of 
links whose failure results in a disconnected network. Therefore, if all links 
originating from a particular station fail, then that station is unable to 
communicate with other stations and the network has become disconnected. 
Equivalently, the value of the traditional edge-connectivity is at most the 
minimum degree of any station. In 1966, Chartrand [1] proved that if each 
station is linked to at least half of the other stations, the network cannot be 
disconnected if fewer than a minimum number of links fail, i.e. the network is 
invulnerable to failure if fewer than the minimum amount of links to any station 
fail.  

Under the supervision of Frank Boesch, together with Charles Suffel, Daniel 
Gross, John Saccoman, and L.W. Kazmierczak, I had the opportunity to study a 
new network vulnerability model called k-component order edge-connectivity in 
which a network is considered operating as long as there is a predetermined 
number of stations, say k that can still communicate regardless of whether the 
network is connected [2],[3]. 

We introduced a new concept called k-component order edge-connectivity as a 
new vulnerability parameter, which is the minimum number of links whose 
failure results in a disconnected graph and the number of stations in each 
subnetwork containing less than the predetermined number k. Hence the value 
of the new vulnerability model of k-component order edge-connectivity depends 
on k, the minimum number of stations that is needed to communicate. It is clear 
that if k increases, then the value of parameter k-component order edge-
connectivity decreases, i.e. fewer links need to fail in order for the network to 
fail.  

When we need all stations to communicate, this k-component order edge-
connectivity equals the edge-connectivity of the traditional parameter. Also, the 
failure of all the links to one station results in a disconnected network only if we 
need all stations to communicate. Thus, the value of k-component order edge-
connectivity can be greater than the minimum degree of links to any station. In 
this paper, we study the relationship between the minimum number of links to 
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any station, edge-connectivity, and k-component order edge-connectivity 
parameters [4]. 

2 Vulnerability Models 

2.1 Traditional Edge-Connectivity )(Gλ  

Given a connected communication network N with n stations, ,2≥n  we can 
make N into a disconnected network by removing certain links between stations 
in N. The interest in this problem is usually maximized by minimizing the 
number of links whose removal will disconnect N.  Chartrand [1] presents the 
result of a disconnected network by those links leading to the station having the 
fewest links. In particular, he proved the following theorem, where  x  denotes 

the largest integer not exceeding x. 

Theorem 2.1 [1]. If a communications network N with n stations has every 
station linked with at least  2/n  other stations, then the minimum number of 

links whose removal will disconnect N is equal to the least number of links to 
any station in N. Also, the number  2/n  cannot, in general, be improved. 

With every communication network N an ordinary graph G is associated, whose 
set V of nodes corresponds to the stations of N and whose set E of edges 
corresponds to the links in N.  

Without a doubt, the problem of communications under discussion is equivalent 
to determining the minimum number of edges whose removal will disconnect 
the associated network. This leads to two definitions. 

Definition 1 [1]. A connected graph G is m-edge connected if the removal of 
any k edges from G, ,0 mk <≤  results in a connected graph. A disconnected 
graph is defined to be 0-edge connected. 

Definition 2 [1]. The maximum value of m for which a graph G is m-edge 
connected is referred to as the edge-connectivity of G and is denoted by ).(Gλ  It 
follows immediately that the edge-connectivity of a graph is the minimal 
number of edges whose removal disconnects the graph. 
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Theorem 2.2 [4].  Let G be a connected graph of order n. If 




≥
2

)(
n

Gδ  then 

).()( GG δλ = Furthermore, there possibly exists a connected graph /G  of order 

6≥n  with 1
2

)/( −< 




n
Gδ  and )./()/( GG δλ <  

 
This theorem is illustrated by graphs 

1
G  and 

2
G  in Figure 1 [4],[5]. 

 

 

Figure 1 Graphs 1G  and 2G  with ( ) ( )1 1G Gλ δ<  and ( ) ( )2 2 2
n

G Gλ δ= =    
.  

2.2 k-Component Order Edge-Connectivity )(
)(

G
k

c
λ  

It is reasonable to consider a model of network in which it is not necessary that 
the surviving edges form a connected subgraph as long as they form a subgraph 
with a component of some predetermined order. Thus we introduce a new edge-
failure model, the k-component order edge-failure model. In this model, when a 
set of edges F fail, we refer to F as a k-component edge-failure set and the 
surviving subgraph G – F as a k-component edge-failure state if G - F contains 
no component of order at least k, where k is a predetermined threshold value.    

Definition 3 [3],[4]. Let nk ≤≤2  be a predetermined threshold value. The k-
component order edge-connectivity or component order edge connectivity 

of G, denoted by ( )
( )

k
Gcλ  or simply ,

)(k
c

λ  is defined to be 

FEFFG
k

c
,|:min{|)(

)( ⊆=λ  is k-component edge-failure set}, i.e. all 

components of G – F have order 1−≤ k . 

Definition 4 [3],[4]. A set of edges F of graph G is −)(k
c

λ edge set if and only if 

it is a k-component order edge-failure set and .
)(

||
k

c
F λ=  
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We give two examples for showing the above definition of this parameter in a 
cycle graph, ),(

n
CG  and a star graph, ( ),1, 1G K n−  with n nodes. 

Example 1 [1],[4],[5]. ( )
( ) :

k
Cc nλ  We start with removing one edge, then it 

becomes a path with n nodes with n – 1 edges. Let F be the set of edges of the 
new graph (or a path) which is divisible by k – 1. It will be an easy exercise to 
see that each component of )1( +− F

n
C  has order no more than k – 1 and |F| is 

minimum. Therefore, .
1

1
1

1
)(

)(












−

=+
−
−

=
k

n

k

n
n

C
k

c
λ   

Example 2 [1],[4],[5]. :)
1,1

(
)(

−n
K

k
c

λ Deletion of any set of m edges results in 

a subgraph consisting of m+1 components, one isomorphic to 
1,1 −− mn

K  and 

the remaining components isolated nodes. Therefore a k-component edge-
failure state exists if the component 

1,1 −− mn
K  contains at most k – 1 nodes. 

Thus 1−≤− kmn  or .1 mkn ≤+−  Since component order edge connectivity is 
the minimum number of edges whose removal results in a k-component edge-

failure state, we obtain the following result: .1)
1,1

(
)( +−=

−
kn

n
K

k
c

λ   

3 Bounds on Edge- and k-Component Order Edge-Connectivity 

If we remove all edge incidents on a single node, this creates a k-component 
order edge-failure state only when k = n; therefore, if k < n we cannot conclude 

that ),()(
)(

GG
k

c
δλ ≤  such that it may possible that 

  ),(
)(

),()(
)(

G
k

c
GG

k
c

δλδλ =<  or ).()(
)(

GG
k

c
δλ >   

We now consider the graph 
1

G  from Figure 1, 

  ),
1

(1
)4(

)
1

(
)5(

)
1

(
)6(

G
c

G
c

G
c

δλλλ <===  ),
1

()
1

(
)3(

GG
c

δλ >   

 and ).
1

(7)
1

(
)2(

GG
c

δλ >=  



Edge Connectivity Problems in Telecommunication Networks 213 
 

Hence, it is a fact that if G – F is a k-component order edge-failure state, then it 

is also a edge-failure state; therefore )(k
c

λλ ≤  for every k.  

Theorem 3.1 [4],[5]. For any graph G, ≤−≤= )1()( n
c

n
c

λλλ   

.
)2()2(

e
c

n
c

=≤≤− λλ ⋯  

Since ,e≤≤ δλ  we will find k that fits into the string of this inequality, such 

that .
)()1( k

c
k

c
λδλ ≤<+  

4 Preliminary Result 

We will present two lemmas required for our main results. The first lemma 

establishes a lower bound for ),(
)(

G
k

c
λ where G is a connected graph of order n. 

Lemma 4.1 [4]. Given G be a connected graph of order n and let .2 nk ≤≤  

Then .
1

1
)(

)(






−
−

≥
k

n
G

k
c

λ   

Proof. Assume EF ⊆  is k-component edge-failure set and ,
1 i

C
p
i

FG
=

=− ∪  

where 
p

CCC ,,
2

,
1

⋯  are the component subgraphs of G – F, each of order no 

more than k – 1. Thus ∑ = −≤= p
i kp

i
Cordern 1 ),1()(  which implies 

.
1





−

≥
k

n
p  Upon G is connected, if )(

)(
|| G

k
c

F λ=  then 

1
1

1)(
)( −

−
−≥ 





k

n
pG

k
c

λ  .
1

1






−
−

=
k

n
 

We conclude that the proof of the above lemma also establishes the fact that any 

k-component order edge-failure state contains at least 





− 1k

n
 components.  
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The second lemma gives a sufficient condition on  )(Gδ  for the conclusion 

).()(
)(

GG
k

c
δλ ≥   

Lemma 4.2 [5]. Given G be a connected graph of order n and let .2 nk ≤≤  If 

( ) ,1)(
1

nG
k

n
>+

− 




 δ  then ).()(
)(

GG
k

c
δλ ≥  

Proof. Assume EF ⊆  is a k-component edge-failure set and ,
1 i

C
p
i

FG
=

=− ∪  

where 
p

CCC ,,
2

,
1

⋯  are the component subgraphs of G – F, each of order no 

more than k – 1.  

If ),()(
)(

GG
k

c
δλ <  then 1)()( +≥ G

i
Corder δ  for each i. For this, we consider an 

arbitrary component 
i

C  and let u be a node of .
i

C  Since the degree (u) 

|,|
)(

)( F
k

c
G =≥≥ λδ  u must be adjacent to at least one additional node of ;

i
C  

thus order .2≥
i

C  Using the nodes in ,
i

C  produces inequality  

 
( ) )()()(

)(
1)()( G

i
CorderG

k
ci

Corder
i

Corder δλ ≥+− , which implies 

 
( ) )()()(1)()( G

i
CorderG

i
Corder

i
Corder δδ ≥+−  

Hence, 

 
( ) ( )1)()(1)()( −>−

i
CorderG

i
Corder

i
Corder δ  

Dividing both sides by ( )1)( −iCorder  yields the result. Finally, if ),(
)(

G
k

c
δλ <  

then 

 
( ) ( )∑ 






=
+

−
≥+≥=

p

i
G

k

n
Gp

i
Cordern

1
1)(

1
1)()( δδ    
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In Figure 1, consider graph .
2

G  If k = 6, )
2

(3)
2

(
)6(

GG
c

δλ == , but 

( )=+
− 





1)

2
(

1
G

k

n δ  ( ) .813
16

6
n>=+

− 




  

We conclude from the proof of lemmas 4.1 and 4.2 that two other sufficient 

conditions for )(
)(

G
k

c
δλ ≥  are given in the following lemma without proof. 

Lemma 4.3 [5].  Given G be a connected graph of order n and let .2 nk ≤≤  

If ),(1
1

G
k

n δ≥−
− 




  then ).()(
)(

GG
k

c
δλ ≥  

If ,1−≥ kδ  then ).()(
)(

GG
k

c
δλ ≥  

5 Main Results 

Now we establish the basis theorem for determining the best possible solution k, 
such that there exists a connected graph G of order n where in such inequality of 

).(
)(

)()(
)1(

G
k

c
GG

k
c

λδλ ≤<+
 

 

Figure 2 A graph /G  with )/(Gδ  and 
1

/( )

n

l Gcλ
+ 

  / /( ) ( ).

n
lG Gcδ λ< ≤
 
   

Theorem 5.1 [4,5]. Consider G be a connected graph of order n. If 

( ) ,1 1,
1

n
G l n

l
δ ≥ ≤ ≤ −

+
 
  

 then ≥







)(G
l

n

c
λ  ).(Gδ  Furthermore, if )1( +≥ lln  this is 

the best possible solution in the sense that for all δ  such that ,1
1

−≤≤
+ 











l

n

l

n δ  



216 Antonius Suhartomo 

there exists a connected graph /G of order n with )/()/( GG δδ =  and 

)./()/(

1

GG
l

n

c
δλ <

+






 

Proof. We first show that if ,11 −≤≤ nl  then 
.1

1

+≥
−
























l

l

n

n  If l does not divide 

n, then .1 










 =−
l

n

l

n  But ,10, −≤<+= 





lrrl

l

n
n  so 

1

n r
l

n n

l l

= +
−   

   

 and 

1.
1

n
l

n

l

≥ +
−

 
 
  
   

 If l divides n, then .11 +−=== 



















l

l

n
l

l

n
l

l

n
n  Thus 

11 −
+=

− 











l

n

l
l

l

n

n  and as before 
.1

1

+≥
−
























l

l

n

n  Finally 

.1
1

)1()1(

1

n
l

n
l

l

n

n
>+

+
+≥+

−







































δ   

The conclusion follows by applying Lemma 4.2 [4] with .




=
l

n
k  To 

demonstrate the best possible condition we construct graph ./G  Assume 

)1( +≥ lln  and write ,)( r
l

n
rl

l

n
rl

l

n
n 
















 ++=+=  where .10 −≤≤ lr  Let 

us start with l distinct complete graphs, l – r of order 





l

n
 and r of order .





l

n
 

These cliques are connected in a path-like manner as shown in Figure 2.  
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Finally, since 1≥l  and ,21 ≥+≥





l

l

n
 there exists a node u in a distinguished 







l

n
K  of degree 1−





l

n
 and edges are removed if necessary to obtain 

.)/( δδ =G  Since ,
1

),1( l
l

n
lln ≥

+
+≥ 




  we have .
1

l
l

n
≥

+ 




  

Thus,  

δλ ≤
+

≤<−=
+






















1
1)/(

1

l

n
llG

l

n

c
. 

Corollary 5.1 [1]. Let G be a connected graph of order n. If ,
2

)( 




≥
n

Gδ  then 

).()( GG δλ ≥  

Proof. If we set l = 1, then Theorem 5.1 becomes: Let G be a connected graph 

on 2≥n  nodes. If )(
2

G
n δ≤




  then ).()(
)(

GG
k

c
δλ ≥  Since ),()(

)(
GG

k
c

δλ =  the 

conclusion follows. 

Corollary 5.1 is the first part of Chartrand’s Theorem (Theorem 2.2). Since any 

( ) ),

n

l G Gcλ δ<
 
   then n

k
l

=    
 is not the best possible condition. We need to do 

more work to discuss and further investigate application in telecommunication 
networks that mention the second part of Chartrand’s Theorem.  

Applications in telecommunication networks can take a sample of the terrestrial 
communications network connecting the various cities, which can be described 
in a graph as a network topology path ( ) .P Gn  To provide reliability of local 

connections in every city, you need complete network topology ( ) .K Gn
  

For example, n = 10, and l = 3 and 4. Then for l = 3, the value of  

,3
3

10
== 











l

n
 and .4=





l

n
 Thus, for a number of nodes, n = 10, the network 
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topology for l = 3 will consist two complete graphs of  ( ),
3

GK  and a complete 

graph of  ( ).
4

GK  

Similar to the value of l = 4, the value - the value ,2
4

10
== 











l

n
 and .2=





l

n
 

Then, related to the number of nodes n = 10, the shape network topology will 
consist of two complete graphs of ( ),

2
GK  and two complete graphs of ( ).

3
GK   

This example is illustrated in Figure 3 for the same number of nodes, n = 10, 
and for different values of l, l  = 3 and l = 4. 

 

Figure 3  (a) Path Graph ( )10P G  contains two ( )3K G  and one ( )4K G  with 

( )
( ) ( )

k
G Gcλ δ≥   for 52 ≤≤ k  and 

( )
( ) ( )

k
G Gcλ δ<  for .5 nk ≤<   (b) Path 

Graph ( )10P G  contains two ( )2K G  and two ( )3K G  with 
( )

( ) ( )
k

G Gcλ δ≥   

for 72 ≤≤ k  and 
( )

( ) ( )
k

G Gcλ δ<  for 7 .k n< ≤  

6 Conclusion 

In 1966, Chartrand proved that if ,
2

)( 




≥
n

Gδ  where )(Gδ  is the minimum 

degree of any node in the connected graph G of order n, then )()( GG δλ = , 
where )(Gλ  is the edge connectivity, which is the minimum number of edges 
that must be removed in order to make the graph disconnected. We have 

demonstrated that the analogous result holds for ),(
)(

G
k

c
λ  which is the 

minimum number of edges that must be removed to disconnect the graph into 
components, each of order no more than k – 1. Namely, for all connected graphs 
G of order n there exists a value of k such that if )(Gδ  is sufficiently large then 

)(
)(

G
k

c
δλ ≥ .  Moreover, the value of k can be chosen such that ).(

)1(
G

k
c

δλ <+  
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When k = n, )()(
)(

GG
k

c
λλ = , and the lower bound on )(Gδ  is ;

2




n  thus 

Chartrand’s result follows from ours. 
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