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Abstract. The pace and complexity of modern cyber-attacks expose the limits of
traditional ‘impact x likelihood’ risk matrices, which compress uncertainty into coarse
categories and miss inter-dependent threat dynamics. We propose a three-layer multi-
fuzzy inference system (MFIS) that models general infrastructure vulnerabilities and
access-control weaknesses separately, then fuses them into a single, continuous 0-25
risk score. The framework was validated on three representative scenarios—
catastrophic/continuous, serious/frequent, and minor/few attacks—encompassing
sixteen threat criteria. Compared with a crisp 5 x 5 matrix, MFIS cut mean-absolute
error and root-mean-square error by 90 to 99% and reproduced expert-panel
judgments to within 0.55 points across all scenarios. Nine independent practitioners
rated the prototype highly on usability (100% agreement), credibility (100%) and
actionability (100%), with 78% willing to recommend adoption. These results
demonstrate that MFIS delivers fine-grained, expert-aligned assessments without
adding operational complexity, making it a viable drop-in replacement for time- or
resource-constrained organizations. By capturing partial memberships and cross-
domain interactions, MFIS offers a more faithful, adaptive and explainable basis for
prioritizing cyber-defense investments and can be extended to emerging threat
domains with modest rule-base updates.

Keywords: cybersecurity risk assessment; fuzzy logic; multi-fuzzy inference system,
expert validation; adaptive decision support.

1 Introduction

Modern organizations face a cyber-risk landscape that is high-velocity,
ambiguous, and densely interconnected. Traditional risk-assessment toolkits—
chiefly based on qualitative risk matrices and binary ‘impact x likelihood’
scoring—were designed for comparatively stable technical environments. In
practice they now fail on three recurring fronts:

1. Over-simplification of wuncertainty. Crisp categories such as
‘low/medium/high’ force analysts to round rich, often fuzzy evidence into
coarse buckets, erasing nuance and compounding subjectivity. Recent
industry reviews show that risk matrices can produce order-of-magnitude
ranking errors and a false sense of precision [1-2].
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2. Static, one-shot scoring. Conventional methods rarely update fast enough to
follow zero-day exploits or new business processes, leaving blind spots
between assessment cycles.

3. Poor handling of inter-dependent variables. Binary logic struggles to model
cascading or conditional effects (e.g., how a single credential leak
propagates through supply-chain access).

These weaknesses have translated into headline failures:

1. Target (2013). The retailer’s monitoring tools generated multiple high-
priority alerts, yet the binary classification workflow downgraded them,
allowing malware to exfiltrate forty million payment cards [3].

2. Equifax (2017). A critical Apache Struts vulnerability was flagged, but the
qualitative matrix rated it below mitigation thresholds; the patch backlog
persisted for 78 days, ultimately exposing 147 million records [4-5].

3. Colonial Pipeline (2021). Pre-incident assessments treated the IT and OT
networks as independent assets; when ransomware affected a single billing
server, operational risk was grossly underestimated, resulting in a six-day
fuel stoppage across the U.S. East Coast [6].

Collectively, these cases underscore two systemic gaps: (i) inflexible binary
reasoning, which cannot express partial threat presence, and (ii) [limited
contextual awareness across multiple, simultaneously evolving risk factors.

Multi-fuzzy inference systems (MFIS) embrace the concept of fuzziness,
acknowledging the natural uncertainty and vagueness in real-world situations.
These systems find applications in various areas, such as control systems [7-8],
computer networking [9-10], and queue management [11]. They play a crucial
role in bridging the gap between the uncertain real world and the digital world,
enhancing the flexibility and efficiency of various computational processes.

Embedding fuzzy logic inside multiple chained inference layers yields four
practical advantages over traditional crisp approaches:

1. Granular uncertainty capture. Triangular membership functions translate
vague expert judgments (e.g., ‘somewhat probable’) into computable values,
which reduces mid-range mis-rankings and overconfidence at the extremes.

2. Context-aware aggregation. Separate FIS layers can model distinct threat
families—such as general infrastructure vulnerabilities versus access-
control weaknesses—before synthesizing an overall score. This preserves
domain-specific nuance while still providing a single actionable metric.

3. Adaptive rule base. Rules are easily added or re-weighted as threat
intelligence evolves, so the model can be refreshed without full redesign.
This shortens update cycles and keeps pace with emerging attack vectors.
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4. Explainable output. The linguistic labels produced by defuzzification
(‘medium—high risk’, ‘low probability’, etc.) map directly onto common
risk-management playbooks, simplifying board-level reporting and audit
trails.

Empirical studies on heterogeneous cybersecurity datasets have reported up to a
20% improvement in risk-ranking accuracy and markedly lower variance across
expert panels when fuzzy inference replaces crisp scoring [12]. Moreover, hybrid
MFIS architectures maintain that accuracy even as the rule base scales beyond a
dozen inter-dependent criteria—an essential property for today’s multi-vector
threat environment.

Building on the above, this paper proposes an MFIS-driven cybersecurity risk-
assessment framework that:

1. Models both broad infrastructure threats and granular access-control
weaknesses through three coupled FIS layers.

2. Demonstrates its utility on three case studies (catastrophic-continuous,
serious-frequent, and minor-few attack scenarios) and benchmarks against
non-fuzzy baselines.

3. Validates outputs against the judgments of nine senior cybersecurity
professionals, showing close alignment and higher sensitivity to latent risks.

By addressing the concrete shortcomings illustrated in the Target, Equifax and
Colonial Pipeline incidents—and by leveraging the adaptive, uncertainty-tolerant
nature of MFIS—our research aimed to provide practitioners with a more faithful,
agile and explainable decision tool for prioritizing cyber-defense investments.

2 Literature Review

2.1 From Crisp Matrices to Fuzzy Sets

Traditional impact % likelihood matrices have long dominated cyber-risk practice,
yet their coarse buckets distort mid-range scores and mask inter-dependencies
[1]. Early researchers therefore turned to fuzzy set theory to capture uncertainty
more faithfully. Alampalayam and Natsheh [13] pioneered an online multivariate
fuzzy detector for MANETS, demonstrating that triangular membership functions
could surface anomalies—such as DoS and routing attacks—overlooked by crisp
thresholds.

2.2 Single-Layer Fuzzy Risk Models (2010-2015)

Follow-on studies embedded fuzzy rules inside classic governance frameworks.
Shameli-Sendi et al. [14] wrapped ISO/IEC 27005 controls in a fuzzy
multi-criteria engine, while Sallam [15] decomposed risk into hacker capability,
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attack probability, and impact severity, updating scores continuously during
system development. These efforts confirmed the feasibility of fuzzy logic for
qualitative security domains but offered limited insight into scalability and
operational challenges.

2.3 Multi-Criteria and Neuro-Fuzzy Extensions (2016-2019)

Hibshi et al. [16] applied situation awareness theory to show that analysts trust
experience over checklists, highlighting the need for models that learn and adapt.
Fehringer and Barraclough [17] answered with the Adaptive Neuro-Fuzzy
Inference System (ANFIS) for phishing detection, achieving higher accuracy than
pure ML baselines. Parallel work fused fuzzy sets with Bayesian networks—e.g.,
Zhang et al. [18] for industrial control systems and Beken & Eminagaoglu [19]
for telecom testing—offering probabilistic reasoning but at the cost of heavy
expert elicitation.

2.4  Hybrid and Domain-Specific Frameworks (2020-2023)

Recent studies integrate fuzzy inference with chaos theory [20], TOPSIS [21],
and deep learning [22] to tackle domains from financial fraud to IoT.
Abdymanapov et al. [23] applied fuzzy assessment to LMS platforms, while
Costa & Araujo [24] attempted to govern fraud risk in IT environments.
Collectively, these works underscore fuzzy logic’s flexibility but reveal three
persistent issues:

1. Rule-base explosion as the number of criteria grows beyond a dozen.

2. Validation gaps—most evaluations rely on synthetic scenarios with scant
expert benchmarking.

3. Limited cross-domain aggregation—infrastructure and access-control threats
are rarely modelled together.

2.5 Identified Research Gap

No prior study offers a multi-layer fuzzy architecture that (i) isolates
general-system and access-control vulnerabilities, (ii) fuses them into a single
continuous 0-25 risk score, and (iii) benchmarks output against seasoned
practitioners across varying threat intensities. Addressing these gaps is critical as
recent breaches (e.g., SolarWinds, Colonial Pipeline) have exposed the interplay
of privilege abuse and systemic flaws.

2.6  Positioning of the Present Study

The proposed multi-fuzzy inference system builds on the above linecage while
pushing the state of practice forward in four ways:
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1. Layered design that preserves domain nuance yet yields one actionable
metric.

2. Dataset spanning three intensity bands (catastrophic/continuous,
serious/frequent, minor/few) to test robustness.

3. Expert-panel validation with nine senior practitioners, closing the real-world
evidence gap.

4. Comparative benchmarking that shows 90 to 99% error reduction versus the
crisp 5 x 5 matrix.

Together, these contributions advance fuzzy-based cyber-risk assessment toward

a scalable, explainable, and practitioner-aligned decision tool.

3 Methodology

3.1 Introduction

Cyber-security risk crystallizes when a credible threat can exploit a latent
vulnerability in an information system, potentially causing material, financial, or
reputational damage to the organization that owns it. Modern frameworks
therefore measure risk as the product of two dimensions—impact (severity of
harm) and /likelihood (probability of occurrence):

Risk = Impact x Likelihood.

To make that equation operational, practitioners typically assign each dimension
a five-point numeric scale (Table 1). The resulting 0-25 scores are then mapped
to qualitative tiers—Low, Medium, High—via the canonical 5 X 5 impact-
likelihood matrix (Table 2). While this crisp approach is intuitive, it forces
analysts to shoehorn inherently fuzzy evidence into rigid buckets, producing four
recurring problems:

1. Loss of nuance. Rounding a ‘3.6’ likelihood down to ‘3 = Monthly’ discards
up to 10% of the underlying probability mass and can reorder the risk queue.

2. Threshold artifacts. Small changes near class boundaries (e.g., from
‘Significant’ to ‘Major’ impact) trigger disproportionate jumps in the final
score.

3. Blind spots between assessments. Matrices are often refreshed quarterly,
leaving zero-day exploits or emergent business processes unmodelled for
weeks.

4. Inability to encode inter-dependencies. A matrix cannot express how one
vulnerability (e.g., weak credentials) amplifies another (e.g., lateral-
movement malware).

Table 1 Rating scales.

Impact Likelihood




6 Essam Natsheh& Fatima Bakhit Tabook

Insignificant ~ Once per year

Minor Semiannually
Significant ~ Once per month

Major Once per week

Severe Daily

Table 2 Risk levels.

Score  Risk Level Risk Occurrence Result
20-25  High Risk The 1nc_1dent cogld leaq to subst.antzal losses of significant tangible
assets, information, or informational resources.
Medium  The event could lead to a partial loss of tangible assets, information, or
Risk informational resources.
1-10 Low Risk Thg event cpuld lead to a negligible loss of tangible assets, information,
or informational resources.

11-19

To overcome these limitations, this study introduces an MFIS that replaces crisp
sets with fuzzy membership functions, allowing risk elements to belong partially
to multiple linguistic categories (e.g., 0.7 ‘High’ + 0.3 ‘Medium’). The proposed
MFIS:

1. assigns triangular membership grades on a continuous 0-5 axis for both
impact and likelihood;

2. processes general infrastructure threats and access-control weaknesses in two
dedicated fuzzy-logic layers; and

3. fuses their outputs in a third layer to yield a single, fine-grained 0-25 risk
score.

By capturing uncertainty explicitly and modelling cross-domain interactions,
MFIS promises more faithful—and actionable—risk rankings than the traditional
Impact x Likelihood grid. The next subsection details its architecture and rule
base.

3.2 Crisp-Matrix Baseline (Non-FIS)

To provide a reproducible benchmark, we implement the ‘traditional’ ISO
27005/1SO 31000 style risk matrix:

Risk Score non-ris = (Impact 1-s) % (Likelihood i-s),

with the product mapped to a 0-25 band using the canonical 5 x 5 grid shown in
Table 3.

Table 3 Canonical 5 x 5 risk-matrix baseline used for the non-FIS comparison.

Impact
1 (Insignificant 2 (Minor 3 (Significant 4 (Major 5 (Severe
) ) ) ) )

| = 5 Daily 5 Low 10 Low 15 Med 20 High 25 High
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4

Weekly 4 Low 8 Low 12 Med 16 Med 20 High
3
Monthl 3 Low 6 Low 9 Low 12 Med 15 Med
y .
2 Semi- 2 Low 4 Low 6 Low 8 Low 10 Low
annual
! 1 Low 2 Low 3 Low 4 Low 5 Low
Annual

Impact is the estimated damage magnitude (1 = Insignificant ... 5 = Severe);
Likelihood is the expected occurrence frequency (1 = Once per year ... 5 = Daily).
Any product > 20 collapses to the single ‘High’ bucket, while scores < 10 are
labeled ‘Low.’

Worked example: A vulnerability rated Impact = 5 but Likelihood = 4 produces
5 x4 =20 — ‘High.” A one-step increase in likelihood (5) raises the crisp score
to 25, yet both 20 and 25 still occupy the same ‘High’ cell, illustrating the
granularity loss that motivates fuzzy modelling.

33 Proposed Method: Multi-Fuzzy Inference System (MFIS)

To clarify the interaction of the three fuzzy inference systems (FIS) that compose
the proposed MFIS, we provide a detailed process diagram (Figure 1) illustrating
the data flow and system structure.

 iesg )
FIS1

General Threats

=
Impact N—————

FIS3

Overall
Cybersecurity
Risk

e
FIS2

Access Control Threats

o e |
e ———l?

Access Control
Threats Risk

Figure 1 Multi-fuzzy inference system (MFIS) process flow.

Likelihood
0-5

Each fuzzy inference system applies rule-based logic (as detailed in Table 4) to
generate fuzzy outputs that are defuzzified into risk scores. The rules for FIS1
follow the following format: If Risk Impact is Insignificant AND Risk Likelihood
is Once per Year, then General Threats Risk is Very Low. Similar rules format
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will be used for FIS2, such as: If Risk Impact is Insignificant AND Risk
Likelihood is Once per Year, then Access Control Risk is Very Low.

Table 4 Risk assessment rules used by FIS1 and FIS2 impact.

Insignificant Minor Significant Major Severe
= Daily Medium High High Very High  Very High
_§ Once per week Medium Medium High High Very High
= Once per month Low Medium Medium High High
ﬁ Semi-annual Very Low Low Medium Medium High

Once per year Very Low Very Low Low Medium Medium

The final output from FIS3 represents a context-aware, nuanced assessment of
cybersecurity risk, combining multiple threat dimensions. FIS3 operates based on
the rules shown in Table 5. The rules for FIS3 will be in the format: If Risk of
General Threats is Insignificant AND Risk of Access Control Threats is
Insignificant, then Overall Risk is Very Low.

Table 5 Risk assessment rules used by FIS3 risk assessment on access control

threats.
g Insignificant  Minor  Significant Major Severe
TE 3 Severe Medium High High Very High Very High
z E § Major Medium Medium High High Very High
j 5 ﬁ Significant Low Medium Medium High High
é Minor Very Low Low Medium Medium High
Insignificant Very Low Very Low Low Medium Medium

34 Construction of the Threat Catalogues

To populate the General Threats and Access-Control Threats lists, we followed
a three-stage, evidence-based procedure that balances industry guidance with
domain expertise:

1. Desktop survey of authoritative sources: We extracted candidate threats from
the most recent editions of ISO/IEC 27005 [25], NIST SP 800-30 Rev. 2 [26],
the ENISA Threat Landscape Report [27], and Verizon’s DBIR [28]. These
documents collectively cover >95 % of incidents reported worldwide over
the last five years.

2. Expert screening and rating: The nine cybersecurity professionals listed in
Section 4 independently rated each candidate on Frequency and Impact (five-
point Likert scales). Items whose geometric-mean score was below 3 on
either dimension were discarded; the remainder formed a shortlist of 27
threats.
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The final catalogues and their specific inclusion rationales are summarized in

Tables 6 and 7.

Table 6 Construction of the General Threats catalogue.

General Threat

Key reason(s) for inclusion

Primary source(s)

Illegitimate access to ‘unsecured’
computers/laptops

Combining test and production
data or environments

Introduction of unauthorized
software or hardware
Time bombs (date-triggered

malware)

Design flaws in operating systems

Protocol design errors

Logic bombs (condition-triggered
malware)
Viruses in programs / e-mail
attachments

Top insider-initiated incident in
ENISA 2024; high prevalence in
education & healthcare sectors
Frequent root cause of data-loss
events (Verizon DBIR 2024, 8%
of breaches)

Gateway for supply-chain
compromise (e.g., ‘Shadow IT’
peripherals)

Still observed in seven major
CERT advisories 2022-2024
Persistent vulnerability class;
scored ‘High’ in CVE trends
2023-24
Protocol-level flaws (e.g.,
Bluetooth KNOB, TCP RACK)
remain hard to patch
Common tactic in revenge-
motivated insider attacks
Still the dominant initial-access
vector for SMEs

ENISA [27];
ISO/IEC 27005 [25]
section B.2

Verizon [28]

NIST [26]

CERT-EU [29]
advisories

NVD statistics

ISO/IEC 27005 [25]
section B.3

ENISA [27]

Verizon [28]

Table 7 Construction of the Access-Control catalogue.

Access-Control Threat

Key reason(s) for inclusion

Primary source(s)

Password cracking / weak or
default passwords

External password-file access /
network sniffing

External backdoors

Internal backdoors

Unsecured maintenance modes /
developer backdoors
Uncontrolled modem connections
/ rogue Wi-Fi
Software vulnerabilities enabling
external access

Unauthorized physical access to
system

Accounts for 81% of credential-
based breaches
Aligns with ATT&CK technique
T1110.003; often precursor to
privilege escalation
Featured in SolarWinds, MOVEit
incidents; high impact
Insider threat variant; difficult to
detect with perimeter controls
Re-surfaced in 2024 IoT firmware
audits
Still observed in industrial and
legacy OT networks
“Top 3” root cause in ICS-CERT
advisories 2023-24
High-severity threat in
environments lacking layered
physical security

Verizon [28]

MITRE [30]

CISA [31] Advisory
AA24-031A
ISO/IEC 27005 [25]
section B.5
ENISA Threat
Report [27]

NIST [26]
ICS-CERT [32]

ISO/IEC 27005 [25]
Annex D
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4 Results and Discussion

4.1 Overview

This section presents a detailed validation and comparison of the proposed MFIS
method with a traditional crisp scoring method (non-FIS). Three distinct case
studies are used to assess the MFIS under varying threat scenarios, and expert
feedback is leveraged to evaluate the system’s real-world relevance.

4.2 Case Studies in Cybersecurity Environments
The MFIS method was validated across three cybersecurity threat scenarios:

1. Case Study 1 (Catastrophic-Continuous Attacks): High-impact, frequent
attacks, modeled with impact and likelihood values ranging between 3.5 to
5.0.

2. Case Study 2 (Serious-Frequent Attacks): Moderate-impact, frequent attacks,
modeled with impact and likelihood values ranging between 1.8 to 3.4.

3. Case Study 3 (Minor-Few Attacks): Low-impact, infrequent attacks, modeled
with impact and likelihood values ranging between 0.5 to 1.7.

These scenarios provide a comprehensive framework to evaluate MFIS
adaptability and robustness under realistic conditions.

Validation relied on a purpose-built dataset that incorporates:

1. Source: Expert elicitation and literature-derived scenarios mirroring real-
world organizational environments.

2. Size: Three case studies, each containing sixteen criteria—eight covering
general threats and eight focused on access-control threats.

3. Diversity: The studies span the full range of threat intensities outlined above,
ensuring the MFIS is tested across varied risk profiles.

Together, these elements demonstrate the MFIS’s consistent performance across
diverse cybersecurity contexts.

4.3 General Threat Risk Assessment

Using FIS1, the fuzzy method demonstrated superior sensitivity and accuracy
compared to the crisp (non-FIS) approach as shown in Tables 8, 9, 10 and Figure
2. In high-intensity scenarios (Case Study 1), FIS1 consistently rated threats as
high-risk, whereas the crisp model underestimated two critical threats. For
moderate and low-intensity scenarios, FIS1 captured subtle variations effectively,
providing nuanced evaluations reflective of real-world conditions, as opposed to
the overly conservative ratings from the crisp approach.
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In Table 8, the FIS1 lifts every threat in Case 1 into the high-risk band (>19) while
the crisp model underrates two of eight items. FIS1 raises ‘Protocol-design errors’
from 19.11 — 22.00 because fuzzy rule-aggregation recognizes compounding
impacts when legacy code and high attack frequency co-occur. This nuance is
lost in the crisp 5 x 5 matrix, which truncates anything above ‘Major x Daily’ at
25, masking gradations inside the top tier.

Table 8 Case study 1 (catastrophic-continuous attacks) based on general
threats.

Impact likelihood Risk
(3.5-5.0) (3.5-5.0) Score

General Threats Using Non- Using

FIS FIS1
1. lllegitimate access to ‘unsecured 40 48 192 213
computers/laptops
2. Combining test and production data or 43 46 198 201
environments
3. Introduction of unauthorized software or 41 49 20.09 218
hardware
4. Time bombs 45 43 19.35 19.8
5. Design flaws in Qperatlng syste:ms: 43 45 19.35 19.8
some lack strong inherent security
6. Protocol design errors 39 49 19.11 22.0
7. Logic bomb 45 49 22.05 21.7
8. Viruses in attachments 4.8 49 23.52 219
Average 43 47 20.31 21.05

Table 9 Case study 2 (serious-frequent attacks) based on general threats.

General Threats Impact likelihood Risk Score
(1.8-34) (1.8-34) Using Using
Non-FIS FIS1
1. Illegitimate access to ‘unsecured 29 28 812 147
computers/laptops
2. Combining test and production data or 3 26 78 151
environments
3. Introduction of unauthorized software 34 23 782 16.8
or hardware
4. Time bombs 2.6 34 8.84 16.8
5. Design flaws in Qperatlng syste‘ms: 39 20 6.4 15.9
some lack strong inherent security
6. Protocol design errors 2.9 1.9 551 14.9
7. Logic bomb 3.1 33 10.23 16.1
8. Viruses in attachments 1.8 2.9 5.22 14.9

Average 2.9 2.7 7.49 15.65
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Table 10 Case study 3 (minor-few attacks) based on general threats.
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- Risk Score
General Threats (I()msljil c7t) h(l:)eg_lio,;))d Using Non- Using
T T FIS FIS1
1. [llegitimate access to ‘unsecured 16 1.0 1.6 8.1
computers/laptops
2. Combining test and production data or 15 15 295 78
environments
3. Introduction of unauthorized software or 1.7 13 291 8.7
hardware
4. Time bombs 1.4 1.7 2.38 8.7
5. Design flaws in Qperatlng syst(?ms: 13 16 208 82
some lack strong inherent security
6. Protocol design errors 1.0 1.4 1.4 7.1
7. Logic bomb 1.5 1.5 2.25 7.8
8. Viruses in attachments 0.8 1.3 1.04 6.2
Average 1.4 1.4 1.9 7.83
25.00
H Non-FIS
20.00 FIS1
15.00
10.00
5.00 —
0.00 . — . .
Case study 1 Case study 2 (serious- Case study 3 {minor-few
(catastrophic-continuous  frequent attacks) attacks)
attacks)

4.4 Access Control Threat Risk Assessment

Figure 2 Average risk assessment based on general threat.

In assessing threats related specifically to access control (FIS2), the fuzzy method
again outperformed the traditional crisp scoring as shown in Tables 11, 12, 13
and Figure 3. In scenarios characterized by insider threats and credential
vulnerabilities, FIS2 produced consistently more accurate and meaningful risk
evaluations, reflecting its capacity to handle complex and ambiguous threats
inherent to internal cybersecurity challenges.
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Table 11 Case Study | (catastrophic-continuous attacks) based on access
control threats.

Risk Score
Impact  likelihood ~qin
Access Control Threats (355.0) (3.5-5.0) Non-g Using
FIS FIS2
1. Password cracking (access to password files, use
of bad — blank, default, rarely changed — passwords) 47 3.8 17.9 20.7
2. Unauthor1z§d access to password files and network 35 49 172 210
sniffing from external sources
3. Malicious programs enabling external access to
systems (backdoors visible to external networks) 3.9 45 17.6 19.9
4. Malicious programs enabling internal access to
systems (backdoors visible within internal networks) 4.0 3.8 152 18.9
5. Unsecured maintenance modes, developer 43 35 15.1 19.4
backdoors
6. Modems eas11.y connect.ed, enabling uncontrolled 48 33 18.04 213
expansion of the internal network
7. Vulnerabilities in network software that may create
unforeseen security openings, which can be exploited 49 35 147 192
from external networks for unauthorized access; this ’ ’ ’ ’
risk escalates as software complexity increases
8. Unauthorized physical access to system 3.6 4.9 17.64 21.6
Average 4.1 4.125 16.67 20.25

Table 12 Case Study 2 (serious-frequent attacks) based on access control

threats.
Impact Risk Score
Access Control Threats (1.8- Likelihood Rlisiye Using
3.4) (1.8-3.4) Non- FIS2
) FIS
1. Password cracking (access to password files, use of bad
— blank, default, rarely changed — passwords) 17 34 378 149
2. Unauthorized access to password files and network
. 2.0 3.0 6 15.1
sniffing from external sources
3. Malicious programs enabling external access to systems
(backdoors visible to external networks) 23 29 7.25 14.7
4. Malicious programs enabling internal access to systems 19 18 342 95
(backdoors visible within internal networks) ’ ’ ' '
5. Unsecured maintenance modes, developer backdoors 3.0 2.7 8.1 15.1
6. Modems eas11.y connect§d, enabling uncontrolled 34 23 787 16.8
expansion of the internal network
7. Vulnerabilities in network software that may create
unforeseen security openings, which can be exploited from 2.9 3.1 8.99 15.5
external networks for unauthorized access
8. Unauthorized physical access to system 2.3 2.5 5.75 12.5
Average 2.5 2.7 6.64 14.26
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Table 13 Case Study 3 (minor-few attacks) based on access control threats

Risk Score
Access Control Threats (1011;[_);1 c7t) Lllzgllsl:(l)o;; Using  Using
- - Non- FIS2
FIS
1. Password cracking (access to password files,
use of bad — blank, default, rarely changed — 0.8 0.9 0.72 5.8
passwords)
2. Unauthorized access to password files and 10 17 17 85
network sniffing from external sources ' ’ ’ '
3. Malicious programs enabling external access
to systems (backdoors visible to external 1.5 1.1 1.65 7.7
networks)
4. Malicious programs enabling internal access
to systems (backdoors visible within internal 0.9 1.0 0.9 59
networks)
5. Unsecured maintenance modes, developer 05 17 085 79
backdoors
6. Modems easily connected, enabling 12 15 18 77
uncontrolled expansion of the internal network ’ ) ) ’
7. Vulnerabilities in network software that may
create unforeseen security openings, which can 13 17 291 8.6
be exploited from external networks for ’ ’ ’ ’
unauthorized access.
8. Unauthorized physical access to system 1.4 1.2 1.68 7.2
Average 1.1 1.4 1.44 7.41
25
H Non-FIS
20 FIS 2
15 -
10 +
5 4
0 : e ,
Case study 1 Case study 2 (serious-  Case study 3 (minor-few
(catastrophic-continuous frequent attacks) attacks)
attacks)

Figure 3 Average Risk Assessment based on access control threats.
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4.5 Comprehensive MFIS Risk Assessment

The final integrated MFIS model (FIS3), which synthesizes results from both
general threats (FIS1) and access control threats (FIS2), maintained high
accuracy and reliability despite its increased complexity as shown in Figure 4.
This comprehensive evaluation effectively captured interdependent risk
dynamics, providing a contextually aware, nuanced assessment superior to
traditional methods. Furthermore, from the figure, even though FIS 3 has a larger
rule base than FIS 1 and FIS 2, it demonstrated a similar level of accuracy for risk
assessment as FIS 1 and FIS 2. Overall, MFIS exhibited remarkable consistency
and alignment with expert assessments across diverse scenarios.

25.00
m Non-FIS
20,00 - FIS 1
mFIS2
1500 1 mFIS3

10.00 -~
5.00
0.00 -
Case study 1 Case study 2 (serious- Case study 3 {(minor-few
(catastrophic-continuous  frequent attacks) attacks)
attacks)

Figure 4 Risk assessment comparison for non-FIS and FIS based methods.

4.6  Comparison with Expert Evaluations

This section benchmarks MFIS outputs against the informed judgments of nine
senior cybersecurity practitioners to verify that the system’s numeric scores align
with real-world expertise.

4.6.1 Purpose and Study Design

A structured questionnaire captured each expert’s perceived risk for the sixteen
criteria used in the three case studies:

1. Case 1 — Catastrophic / Continuous attacks
2. Case 2 — Serious / Frequent attacks
3. Case 3 — Minor / Few attacks

Experts rated impact and likelihood on the same five-point scales employed by
the MFIS. Mean, standard deviation (SD) and range were calculated to describe
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inter-rater dispersion, creating a data set against which MFIS and the baseline
crisp matrix could be compared.

4.6.2 Results

Table 14 summarizes the comparison. MFIS (FIS-3) scores fell well inside the
experts’ observed range for every scenario and sit within =1 SD of the expert
mean:

Table 14 Expert panel statistics by scenario.

Scenario Expert Expert Expert FIS3 Non-FIS
Mean SD Range Score score
Catastrophic — Continuous 21.16 1.02 19.8-22.9 21.15 18.49
Serious — Frequent 15.10 1.85 12.3-17.8 15.65 7.07
Minor — Few 7.84 0.92 6.2-9.1 8.12 1.67

Figure 5 (mean = 1 SD error bars) visually reinforces this alignment, while Table
15 reports a 90 to 99 % reduction in mean-absolute-error (MAE) and root-mean-
square-error (RMSE) when MFIS replaces the crisp matrix.

Table 15 Error of each method vs. expert consensus.

Scenario

(Case Study) Model MAE| RMSE|
Non-FIS 2.67 2.88
Catastrophic / FIS-1 0.50 0.61
Continuous FIS-2 0.72 0.80
FIS-3 (MFIS) 0.01 0.03
Non-FIS 8.03 8.38
Serious / FIS-1 0.83 0.97
Frequent FIS-2 0.69 0.78
FIS-3 (MFIS) 0.55 0.61
Non-FIS 6.17 6.44
. FIS-1 0.45 0.53
Minor / Few FIS-2 0.39 0.46
FIS-3 (MFIS) 0.28 0.34

Note: Lower mean-absolute-error (MAE) and root-mean-square-error (RMSE) indicate closer alignment with
expert ratings.
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Figure S Model vs. expert risk scores (mean + SD).

4.6.3 Discussion

The MFIS demonstrates a high level of accuracy in reproducing expert consensus,
achieving sub-point deviations with a mean absolute error (MAE) of no more
than 0.55. In contrast, the traditional crisp matrix can mis-score moderate-
frequency threats by as much as eight points, highlighting a significant
performance gap. This precision holds consistently across all threat intensities.
Whether the scenario involves catastrophic, continuous attacks or minor,
infrequent incidents, MFIS maintains robust calibration and fidelity over the
entire risk spectrum.

A key advantage of MFIS lies in its granularity. By leveraging partial-
membership reasoning, it can register nuanced shifts in threat assessments that
the crisp 5 % 5 matrix tends to flatten. For example, in Case 1, ‘Protocol-design
errors’ were elevated from a score of 19.1 to 22.0, reflecting compounding factors
that the traditional matrix fails to capture. This capacity to express subtle
distinctions enables MFIS to provide a more refined and contextually accurate
representation of cybersecurity risks.

4.6.4 Implications for Practice

The close statistical fit confirms that MFIS can serve as a trustworthy proxy for
expert panels when time or staffing constraints preclude manual scoring.
Organisations can therefore:

1. Automate triage: Deploy MFIS to pre-score vulnerabilities, reserving expert
effort for borderline cases.

2. Standardize reporting: Map the MFIS 0-25 continuum directly onto existing
risk tiers to preserve continuity with legacy dashboards.
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3. Continuously refine: Periodically re-calibrate membership functions using
fresh expert input to keep model drift below a 5% RMSE threshold.

Overall, the validation demonstrates that the proposed MFIS captures human risk
perception far more faithfully than traditional Impact x Likelihood grids, making
it a compelling candidate for operational cybersecurity risk management.

4.7  User Experience and Acceptance Evaluation

Agreement with expert scores is only meaningful if the system is also usable and
trusted by the people who must operate it. To gauge day-to-day practicality, nine
practicing cybersecurity professionals—none of whom took part in earlier
modeling—were invited to test the MFIS prototype and complete a short, five-
item Likert questionnaire (Strongly Disagree 1 — Strongly Agree 5). The items
probed:

1. Overall usability: “MFIS is easier to use than the tools I currently employ for
risk assessment.”

2. Credibility of scores: “MFIS risk values look realistic compared with my
real-world experience.”

3. Adaptability: “I am confident MFIS could be updated to track emerging
threats.”

4. Actionability: “MFIS outputs offer insights that would improve my
organization’s cyber-security posture.”

5. Net recommendation: “I would recommend MFIS to other security
professionals.”

Figure 6 visualizes the responses; key observations are summarized in Table 16.
9
8
7
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5
4
3
2
1
0

Qs Q4 Q3 Q2 Q1

m Strongly Disagree  m Disagree Neither Agree/Disagree Agree W Strongly Agree

Figure 6 Visualization of cybersecurity professionals’ acceptance of MFIS.
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Table 16 MFIS user survey summary.
%

Item Agree + Mode Interpretation
Strongly
Agree
Participants unanimously rated MFIS
Usability 100 % Agree easier to operate than their current
methods.
All respondents found the scores
Credibility 100 % Agree plausible and aligned with field
experience.
One neutral response suggests minor
Adaptability 89 % Agrec/Strongly reservations about long-term
Agree .
maintenance.
Actionability 100 % Agree Users perceived clear value in the

additional insight MFIS provides.
While most would endorse MFIS,
Recommendation 78 % Agree two respondents preferred to reserve
judgement until further trials.

Overall, the survey indicates strong user acceptance: MFIS is viewed as intuitive,
credible, and beneficial for decision-making. The only neutral opinions on
adaptability and recommendation point to a need for documented update
procedures and longer pilot deployments but do not detract from the general
endorsement. These findings complement the technical validation in section 4.6,
confirming that MFIS is not only accurate but also readily adoptable in real
operational settings.

4.8 Synthesis of Key Findings

Across all three case studies, the MFIS reduced mean-absolute-error and
root-mean-square-error by 90 to 99% relative to the traditional crisp
impact-likelihood matrix while maintaining sub-point accuracy (< 0.55) at every
threat intensity. Partial-membership reasoning captured nuanced shifts in risk
scores that the matrix flattened, enabling more precise prioritization. These
technical gains translated into practice: every practitioner rated MFIS easier to
use, credible, and directly beneficial, and 78% said they would recommend
adopting the tool. Collectively, the results show that MFIS provides reliable,
fine-grained assessments without adding complexity, making it a viable proxy for
expert panels when time or staffing is limited. The implications of these findings
are analyzed in Section 4.9 and the study’s limitations are discussed in Section
4.10.
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4.9  Deep-Dive Analysis of MFIS Superiority and Positioning
within Current Fuzzy-Logic Research

4.9.1 Where Precisely Does MFIS Beat Non-Fuzzy Scoring?

Table 15 already shows that MFIS (FIS 3) tracks expert opinion far more closely
than the crisp matrix, but the advantage becomes clearer when we isolate error
and edge cases, as shown in Table 17.

Table 17 MFIS (FIS 3) vs. crisp matrix: performance on isolated error and edge
cases.

. Expert  Non-FIS MFIS (FIS Error-
Scenario

mean error 3) error reduction
Catastrophic /) 0 5 6g 0.01 >99 %
Continuous
Serious / 15.1 8.03 0.55 93%
Frequent
Minor / Few 7.84 6.17 0.28 95%

Because the crisp model can only step in whole-number bands of Impact x
Likelihood (1-25), it systematically underestimates moderate-impact events.
MFIS, by contrast, grades risk on a continuum and therefore avoids the false-
comfort valley between ‘Low’ and ‘Medium’.

Concrete data points:

1. Viruses in Case Study 2 — Non-FIS assigns a Low score of 5.22; FIS 1 lifts
this to 14.90, squarely in the Medium band—mirroring analyst judgement
that outdated AV signatures create silent exposure.

2. Password-cracking in Case Study 2 — FIS 2 outputs 14.9 (=50 % Medium, 50
% High) while the crisp model returns only 5.78, masking an insider’s
capacity to brute-force weak hashes.

3. Protocol-design flaws in Case Study 3 — Even at low likelihood, MFIS
assigns 7-8 points (Low risk but actionable), whereas Non-FIS collapses
everything below score 4 into ‘Very Low’, providing no practical
prioritization.

These examples show that partial memberships (e.g., ‘0.7 High + 0.3 Medium”)
let MFIS exploit subtle shifts in threat context that binary cut-offs ignore.
4.9.2 Why Does MFIS Deliver Those Gains?

The performance gains of MFIS stem from four core design features. First, its
cross-domain coupling links FIS 1 (general threats) and FIS 2 (access-control
threats) into a hierarchical FIS 3, allowing the model to capture
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interdependencies—such as how a logic bomb combined with a weak password
policy can create a super-additive risk spike that a single-factor matrix cannot
express. Second, granular rule weighting is achieved through sixteen rules with
triangular membership functions on a 0-5 scale, enabling small changes in impact
or likelihood (e.g., 3.4 — 3.6) to propagate smoothly through the rule base,
whereas the crisp score remains static until a threshold is crossed. Third,
continuous defuzzification produces a real-valued risk score on a 0-25 scale,
allowing analysts to see that ‘14.9 = Medium-High’ is closer to ‘15.1 = High’
than to ‘10 = Medium,’ a distinction lost in a three-color heat map. Finally, MFIS
is resilient to sparse data; while non-FIS methods depend heavily on historical
frequencies, MFIS can initialize with expert priors and update its rules as new
evidence emerges, avoiding the need to round ‘unknown’ values to zero.

4.9.3 How Does MFIS Compare to Other Fuzzy-based Models?

Recent work on adaptive neuro-fuzzy intrusion detection has reported higher
detection rates than crisp classifiers—for example, ANFIS outperforms decision
trees by approximately 10% in F-score [33-34] (see Table 18). However, those
studies focused on packet-level classification rather than holistic risk posture. By
linking technical indicators to enterprise-level risk, MFIS fills this gap—a
capability absent from single-stage fuzzy or neuro-fuzzy detectors.

Table 18 MFIS compared to other fuzzy-based models.

Reported

Model Rule base & outputs
performance

Comparative remarks

2048-64 rules per SDLC Domain-specific; no

ANFIS-SRA ] . 88-92 % phase-  cross-threat aggregation;
phase; categorical 4x4 .2
[33] . . level accuracy heavy training data
confusion matrix
demand.
19 rules; Validated Good for compliance
FRIS on ISO . . - scoring but lacks
Low/Medium/High output  qualitatively on .
27002 [34] continuous scale and
bands 93 controls

multi-domain coupling.
First to fuse general and
<0.55 deviation access-control threat
from expert mean  channels; delivers fine-
in all cases (=97 grained, expert-aligned
% correlation) scores without large
training sets.

16 rules across two FIS
Our MFIS layers + integrator;
continuous 0-25 scale

4.9.3 Implications for Practitioners and Researchers

Practitioners gain a tool whose error relative to expert consensus was <3% in
every scenario tested, meaning remediation budgets can be directed with high
confidence. Researchers can extend the MFIS template by: (i) adding new FIS
blocks (e.g., supply-chain risk), (ii) integrating adaptive rule-learning, and (iii)
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benchmarking root mean square error (RMSE) against emerging frameworks
such as the FSRA-FRIS and ANFIS-SRA families on shared datasets.

4.10 Limitations and Implementation Challenges

Although the MFIS exhibits strong accuracy and adaptability, several constraints
must be considered before large-scale or real-time deployment.

1. Rule-base explosion and computational load: Each new linguistic variable or
threat class increases the number of fuzzy rules combinatorial. If » impact
levels and m likelihood bands are used for & threat families, the worst-case
rule count is @(n m k). Table 19 shows that extending the prototype from two
to six threat families (while keeping five impact and five likelihood bands)
grows the rule base from 50 to 150 rules and raises mean inference time from
4 ms to 37 ms on a single CPU core (hardware = Intel i7-11800H @2.3GHz).
In environments with thousands of concurrent assessments, this cost becomes
prohibitive. Two mitigation strategies are recommended:

a) Hierarchical stacking—split the problem into smaller FIS modules (e.g.,
per department or asset type) and aggregate their crisp outputs in a
lightweight meta-FIS;

b) Rule pruning—apply information-gain or coverage metrics to drop rules
whose firing strength rarely exceeds a minimal threshold, trimming 20-40%
of the rule base without notable accuracy loss.

Table 19 MEFIS scalability benchmarks

. . e Mean
# Threat Linguistic Total inference 99th-. Approx.
o bands . percentile RAM
families . fuzzy time per .
modeled (impact x rules* assessment latency footprint
likelihood) (ms) (MB)
(ms)
2 5%x5 50 4.1+03 6.8 22
(prototype)
4 5%x5 100 17.6+1.2 65.3 46
6 5x5 150 37.2+2.8 180.4 71

*Rule count grows @(n m k) where n = impact bands, m = likelihood bands, k = threat families.

2. Large-scale data ingestion: The prototype assumes that likelihood and impact
scores arrive as pre-computed scalars. In high-density networks (>10000
asset-threat pairs) the ETL stage (Extract, Transform, Load (data-processing
pipeline)) dominates total latency. Batch vectorization and GPU-assisted
defuzzification can reduce throughput time roughly 20 times, but add
operational complexity and hardware cost. Further, data sparsity or out-of-
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range values may produce unstable membership grades; defensive input
validation and defaulting rules are essential.

3. Integration and maintenance overhead: While the MFIS API can slot into
existing NIST RMF or ISO 27005 processes, organizations must invest in (i)
data-normalization scripts, (ii) ongoing rule-base curation, and (iii)
monitoring dashboards. These tasks demand interdisciplinary skills (security
+ data engineering), which smaller teams may lack.

Addressing the above limitations will be critical for widespread operational
adoption. The focused roadmap in Section 5 outlines concrete research steps
(adaptive tuning, ML-assisted likelihood scoring, containerised deployment)
aimed at mitigating these challenges in future work.

5 Conclusions

Our study has shown that the proposed multi-fuzzy inference system (MFIS)
closes the gap between automated scoring and expert judgment to under 3%,
cutting error by more than 90% compared with a crisp matrix. Organizations can
embed these gains with minimal disruption: (1) map the MFIS 0-25 scale to
existing risk tiers; (2) stream impact and likelihood data from scanners, security
information and event management, and threat-intel feeds through a lightweight
ETL script that converts all inputs to the MFIS 0-5 linguistic range; (3) invoke
MFIS automatically during patch-management and change-control cycles,
binding remediation service-level agreement (SLAs) to its scores; and (4) audit
performance quarterly by comparing MFIS predictions with incident and red-
team outcomes, adjusting rules whenever variance exceeds 10%.

Future work will focus on three actionable steps: adaptive tuning, ML-assisted
likelihood, and field validation. First, six months of operational data will drive
monthly re-shaping of membership curves, targeting <5% RMSE against experts
baselines. Second, a lightweight gradient-boosting model will pre-score
likelihood values, aiming for an Area under the Receiver Operating Characteristic
(curve) > 0.85 without disrupting MFIS transparency. Third, the system will be
containerized, deployed to two live networks, and stress-tested for sub-50 ms
latency at 1000 calls/s while demonstrating at least a 20% reduction in mean time-
to-detect. Deliverables include an open-source code, a tuning dashboard, and a
practitioner white paper—will equip security teams to replicate and extend these
results.
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