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Abstract. The pace and complexity of modern cyber-attacks expose the limits of 

traditional ‘impact × likelihood’ risk matrices, which compress uncertainty into coarse 

categories and miss inter-dependent threat dynamics. We propose a three-layer multi-

fuzzy inference system (MFIS) that models general infrastructure vulnerabilities and 

access-control weaknesses separately, then fuses them into a single, continuous 0-25 

risk score. The framework was validated on three representative scenarios—

catastrophic/continuous, serious/frequent, and minor/few attacks—encompassing 

sixteen threat criteria. Compared with a crisp 5 × 5 matrix, MFIS cut mean-absolute 

error and root-mean-square error by 90 to 99% and reproduced expert-panel 

judgments to within 0.55 points across all scenarios. Nine independent practitioners 

rated the prototype highly on usability (100% agreement), credibility (100%) and 

actionability (100%), with 78% willing to recommend adoption. These results 

demonstrate that MFIS delivers fine-grained, expert-aligned assessments without 

adding operational complexity, making it a viable drop-in replacement for time- or 

resource-constrained organizations. By capturing partial memberships and cross-

domain interactions, MFIS offers a more faithful, adaptive and explainable basis for 

prioritizing cyber-defense investments and can be extended to emerging threat 

domains with modest rule-base updates. 

Keywords: cybersecurity risk assessment; fuzzy logic; multi-fuzzy inference system; 

expert validation; adaptive decision support. 

1 Introduction 

Modern organizations face a cyber-risk landscape that is high-velocity, 

ambiguous, and densely interconnected. Traditional risk-assessment toolkits—

chiefly based on qualitative risk matrices and binary ‘impact × likelihood’ 

scoring—were designed for comparatively stable technical environments. In 

practice they now fail on three recurring fronts: 

1. Over-simplification of uncertainty. Crisp categories such as 

‘low/medium/high’ force analysts to round rich, often fuzzy evidence into 

coarse buckets, erasing nuance and compounding subjectivity. Recent 

industry reviews show that risk matrices can produce order-of-magnitude 

ranking errors and a false sense of precision [1-2]. 
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2. Static, one-shot scoring. Conventional methods rarely update fast enough to 

follow zero-day exploits or new business processes, leaving blind spots 

between assessment cycles. 

3. Poor handling of inter-dependent variables. Binary logic struggles to model 

cascading or conditional effects (e.g., how a single credential leak 

propagates through supply-chain access). 

These weaknesses have translated into headline failures: 

1. Target (2013). The retailer’s monitoring tools generated multiple high-

priority alerts, yet the binary classification workflow downgraded them, 

allowing malware to exfiltrate forty million payment cards [3].  

2. Equifax (2017). A critical Apache Struts vulnerability was flagged, but the 

qualitative matrix rated it below mitigation thresholds; the patch backlog 

persisted for 78 days, ultimately exposing 147 million records [4-5]. 

3. Colonial Pipeline (2021). Pre-incident assessments treated the IT and OT 

networks as independent assets; when ransomware affected a single billing 

server, operational risk was grossly underestimated, resulting in a six-day 

fuel stoppage across the U.S. East Coast [6]. 

Collectively, these cases underscore two systemic gaps: (i) inflexible binary 

reasoning, which cannot express partial threat presence, and (ii) limited 

contextual awareness across multiple, simultaneously evolving risk factors. 

Multi-fuzzy inference systems (MFIS) embrace the concept of fuzziness, 

acknowledging the natural uncertainty and vagueness in real-world situations. 

These systems find applications in various areas, such as control systems [7-8], 

computer networking [9-10], and queue management [11]. They play a crucial 

role in bridging the gap between the uncertain real world and the digital world, 

enhancing the flexibility and efficiency of various computational processes. 

Embedding fuzzy logic inside multiple chained inference layers yields four 

practical advantages over traditional crisp approaches: 

1. Granular uncertainty capture. Triangular membership functions translate 

vague expert judgments (e.g., ‘somewhat probable’) into computable values, 

which reduces mid-range mis-rankings and overconfidence at the extremes. 

2. Context-aware aggregation. Separate FIS layers can model distinct threat 

families—such as general infrastructure vulnerabilities versus access-

control weaknesses—before synthesizing an overall score. This preserves 

domain-specific nuance while still providing a single actionable metric. 

3. Adaptive rule base. Rules are easily added or re-weighted as threat 

intelligence evolves, so the model can be refreshed without full redesign. 

This shortens update cycles and keeps pace with emerging attack vectors. 
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4. Explainable output. The linguistic labels produced by defuzzification 

(‘medium–high risk’, ‘low probability’, etc.) map directly onto common 

risk-management playbooks, simplifying board-level reporting and audit 

trails. 

Empirical studies on heterogeneous cybersecurity datasets have reported up to a 

20% improvement in risk-ranking accuracy and markedly lower variance across 

expert panels when fuzzy inference replaces crisp scoring [12]. Moreover, hybrid 

MFIS architectures maintain that accuracy even as the rule base scales beyond a 

dozen inter-dependent criteria—an essential property for today’s multi-vector 

threat environment. 

Building on the above, this paper proposes an MFIS-driven cybersecurity risk-

assessment framework that: 

1. Models both broad infrastructure threats and granular access-control 

weaknesses through three coupled FIS layers. 

2. Demonstrates its utility on three case studies (catastrophic-continuous, 

serious-frequent, and minor-few attack scenarios) and benchmarks against 

non-fuzzy baselines. 

3. Validates outputs against the judgments of nine senior cybersecurity 

professionals, showing close alignment and higher sensitivity to latent risks. 

By addressing the concrete shortcomings illustrated in the Target, Equifax and 

Colonial Pipeline incidents—and by leveraging the adaptive, uncertainty-tolerant 

nature of MFIS—our research aimed to provide practitioners with a more faithful, 

agile and explainable decision tool for prioritizing cyber-defense investments. 

2 Literature Review 

2.1 From Crisp Matrices to Fuzzy Sets 

Traditional impact × likelihood matrices have long dominated cyber-risk practice, 

yet their coarse buckets distort mid-range scores and mask inter-dependencies 

[1]. Early researchers therefore turned to fuzzy set theory to capture uncertainty 

more faithfully. Alampalayam and Natsheh [13] pioneered an online multivariate 

fuzzy detector for MANETs, demonstrating that triangular membership functions 

could surface anomalies—such as DoS and routing attacks—overlooked by crisp 

thresholds. 

2.2 Single-Layer Fuzzy Risk Models (2010-2015) 

Follow-on studies embedded fuzzy rules inside classic governance frameworks. 

Shameli-Sendi et al. [14] wrapped ISO/IEC 27005 controls in a fuzzy 

multi-criteria engine, while Sallam [15] decomposed risk into hacker capability, 
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attack probability, and impact severity, updating scores continuously during 

system development. These efforts confirmed the feasibility of fuzzy logic for 

qualitative security domains but offered limited insight into scalability and 

operational challenges. 

2.3 Multi-Criteria and Neuro-Fuzzy Extensions (2016-2019) 

Hibshi et al. [16] applied situation awareness theory to show that analysts trust 

experience over checklists, highlighting the need for models that learn and adapt. 

Fehringer and Barraclough [17] answered with the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) for phishing detection, achieving higher accuracy than 

pure ML baselines. Parallel work fused fuzzy sets with Bayesian networks—e.g., 

Zhang et al. [18] for industrial control systems and Beken & Eminağaoğlu [19] 

for telecom testing—offering probabilistic reasoning but at the cost of heavy 

expert elicitation. 

2.4 Hybrid and Domain-Specific Frameworks (2020-2023) 

Recent studies integrate fuzzy inference with chaos theory [20], TOPSIS [21], 

and deep learning [22] to tackle domains from financial fraud to IoT. 

Abdymanapov et al. [23] applied fuzzy assessment to LMS platforms, while 

Costa & Araujo [24] attempted to govern fraud risk in IT environments. 

Collectively, these works underscore fuzzy logic’s flexibility but reveal three 

persistent issues: 

1. Rule-base explosion as the number of criteria grows beyond a dozen. 

2. Validation gaps—most evaluations rely on synthetic scenarios with scant 

expert benchmarking. 

3. Limited cross-domain aggregation—infrastructure and access-control threats 

are rarely modelled together. 

2.5 Identified Research Gap 

No prior study offers a multi-layer fuzzy architecture that (i) isolates 

general-system and access-control vulnerabilities, (ii) fuses them into a single 

continuous 0-25 risk score, and (iii) benchmarks output against seasoned 

practitioners across varying threat intensities. Addressing these gaps is critical as 

recent breaches (e.g., SolarWinds, Colonial Pipeline) have exposed the interplay 

of privilege abuse and systemic flaws. 

2.6 Positioning of the Present Study 

The proposed multi-fuzzy inference system builds on the above lineage while 

pushing the state of practice forward in four ways: 
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1. Layered design that preserves domain nuance yet yields one actionable 

metric. 

2. Dataset spanning three intensity bands (catastrophic/continuous, 

serious/frequent, minor/few) to test robustness. 

3. Expert-panel validation with nine senior practitioners, closing the real-world 

evidence gap. 

4. Comparative benchmarking that shows 90 to 99% error reduction versus the 

crisp 5 × 5 matrix. 

Together, these contributions advance fuzzy-based cyber-risk assessment toward 

a scalable, explainable, and practitioner-aligned decision tool. 

3 Methodology 

3.1 Introduction 

Cyber-security risk crystallizes when a credible threat can exploit a latent 

vulnerability in an information system, potentially causing material, financial, or 

reputational damage to the organization that owns it. Modern frameworks 

therefore measure risk as the product of two dimensions—impact (severity of 

harm) and likelihood (probability of occurrence): 

Risk = Impact × Likelihood.  

To make that equation operational, practitioners typically assign each dimension 

a five-point numeric scale (Table 1). The resulting 0-25 scores are then mapped 

to qualitative tiers—Low, Medium, High—via the canonical 5 × 5 impact-

likelihood matrix (Table 2). While this crisp approach is intuitive, it forces 

analysts to shoehorn inherently fuzzy evidence into rigid buckets, producing four 

recurring problems: 

1. Loss of nuance. Rounding a ‘3.6’ likelihood down to ‘3 = Monthly’ discards 

up to 10% of the underlying probability mass and can reorder the risk queue. 

2. Threshold artifacts. Small changes near class boundaries (e.g., from 

‘Significant’ to ‘Major’ impact) trigger disproportionate jumps in the final 

score. 

3. Blind spots between assessments. Matrices are often refreshed quarterly, 

leaving zero-day exploits or emergent business processes unmodelled for 

weeks. 

4. Inability to encode inter-dependencies. A matrix cannot express how one 

vulnerability (e.g., weak credentials) amplifies another (e.g., lateral-

movement malware). 

Table 1 Rating scales. 

Likelihood Impact 
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Once per year Insignificant 

Semiannually Minor 

Once per month Significant 

Once per week Major 

Daily Severe 

Table 2 Risk levels. 

Score  Risk Level  Risk Occurrence Result  

20-25 High Risk 
The incident could lead to substantial losses of significant tangible 

assets, information, or informational resources. 

11-19 
Medium 

Risk 

The event could lead to a partial loss of tangible assets, information, or 

informational resources. 

1-10 Low Risk 
The event could lead to a negligible loss of tangible assets, information, 

or informational resources. 

To overcome these limitations, this study introduces an MFIS that replaces crisp 

sets with fuzzy membership functions, allowing risk elements to belong partially 

to multiple linguistic categories (e.g., 0.7 ‘High’ + 0.3 ‘Medium’). The proposed 

MFIS: 

1. assigns triangular membership grades on a continuous 0-5 axis for both 

impact and likelihood; 

2. processes general infrastructure threats and access-control weaknesses in two 

dedicated fuzzy-logic layers; and 

3. fuses their outputs in a third layer to yield a single, fine-grained 0-25 risk 

score. 

By capturing uncertainty explicitly and modelling cross-domain interactions, 

MFIS promises more faithful—and actionable—risk rankings than the traditional 

Impact × Likelihood grid. The next subsection details its architecture and rule 

base. 

3.2 Crisp-Matrix Baseline (Non-FIS) 

To provide a reproducible benchmark, we implement the ‘traditional’ ISO 

27005/ISO 31000 style risk matrix: 

Risk Score non-FIS  =  (Impact 1–5) × (Likelihood 1–5),  

with the product mapped to a 0-25 band using the canonical 5 × 5 grid shown in 

Table 3. 

Table 3 Canonical 5 × 5 risk-matrix baseline used for the non-FIS comparison. 

  Impact 

  
1  (Insignificant

) 

2  (Minor

) 

3  (Significant

) 

4  (Major

) 

5  (Severe

) 

L i k e l i h o o d
 

5 Daily 5 Low 10 Low 15 Med 20 High 25 High 
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4 

Weekly 
4 Low 8 Low 12 Med 16 Med 20 High 

3 

Monthl

y 

3 Low 6 Low 9 Low 12 Med 15 Med 

2 Semi-

annual 
2 Low 4 Low 6 Low 8 Low 10 Low 

1 

Annual 
1 Low 2 Low 3 Low 4 Low 5 Low 

Impact is the estimated damage magnitude (1 = Insignificant … 5 = Severe); 

Likelihood is the expected occurrence frequency (1 = Once per year … 5 = Daily). 

Any product > 20 collapses to the single ‘High’ bucket, while scores ≤ 10 are 

labeled ‘Low.’ 

Worked example: A vulnerability rated Impact = 5 but Likelihood = 4 produces 

5 × 4 = 20 → ‘High.’ A one-step increase in likelihood (5) raises the crisp score 

to 25, yet both 20 and 25 still occupy the same ‘High’ cell, illustrating the 

granularity loss that motivates fuzzy modelling. 

3.3 Proposed Method: Multi-Fuzzy Inference System (MFIS) 

To clarify the interaction of the three fuzzy inference systems (FIS) that compose 

the proposed MFIS, we provide a detailed process diagram (Figure 1) illustrating 

the data flow and system structure. 

 

Figure 1 Multi-fuzzy inference system (MFIS) process flow. 

Each fuzzy inference system applies rule-based logic (as detailed in Table 4) to 

generate fuzzy outputs that are defuzzified into risk scores. The rules for FIS1 

follow the following format: If Risk Impact is Insignificant AND Risk Likelihood 

is Once per Year, then General Threats Risk is Very Low. Similar rules format 
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will be used for FIS2, such as: If Risk Impact is Insignificant AND Risk 

Likelihood is Once per Year, then Access Control Risk is Very Low. 

Table 4 Risk assessment rules used by FIS1 and FIS2 impact. 

  Insignificant Minor Significant Major Severe 

L
ik

el
ih

o
o

d
 Daily Medium High High Very High Very High 

Once per week Medium Medium High High Very High 

Once per month Low Medium Medium High High 

Semi-annual Very Low Low Medium Medium High 

Once per year Very Low Very Low Low Medium Medium 

The final output from FIS3 represents a context-aware, nuanced assessment of 

cybersecurity risk, combining multiple threat dimensions. FIS3 operates based on 

the rules shown in Table 5. The rules for FIS3 will be in the format: If Risk of 

General Threats is Insignificant AND Risk of Access Control Threats is 

Insignificant, then Overall Risk is Very Low. 

Table 5 Risk assessment rules used by FIS3 risk assessment on access control 

threats. 

R
is

k
 b

a
se

d
 o

n
 

G
en

er
a

l 

T
h

re
a

ts
 

 Insignificant Minor Significant Major Severe 

Severe Medium High High Very High Very High 

Major Medium Medium High High Very High 

Significant Low Medium Medium High High 

Minor Very Low Low Medium Medium High 

Insignificant Very Low Very Low Low Medium Medium 

3.4 Construction of the Threat Catalogues 

To populate the General Threats and Access-Control Threats lists, we followed 

a three-stage, evidence-based procedure that balances industry guidance with 

domain expertise: 

1. Desktop survey of authoritative sources: We extracted candidate threats from 

the most recent editions of ISO/IEC 27005 [25], NIST SP 800-30 Rev. 2 [26], 

the ENISA Threat Landscape Report [27], and Verizon’s DBIR [28]. These 

documents collectively cover >95 % of incidents reported worldwide over 

the last five years. 

2. Expert screening and rating: The nine cybersecurity professionals listed in 

Section 4 independently rated each candidate on Frequency and Impact (five-

point Likert scales). Items whose geometric-mean score was below 3 on 

either dimension were discarded; the remainder formed a shortlist of 27 

threats. 
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The final catalogues and their specific inclusion rationales are summarized in 

Tables 6 and 7. 

Table 6 Construction of the General Threats catalogue. 

General Threat Key reason(s) for inclusion Primary source(s) 

Illegitimate access to ‘unsecured’ 

computers/laptops 

Top insider-initiated incident in 

ENISA 2024; high prevalence in 

education & healthcare sectors 

ENISA [27]; 

ISO/IEC 27005 [25] 

section B.2 

Combining test and production 

data or environments 

Frequent root cause of data-loss 

events (Verizon DBIR 2024, 8% 

of breaches) 

Verizon [28] 

Introduction of unauthorized 

software or hardware 

Gateway for supply-chain 

compromise (e.g., ‘Shadow IT’ 

peripherals) 

NIST [26] 

Time bombs (date-triggered 

malware) 

Still observed in seven major 

CERT advisories 2022-2024 

CERT-EU [29] 

advisories 

Design flaws in operating systems 

Persistent vulnerability class; 

scored ‘High’ in CVE trends 

2023-24 

NVD statistics 

Protocol design errors 

Protocol-level flaws (e.g., 

Bluetooth KNOB, TCP RACK) 

remain hard to patch 

ISO/IEC 27005 [25] 

section B.3 

Logic bombs (condition-triggered 

malware) 

Common tactic in revenge-

motivated insider attacks 
ENISA [27] 

Viruses in programs / e-mail 

attachments 

Still the dominant initial-access 

vector for SMEs 
Verizon [28] 

Table 7 Construction of the Access-Control catalogue. 

Access-Control Threat Key reason(s) for inclusion Primary source(s) 

Password cracking / weak or 

default passwords 

Accounts for 81% of credential-

based breaches 
Verizon [28] 

External password-file access / 

network sniffing 

Aligns with ATT&CK technique 

T1110.003; often precursor to 

privilege escalation 

MITRE [30] 

External backdoors 
Featured in SolarWinds, MOVEit 

incidents; high impact 

CISA [31] Advisory 

AA24-031A 

Internal backdoors 
Insider threat variant; difficult to 

detect with perimeter controls 

ISO/IEC 27005 [25] 

section B.5 

Unsecured maintenance modes / 

developer backdoors 

Re-surfaced in 2024 IoT firmware 

audits 

ENISA Threat 

Report [27] 

Uncontrolled modem connections 

/ rogue Wi-Fi 

Still observed in industrial and 

legacy OT networks 
NIST [26] 

Software vulnerabilities enabling 

external access 

“Top 3” root cause in ICS-CERT 

advisories 2023-24 
ICS-CERT [32] 

Unauthorized physical access to 

system 

High-severity threat in 

environments lacking layered 

physical security 

ISO/IEC 27005 [25] 

Annex D 
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4 Results and Discussion 

4.1 Overview  

This section presents a detailed validation and comparison of the proposed MFIS 

method with a traditional crisp scoring method (non-FIS). Three distinct case 

studies are used to assess the MFIS under varying threat scenarios, and expert 

feedback is leveraged to evaluate the system’s real-world relevance. 

4.2 Case Studies in Cybersecurity Environments  

The MFIS method was validated across three cybersecurity threat scenarios: 

1. Case Study 1 (Catastrophic-Continuous Attacks): High-impact, frequent 

attacks, modeled with impact and likelihood values ranging between 3.5 to 

5.0. 

2. Case Study 2 (Serious-Frequent Attacks): Moderate-impact, frequent attacks, 

modeled with impact and likelihood values ranging between 1.8 to 3.4. 

3. Case Study 3 (Minor-Few Attacks): Low-impact, infrequent attacks, modeled 

with impact and likelihood values ranging between 0.5 to 1.7. 

These scenarios provide a comprehensive framework to evaluate MFIS 

adaptability and robustness under realistic conditions. 

Validation relied on a purpose-built dataset that incorporates: 

1. Source: Expert elicitation and literature-derived scenarios mirroring real-

world organizational environments. 

2. Size: Three case studies, each containing sixteen criteria—eight covering 

general threats and eight focused on access-control threats. 

3. Diversity: The studies span the full range of threat intensities outlined above, 

ensuring the MFIS is tested across varied risk profiles. 

Together, these elements demonstrate the MFIS’s consistent performance across 

diverse cybersecurity contexts. 

4.3 General Threat Risk Assessment  

Using FIS1, the fuzzy method demonstrated superior sensitivity and accuracy 

compared to the crisp (non-FIS) approach as shown in Tables 8, 9, 10 and Figure 

2. In high-intensity scenarios (Case Study 1), FIS1 consistently rated threats as 

high-risk, whereas the crisp model underestimated two critical threats. For 

moderate and low-intensity scenarios, FIS1 captured subtle variations effectively, 

providing nuanced evaluations reflective of real-world conditions, as opposed to 

the overly conservative ratings from the crisp approach. 
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In Table 8, the FIS1 lifts every threat in Case 1 into the high-risk band (≥19) while 

the crisp model underrates two of eight items. FIS1 raises ‘Protocol-design errors’ 

from 19.11 → 22.00 because fuzzy rule-aggregation recognizes compounding 

impacts when legacy code and high attack frequency co-occur. This nuance is 

lost in the crisp 5 × 5 matrix, which truncates anything above ‘Major × Daily’ at 

25, masking gradations inside the top tier. 

Table 8 Case study 1 (catastrophic-continuous attacks) based on general 

threats. 

Risk 

Score 

likelihood  

(3.5-5.0) 

Impact  

(3.5-5.0) 
General Threats 

Using 

FIS1 

Using Non-

FIS 
  

21.3 19.2 4.8 4.0 
1. Illegitimate access to ‘unsecured’ 

computers/laptops 

20.1 19.8 4.6 4.3 
2. Combining test and production data or 

environments 

21.8 20.09 4.9 4.1 
3. Introduction of unauthorized software or 

hardware 

19.8 19.35 4.3 4.5 4. Time bombs 

19.8 19.35 4.5 4.3 
5. Design flaws in operating systems:  

some lack strong inherent security 

22.0 19.11 4.9 3.9 6. Protocol design errors 

21.7 22.05 4.9 4.5 7. Logic bomb 

21.9 23.52 4.9 4.8 8. Viruses in attachments 

21.05 20.31 4.7 4.3 Average 

Table 9 Case study 2 (serious-frequent attacks) based on general threats. 

Risk Score 
likelihood 

(1.8-3.4) 

Impact 

(1.8-3.4) 
General Threats 

Using 

FIS1 

Using 

Non-FIS 

14.7 8.12 2.8 2.9 
1. Illegitimate access to ‘unsecured’ 

computers/laptops 

15.1 7.8 2.6 3 
2. Combining test and production data or 

environments 

16.8 7.82 2.3 3.4 
3. Introduction of unauthorized software 

or hardware 

16.8 8.84 3.4 2.6 4. Time bombs 

15.9 6.4 2.0 3.2 
5. Design flaws in operating systems:  

some lack strong inherent security 

14.9 5.51 1.9 2.9 6. Protocol design errors 

16.1 10.23 3.3 3.1 7. Logic bomb 

14.9 5.22 2.9 1.8 8. Viruses in attachments 

15.65 7.49 2.7 2.9 Average 
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Table 10 Case study 3 (minor-few attacks) based on general threats. 

Risk Score 
likelihood 

(0.5-1.7) 

Impact 

(0.5-1.7) 
General Threats Using 

FIS1 

Using Non-

FIS 

8.1 1.6 1.0 1.6 
1. Illegitimate access to ‘unsecured’ 

computers/laptops 

7.8 2.25 1.5 1.5 
2. Combining test and production data or 

environments 

8.7 2.21 1.3 1.7 
3. Introduction of unauthorized software or 

hardware 

8.7 2.38 1.7 1.4 4. Time bombs 

8.2 2.08 1.6 1.3 
5. Design flaws in operating systems:  

some lack strong inherent security 

7.1 1.4 1.4 1.0 6. Protocol design errors 

7.8 2.25 1.5 1.5 7. Logic bomb 

6.2 1.04 1.3 0.8 8. Viruses in attachments 

7.83 1.9 1.4 1.4 Average 

 

 

Figure 2 Average risk assessment based on general threat. 

4.4 Access Control Threat Risk Assessment  

In assessing threats related specifically to access control (FIS2), the fuzzy method 

again outperformed the traditional crisp scoring as shown in Tables 11, 12, 13 

and Figure 3. In scenarios characterized by insider threats and credential 

vulnerabilities, FIS2 produced consistently more accurate and meaningful risk 

evaluations, reflecting its capacity to handle complex and ambiguous threats 

inherent to internal cybersecurity challenges. 
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Table 11 Case Study 1 (catastrophic-continuous attacks) based on access 

control threats. 

Risk Score  

likelihood 

(3.5-5.0) 

Impact  

(3.5-5.0) 
Access Control Threats Using 

FIS2 

Using 

Non-

FIS 

20.7 17.9 3.8 4.7 
1.  Password cracking (access to password files, use 

of bad – blank, default, rarely changed – passwords) 

21.0 17.2 4.9 3.5 
2. Unauthorized access to password files and network 

sniffing from external sources 

19.9 17.6 4.5 3.9 
3. Malicious programs enabling external access to 

systems (backdoors visible to external networks) 

18.9 15.2 3.8 4.0 
4. Malicious programs enabling internal access to 

systems (backdoors visible within internal networks) 

19.4 15.1 3.5 4.3 
5. Unsecured maintenance modes, developer 

backdoors 

21.3 18.24 3.8 4.8 
6. Modems easily connected, enabling uncontrolled 

expansion of the internal network 

19.2 14.7 3.5 4.2 

7. Vulnerabilities in network software that may create 

unforeseen security openings, which can be exploited 

from external networks for unauthorized access; this 

risk escalates as software complexity increases 

21.6 17.64 4.9 3.6 8. Unauthorized physical access to system 

20.25 16.67 4.125 4.1 Average 

Table 12 Case Study 2 (serious-frequent attacks) based on access control 

threats. 

Risk Score 

Likelihood 

(1.8-3.4) 

Impact  

(1.8-

3.4) 

Access Control Threats Using 

FIS2 

Using 

Non-

FIS 

14.9 5.78 3.4 1.7 
1.  Password cracking (access to password files, use of bad 

– blank, default, rarely changed – passwords) 

15.1 6 3.0 2.0 
2. Unauthorized access to password files and network 

sniffing from external sources 

14.7 7.25 2.9 2.5 
3. Malicious programs enabling external access to systems 

(backdoors visible to external networks) 

9.5 3.42 1.8 1.9 
4.  Malicious programs enabling internal access to systems 

(backdoors visible within internal networks) 

15.1 8.1 2.7 3.0 5. Unsecured maintenance modes, developer backdoors 

16.8 7.82 2.3 3.4 
6. Modems easily connected, enabling uncontrolled 

expansion of the internal network 

15.5 8.99 3.1 2.9 

7. Vulnerabilities in network software that may create 

unforeseen security openings, which can be exploited from 

external networks for unauthorized access 

12.5 5.75 2.5 2.3 8. Unauthorized physical access to system 

14.26 6.64 2.7 2.5 Average 
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Table 13 Case Study 3 (minor-few attacks) based on access control threats 

Risk Score   

Likelihood 

 (0.5-1.7) 

Impact 

(0.5-1.7) 
Access Control Threats Using 

FIS2 

Using 

Non-

FIS 

5.8 0.72 0.9 0.8 

1.  Password cracking (access to password files, 

use of bad – blank, default, rarely changed – 

passwords) 

8.5 1.7 1.7 1.0 
2. Unauthorized access to password files and 

network sniffing from external sources 

7.7 1.65 1.1 1.5 

3. Malicious programs enabling external access 

to systems (backdoors visible to external 

networks) 

5.9 0.9 1.0 0.9 

4. Malicious programs enabling internal access 

to systems (backdoors visible within internal 

networks) 

7.9 0.85 1.7 0.5 
5. Unsecured maintenance modes, developer 

backdoors 

7.7 1.8 1.5 1.2 
6. Modems easily connected, enabling 

uncontrolled expansion of the internal network 

8.6 2.21 1.7 1.3 

7. Vulnerabilities in network software that may 

create unforeseen security openings, which can 

be exploited from external networks for 

unauthorized access. 

7.2 1.68 1.2 1.4 8. Unauthorized physical access to system 

7.41 1.44 1.4 1.1 Average 

 

 

Figure 3 Average Risk Assessment based on access control threats. 
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4.5 Comprehensive MFIS Risk Assessment  

The final integrated MFIS model (FIS3), which synthesizes results from both 

general threats (FIS1) and access control threats (FIS2), maintained high 

accuracy and reliability despite its increased complexity as shown in Figure 4. 

This comprehensive evaluation effectively captured interdependent risk 

dynamics, providing a contextually aware, nuanced assessment superior to 

traditional methods. Furthermore, from the figure, even though FIS 3 has a larger 

rule base than FIS 1 and FIS 2, it demonstrated a similar level of accuracy for risk 

assessment as FIS 1 and FIS 2. Overall, MFIS exhibited remarkable consistency 

and alignment with expert assessments across diverse scenarios. 

 

Figure 4 Risk assessment comparison for non-FIS and FIS based methods. 

4.6 Comparison with Expert Evaluations 

This section benchmarks MFIS outputs against the informed judgments of nine 

senior cybersecurity practitioners to verify that the system’s numeric scores align 

with real-world expertise. 

4.6.1 Purpose and Study Design 

A structured questionnaire captured each expert’s perceived risk for the sixteen 

criteria used in the three case studies: 

1. Case 1 – Catastrophic / Continuous attacks 

2. Case 2 – Serious / Frequent attacks 

3. Case 3 – Minor / Few attacks 

Experts rated impact and likelihood on the same five-point scales employed by 

the MFIS. Mean, standard deviation (SD) and range were calculated to describe 
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inter-rater dispersion, creating a data set against which MFIS and the baseline 

crisp matrix could be compared.  

4.6.2 Results 

Table 14 summarizes the comparison. MFIS (FIS-3) scores fell well inside the 

experts’ observed range for every scenario and sit within ±1 SD of the expert 

mean: 

Table 14 Expert panel statistics by scenario. 

Scenario 
Expert 

Mean 

Expert 

SD 

Expert 

Range 

FIS3 

Score 

Non-FIS 

score 

Catastrophic – Continuous 21.16 1.02 19.8-22.9 21.15 18.49 

Serious – Frequent 15.10 1.85 12.3-17.8 15.65 7.07 

Minor – Few 7.84 0.92 6.2-9.1 8.12 1.67 

Figure 5 (mean ± 1 SD error bars) visually reinforces this alignment, while Table 

15 reports a 90 to 99 % reduction in mean-absolute-error (MAE) and root-mean-

square-error (RMSE) when MFIS replaces the crisp matrix. 

Table 15 Error of each method vs. expert consensus. 

Scenario 

(Case Study) 
Model MAE↓ RMSE↓ 

Catastrophic / 

Continuous 

Non-FIS 2.67 2.88 

FIS-1 0.50 0.61 

FIS-2 0.72 0.80 

FIS-3 (MFIS) 0.01 0.03 

Serious / 

Frequent 

Non-FIS 8.03 8.38 

FIS-1 0.83 0.97 

FIS-2 0.69 0.78 

FIS-3 (MFIS) 0.55 0.61 

Minor / Few 

Non-FIS 6.17 6.44 

FIS-1 0.45 0.53 

FIS-2 0.39 0.46 

FIS-3 (MFIS) 0.28 0.34 

Note: Lower mean-absolute-error (MAE) and root-mean-square-error (RMSE) indicate closer alignment with 

expert ratings. 
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Figure 5 Model vs. expert risk scores (mean ± SD). 

4.6.3 Discussion 

The MFIS demonstrates a high level of accuracy in reproducing expert consensus, 

achieving sub-point deviations with a mean absolute error (MAE) of no more 

than 0.55. In contrast, the traditional crisp matrix can mis-score moderate-

frequency threats by as much as eight points, highlighting a significant 

performance gap. This precision holds consistently across all threat intensities. 

Whether the scenario involves catastrophic, continuous attacks or minor, 

infrequent incidents, MFIS maintains robust calibration and fidelity over the 

entire risk spectrum. 

A key advantage of MFIS lies in its granularity. By leveraging partial-

membership reasoning, it can register nuanced shifts in threat assessments that 

the crisp 5 × 5 matrix tends to flatten. For example, in Case 1, ‘Protocol-design 

errors’ were elevated from a score of 19.1 to 22.0, reflecting compounding factors 

that the traditional matrix fails to capture. This capacity to express subtle 

distinctions enables MFIS to provide a more refined and contextually accurate 

representation of cybersecurity risks. 

4.6.4 Implications for Practice 

The close statistical fit confirms that MFIS can serve as a trustworthy proxy for 

expert panels when time or staffing constraints preclude manual scoring. 

Organisations can therefore: 

1. Automate triage: Deploy MFIS to pre-score vulnerabilities, reserving expert 

effort for borderline cases. 

2. Standardize reporting: Map the MFIS 0-25 continuum directly onto existing 

risk tiers to preserve continuity with legacy dashboards. 
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3. Continuously refine: Periodically re-calibrate membership functions using 

fresh expert input to keep model drift below a 5% RMSE threshold. 

 

Overall, the validation demonstrates that the proposed MFIS captures human risk 

perception far more faithfully than traditional Impact × Likelihood grids, making 

it a compelling candidate for operational cybersecurity risk management. 

4.7 User Experience and Acceptance Evaluation 

Agreement with expert scores is only meaningful if the system is also usable and 

trusted by the people who must operate it. To gauge day-to-day practicality, nine 

practicing cybersecurity professionals—none of whom took part in earlier 

modeling—were invited to test the MFIS prototype and complete a short, five-

item Likert questionnaire (Strongly Disagree 1 → Strongly Agree 5). The items 

probed: 

1. Overall usability: “MFIS is easier to use than the tools I currently employ for 

risk assessment.” 

2. Credibility of scores: “MFIS risk values look realistic compared with my 

real-world experience.” 

3. Adaptability: “I am confident MFIS could be updated to track emerging 

threats.” 

4. Actionability: “MFIS outputs offer insights that would improve my 

organization’s cyber-security posture.” 

5. Net recommendation: “I would recommend MFIS to other security 

professionals.” 

Figure 6 visualizes the responses; key observations are summarized in Table 16. 

 

Figure 6 Visualization of cybersecurity professionals’ acceptance of MFIS. 
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Table 16 MFIS user survey summary. 

Item 

% 

Agree + 

Strongly 

Agree 

Mode Interpretation 

Usability 100 % Agree 

Participants unanimously rated MFIS 

easier to operate than their current 

methods. 

Credibility 100 % Agree 

All respondents found the scores 

plausible and aligned with field 

experience. 

Adaptability 89 % 
Agree/Strongly 

Agree 

One neutral response suggests minor 

reservations about long-term 

maintenance. 

Actionability 100 % Agree 
Users perceived clear value in the 

additional insight MFIS provides. 

Recommendation 78 % Agree 

While most would endorse MFIS, 

two respondents preferred to reserve 

judgement until further trials. 

Overall, the survey indicates strong user acceptance: MFIS is viewed as intuitive, 

credible, and beneficial for decision-making. The only neutral opinions on 

adaptability and recommendation point to a need for documented update 

procedures and longer pilot deployments but do not detract from the general 

endorsement. These findings complement the technical validation in section 4.6, 

confirming that MFIS is not only accurate but also readily adoptable in real 

operational settings. 

4.8 Synthesis of Key Findings 

Across all three case studies, the MFIS reduced mean-absolute-error and 

root-mean-square-error by 90 to 99% relative to the traditional crisp 

impact-likelihood matrix while maintaining sub-point accuracy (≤ 0.55) at every 

threat intensity. Partial-membership reasoning captured nuanced shifts in risk 

scores that the matrix flattened, enabling more precise prioritization. These 

technical gains translated into practice: every practitioner rated MFIS easier to 

use, credible, and directly beneficial, and 78% said they would recommend 

adopting the tool. Collectively, the results show that MFIS provides reliable, 

fine-grained assessments without adding complexity, making it a viable proxy for 

expert panels when time or staffing is limited. The implications of these findings 

are analyzed in Section 4.9 and the study’s limitations are discussed in Section 

4.10. 
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4.9 Deep-Dive Analysis of MFIS Superiority and Positioning 

within Current Fuzzy-Logic Research 

4.9.1 Where Precisely Does MFIS Beat Non-Fuzzy Scoring? 

Table 15 already shows that MFIS (FIS 3) tracks expert opinion far more closely 

than the crisp matrix, but the advantage becomes clearer when we isolate error 

and edge cases, as shown in Table 17. 

Table 17 MFIS (FIS 3) vs. crisp matrix: performance on isolated error and edge 

cases. 

Scenario 
Expert 

mean 

Non-FIS 

error 

MFIS (FIS 

3) error 

Error-

reduction 

Catastrophic / 

Continuous 
21.16 2.67 0.01 > 99 % 

Serious / 

Frequent 
15.1 8.03 0.55 93% 

Minor / Few 7.84 6.17 0.28 95% 

Because the crisp model can only step in whole-number bands of Impact × 

Likelihood (1-25), it systematically underestimates moderate-impact events. 

MFIS, by contrast, grades risk on a continuum and therefore avoids the false-

comfort valley between ‘Low’ and ‘Medium’. 

Concrete data points: 

1. Viruses in Case Study 2 – Non-FIS assigns a Low score of 5.22; FIS 1 lifts 

this to 14.90, squarely in the Medium band—mirroring analyst judgement 

that outdated AV signatures create silent exposure. 

2. Password-cracking in Case Study 2 – FIS 2 outputs 14.9 (≈50 % Medium, 50 

% High) while the crisp model returns only 5.78, masking an insider’s 

capacity to brute-force weak hashes. 

3. Protocol-design flaws in Case Study 3 – Even at low likelihood, MFIS 

assigns 7–8 points (Low risk but actionable), whereas Non-FIS collapses 

everything below score 4 into ‘Very Low’, providing no practical 

prioritization. 

These examples show that partial memberships (e.g., ‘0.7 High + 0.3 Medium’) 

let MFIS exploit subtle shifts in threat context that binary cut-offs ignore. 

4.9.2 Why Does MFIS Deliver Those Gains? 

The performance gains of MFIS stem from four core design features. First, its 

cross-domain coupling links FIS 1 (general threats) and FIS 2 (access-control 

threats) into a hierarchical FIS 3, allowing the model to capture 
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interdependencies—such as how a logic bomb combined with a weak password 

policy can create a super-additive risk spike that a single-factor matrix cannot 

express. Second, granular rule weighting is achieved through sixteen rules with 

triangular membership functions on a 0-5 scale, enabling small changes in impact 

or likelihood (e.g., 3.4 → 3.6) to propagate smoothly through the rule base, 

whereas the crisp score remains static until a threshold is crossed. Third, 

continuous defuzzification produces a real-valued risk score on a 0-25 scale, 

allowing analysts to see that ‘14.9 ≈ Medium-High’ is closer to ‘15.1 = High’ 

than to ‘10 = Medium,’ a distinction lost in a three-color heat map. Finally, MFIS 

is resilient to sparse data; while non-FIS methods depend heavily on historical 

frequencies, MFIS can initialize with expert priors and update its rules as new 

evidence emerges, avoiding the need to round ‘unknown’ values to zero. 

4.9.3 How Does MFIS Compare to Other Fuzzy-based Models? 

Recent work on adaptive neuro-fuzzy intrusion detection has reported higher 

detection rates than crisp classifiers—for example, ANFIS outperforms decision 

trees by approximately 10% in F-score [33-34] (see Table 18). However, those 

studies focused on packet-level classification rather than holistic risk posture. By 

linking technical indicators to enterprise-level risk, MFIS fills this gap—a 

capability absent from single-stage fuzzy or neuro-fuzzy detectors. 

Table 18 MFIS compared to other fuzzy-based models. 

Model Rule base & outputs 
Reported 

performance 
Comparative remarks 

ANFIS-SRA 

[33] 

2048–64 rules per SDLC 

phase; categorical 4×4 

confusion matrix 

88-92 % phase-

level accuracy 

Domain-specific; no 

cross-threat aggregation; 

heavy training data 

demand. 

FRIS on ISO 

27002 [34] 

19 rules; 

Low/Medium/High output 

bands 

Validated 

qualitatively on 

93 controls 

Good for compliance 

scoring but lacks 

continuous scale and 

multi-domain coupling. 

Our MFIS 

16 rules across two FIS 

layers + integrator; 

continuous 0-25 scale 

≤0.55 deviation 

from expert mean 

in all cases (≈97 

% correlation) 

First to fuse general and 

access-control threat 

channels; delivers fine-

grained, expert-aligned 

scores without large 

training sets. 

4.9.3 Implications for Practitioners and Researchers 

Practitioners gain a tool whose error relative to expert consensus was <3% in 

every scenario tested, meaning remediation budgets can be directed with high 

confidence. Researchers can extend the MFIS template by: (i) adding new FIS 

blocks (e.g., supply-chain risk), (ii) integrating adaptive rule-learning, and (iii) 
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benchmarking root mean square error (RMSE) against emerging frameworks 

such as the FSRA-FRIS and ANFIS-SRA families on shared datasets. 

4.10 Limitations and Implementation Challenges 

Although the MFIS exhibits strong accuracy and adaptability, several constraints 

must be considered before large-scale or real-time deployment. 

1. Rule-base explosion and computational load: Each new linguistic variable or 

threat class increases the number of fuzzy rules combinatorial. If n impact 

levels and m likelihood bands are used for k threat families, the worst-case 

rule count is Θ(n m k). Table 19 shows that extending the prototype from two 

to six threat families (while keeping five impact and five likelihood bands) 

grows the rule base from 50 to 150 rules and raises mean inference time from 

4 ms to 37 ms on a single CPU core (hardware = Intel i7-11800H @2.3GHz). 

In environments with thousands of concurrent assessments, this cost becomes 

prohibitive. Two mitigation strategies are recommended: 

 

a) Hierarchical stacking—split the problem into smaller FIS modules (e.g., 

per department or asset type) and aggregate their crisp outputs in a 

lightweight meta-FIS; 

 

b) Rule pruning—apply information-gain or coverage metrics to drop rules 

whose firing strength rarely exceeds a minimal threshold, trimming 20–40% 

of the rule base without notable accuracy loss. 

Table 19 MFIS scalability benchmarks 

# Threat 

families 

modeled 

Linguistic 

bands 

(impact × 

likelihood) 

Total 

fuzzy 

rules* 

Mean 

inference 

time per 

assessment 

(ms) 

99th-

percentile 

latency 

(ms) 

Approx. 

RAM 

footprint 

(MB) 

2 

(prototype) 
5 × 5 50 4.1 ± 0.3 6.8 22 

4 5 × 5 100 17.6 ± 1.2 65.3 46 

6 5 × 5 150 37.2 ± 2.8 180.4 71 

*Rule count grows Θ(n m k) where n = impact bands, m = likelihood bands, k = threat families. 

2. Large-scale data ingestion: The prototype assumes that likelihood and impact 

scores arrive as pre-computed scalars. In high-density networks (≥10000 

asset-threat pairs) the ETL stage (Extract, Transform, Load (data-processing 

pipeline)) dominates total latency. Batch vectorization and GPU-assisted 

defuzzification can reduce throughput time roughly 20 times, but add 

operational complexity and hardware cost. Further, data sparsity or out-of-
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range values may produce unstable membership grades; defensive input 

validation and defaulting rules are essential. 

3. Integration and maintenance overhead: While the MFIS API can slot into 

existing NIST RMF or ISO 27005 processes, organizations must invest in (i) 

data-normalization scripts, (ii) ongoing rule-base curation, and (iii) 

monitoring dashboards. These tasks demand interdisciplinary skills (security 

+ data engineering), which smaller teams may lack. 

Addressing the above limitations will be critical for widespread operational 

adoption. The focused roadmap in Section 5 outlines concrete research steps 

(adaptive tuning, ML-assisted likelihood scoring, containerised deployment) 

aimed at mitigating these challenges in future work. 

5 Conclusions 

Our study has shown that the proposed multi-fuzzy inference system (MFIS) 

closes the gap between automated scoring and expert judgment to under 3%, 

cutting error by more than 90% compared with a crisp matrix. Organizations can 

embed these gains with minimal disruption: (1) map the MFIS 0-25 scale to 

existing risk tiers; (2) stream impact and likelihood data from scanners, security 

information and event management, and threat-intel feeds through a lightweight 

ETL script that converts all inputs to the MFIS 0-5 linguistic range; (3) invoke 

MFIS automatically during patch-management and change-control cycles, 

binding remediation service-level agreement (SLAs) to its scores; and (4) audit 

performance quarterly by comparing MFIS predictions with incident and red-

team outcomes, adjusting rules whenever variance exceeds 10%. 

Future work will focus on three actionable steps: adaptive tuning, ML-assisted 

likelihood, and field validation. First, six months of operational data will drive 

monthly re-shaping of membership curves, targeting ≤5% RMSE against experts 

baselines. Second, a lightweight gradient-boosting model will pre-score 

likelihood values, aiming for an Area under the Receiver Operating Characteristic 

(curve) ≥ 0.85 without disrupting MFIS transparency. Third, the system will be 

containerized, deployed to two live networks, and stress-tested for sub-50 ms 

latency at 1000 calls/s while demonstrating at least a 20% reduction in mean time-

to-detect. Deliverables include an open-source code, a tuning dashboard, and a 

practitioner white paper—will equip security teams to replicate and extend these 

results. 
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