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Abstract. Classification, a process for predicting the class of a given input data,
is one of the most fundamental tasks in data mining. Classification performance
is negatively affected by noisy data and therefore selecting features relevant to
the problem is a critical step in classification, especially when applied to large
datasets. In this article, a novel filter-based floating search technique for feature
selection to select an optimal set of features for classification purposes is
proposed. A genetic algorithm is employed to improve the quality of the features
selected by the floating search method in each iteration. A criterion function is
applied to select relevant and high-quality features that can improve
classification accuracy. The proposed method was evaluated using 20 standard
machine learning datasets of various size and complexity. The results show that
the proposed method is effective in general across different classifiers and
performs well in comparison with recently reported techniques. In addition, the
application of the proposed method with support vector machine provides the
best performance among the classifiers studied and outperformed previous
researches with the majority of data sets.

Keywords: classification; evaluation, feature selection; floating search; genetic
algorithm.

1 Introduction

Classification, a process for predicting the class of a given input data, is one of
the most fundamental tasks in data mining. A number of available methods are
commonly used for data classification, such as: decision trees; rule-based,
probabilistic and instance-based methods; support vector machines (SVMs);
and neural networks. Noisy and irrelevant data are major obstacles to data
mining. They adversely affect system performance in terms of classification
accuracy, building time, size, and interpretability of the model obtained [1,2].
These issues can introduce new properties in the problem domain. For example,
noise can lead to the creation of small clusters of examples of a particular class
in areas of the domain corresponding to another class, or it can cause missing
data of examples located in key areas within a specific class [3].
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Selecting features relevant to the problem is a critical first step in classification,
especially when applied to large datasets. The aim is to select a representative
subset of highly relevant dimensions while removing irrelevant and redundant
ones [4]. Feature selection can significantly improve the running time of a
machine-learning algorithm as well as improve the quality of the model.

Consequently, Bins and Draper [5] proposed a technique to reduce a large set of
features (1,000) to a much smaller subset without removing any highly
important features or decreasing classification accuracy. There are three steps in
the algorithm: first, irrelevant features are removed using a modified form of the
relief algorithm [6]; second, redundant features are eliminated using K-means
clustering [7]; and, finally, a combinatorial feature selection algorithm is
employed to the current feature subsets using the sequential floating backward
selection (SFBS) algorithm. The basic concept is to filter feature subsets in each
step until the smallest possible one is obtained.

Floating search methods dynamically increase and decrease the number of
features until the desired target is reached. Instead of fixing the number of
forward/backward steps, we can allow values to float so that they can be
flexibly changed without pre-setting parameters, which is different from the
plus 1 take away r method. Nonetheless, floating search has a tendency to
become stuck at a local optimum solution since there is almost no chance to
improve the solution’s quality [8]. For this reason, we present an improvement
to the floating search algorithm with the aim of removing some of its drawbacks
and to aid finding a solution closer to the optimal one.

In this article, we propose a technique to improve the effectiveness of the
floating search feature selection method that leads to a higher classification rate.
Our method employs a genetic algorithm to enrich and improve the resultant
features after each iteration of the sequential forward feature search (SFFS)
process.

2 Background

2.1 Feature Selection Methods

Two important components of the feature selection process, subset generation
and subset evaluation, are shown in Figure 1. The subset generation engine
1dentifies feature subset candidates, while subset evaluation measures the
quality of the subsets. Lastly, in order to terminate the process, a stopping
criterion is tested in every iteration.
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There are three main types of feature selection methods: filter, wrapper, and
hybrid. Wrapper methods rely on a classification algorithm employed as the
subset evaluation process for feature subsets [9]. Marofio et al. [10] proposed a
wrapper method by applying ANOVA decomposition and functional networks
to create the evaluation function. In general, the wrapper approach gives better
performance than the filter approach since the feature selection process is
optimized for the specific classification algorithm. Nevertheless, when wrapper
methods are applied to huge dimensional datasets, they will incur high
computational cost and may become unfeasible.

Filter methods use an independent criterion that relies on general characteristics
of the data to evaluate and select feature subsets without involving a
classification algorithm. Common evaluation functions usually are measures
such as distance, mutual information (MI), dependency or entropy, calculated
directly from the training data. Karegowda, ef al. [11] developed a filter-based
technique in a cascade fashion with a genetic algorithm (GA), using a
correlation-based criterion.

Hybrid methods exploit the positive aspects of both wrapper and filter methods
[4]. They utilize a filter-based technique to select highly representative features
and apply a wrapper-based technique to add candidate features and evaluate the
candidate subsets in order to select the best ones. This not only reduces the
dimensionality of the data but also decreases the computational cost and
improves classification performance. Somol, et al. [8] proposed a hybrid SFFS
method by employing an evaluation function to filter some features and using a
wrapper criterion to identify the optimal feature subset. Their experimental
results showed that the method yielded a promising classification accuracy.
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Figure 1 The feature selection process.
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The sequential forward search (SFS) method operates in a forward search
manner starting with an empty set and adds one feature subset during each
round until a new feature subset that maximizes the criterion function value is
found, whereas the sequential backward search (SBS) method starts with a full
feature subset and eliminates a feature on each iteration until a predetermined
criterion is satisfied. A drawback of both methods is that they have a nesting
effect problem, which means that discarded features cannot be re-selected and
selected features cannot be removed later. Since these algorithms do not
examine all possible feature subsets, they are not guaranteed to produce an
optimal result. Generalized forms GSFS and GSBS based on group collection
feature testing are better solutions but at the cost of increased computational
time. The plus [ take away r method was proposed to take care of the nesting
problem [12].

2.2 Floating Search Methods

Pudil, et al. [13] proposed floating search methods based on two main
categories: the search process in a forward direction (SFFS) and in a backward
direction (SBFS). These methods use a criterion function to select a feature and
compare candidate subsets. SFFS and SBFS can be classified as a wrapper or a
filter approach depending on the criterion function used. They perform well but
the computational time is long, especially with large datasets. The floating
search methods can be viewed as predictive text algorithms (PTAs) without the
use of a fixed parameter. They have been shown to give very good performance
(close to optimum results) and to overcome the nesting problem. SFFS, SBFS,
and bidirectional selection as a combination of both are greedy search
algorithms that add or discard features one at a time [13]. The floating search
method consists of two phases: forward and backward. SFFS starts with an
empty set and sequentially adds one feature at a time. The structure of the
floating search algorithm is shown in Figure 2.

SBFS, the counterpart of the forward search, is initialized with a full set and
sequentially eliminates one feature at a time after execution of SFFS. The SFFS
search selects the best unselected feature according to a criterion function to
form a new feature subset, while the SBFS search iteratively determines which
members of the selected subset are to be removed if the remaining set improves
performance according to the same criterion function as used in forward search.
The algorithm loops back to forward search until the stopping condition is
reached. There are disadvantages when using either algorithm. With SFFS it is
not possible to succeed in eliminating redundant features generated in the search
process, whereas SBFS cannot re-calculate evaluation feature usefulness
together with other features at the same time.
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Figure 2 Structure of a floating search algorithm.

Improved versions of SFFS have been proposed in several researches to obtain
better performance. Somol, et al. [11] present the adaptive sequential forward
floating selection (ASFFS) algorithm with a parameter r, which specifies the
number of features to be added in the inclusion phase, calculated dynamically.
Parameter o is used in the exclusion phase to remove the maximum number of
features if it improves performance. The benefit of ASFFS is that it provides a
less redundant subset than the SFFS algorithm. Nakariyakul and Casasent [14]
came up with an improved forward floating search algorithm, which has a new
search step to check whether to replace a weak feature and remove it again until
the replacement can no longer improve the criterion function. They found that
this method obtained optimal solutions for many feature subsets and was less
computationally intensive than exhaustive search optimal feature selection
algorithms. Chaiyakarn and Sornil [15] proposed a filter-based method to return
a small subset of features for classification by employing two different criterion
functions in the forward and backward steps. The functions help remove
redundant features, maximize inter-class distance and minimize intra-class
distance.
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2.3 Feature Subset Evaluation

In order to perform feature selection with a filter approach, a measure is needed
to evaluate the relevance of the subset to the classification process. Several
functions can be used in feature selection, such as the Mahalanobis Distance
(MAHA) [16] or the Bhattacharyya Distance (BAVE) [17].

Mutual information (MI) is a widely used measure to evaluate candidate feature
subsets [18]. MI can be calculated in Eq. (1) as follows:

I(X,Y) = H(X) + H(Y) -H(X ), (1)

where H is an entropy function, Y is a class attribute, and X is the selected
feature, given a random variable X, such that Eq. (2) can be defined.

0 with probability of p
X {1 with probability of 1 - p,

H(X) =-plogp - (1 -p)log(l - p) = Hp) )

Note that the entropy function does not depend on the values that the random
variable takes (0 and 1 in this case) but only depends on the probability
distribution, p(x).

2.4  Genetic Algorithm

The genetic algorithm (GA), introduced by John Holland in 1975 [19], is an
adaptive optimization search algorithm for finding an optimal solution inspired
by natural selection in biological systems. The genes of an organism are
gathered into structures called chromosomes; a set of chromosomes is referred
to as a population. In general, there are three operations employed in GAs. First,
selection 1is an operator for selecting potentially useful solutions for
recombination and is achieved by either tournament or roulette wheel selection.
Second, crossover refers to the process of producing an offspring chromosome
from two matching parent chromosomes.

There are various types of crossovers: single point crossover, two-point
crossover, and uniform crossover. Crossover is an operation to produce child
subsets recombined from parental chromosomes that consist of splitting
chromosome pairs at random. Third, mutation causes genetic diversity of
chromosomes by making random binary changes in a chromosome, thus
adversely affecting their fitness value. These principles have led to new
solutions in the pursuit of better search solutions.
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GAs have been successfully applied to feature selection [20] with the objective
to save computational time without processing in an exhaustive fashion, which
is achieved by finding promising regions and selecting quality feature subsets.
Furthermore, hybrid GAs [21] are involved in a new search method that
includes local search operators to improve the fine-tuning quality of a simple
GA search.

The fitness function, based on the principle of survival of the fittest, is the
process whereby a GA evaluates each individual’s fitness and obtains the
optimal solution after applying the genetic operators. This process is repeated
many times and over many generations until the stopping criterion is satisfied.
For feature selection, the feature subsets are represented as a binary: a feature is
either included or not included in the feature subset.

3 The Proposed Algorithm

We now discuss our algorithm to select the best subset of size d of a total of D
features, as shown in Figure 3. The inclusion step using MI as the criterion
function (J) is executed to create a set of candidates for inclusion. In the
exclusion step, a candidate feature subset is used to generate smaller subsets
from the result of the inclusion step by removing one feature and re-evaluating
them. A selection subset of size k + 1 is generated and compared to the
previously best subset of size k + 1 from the inclusion part. If evaluation of the
new subset is better qualified than the formerly selected set, the exclusion step
retains the better one and iterates to smaller subsets, or else the algorithm goes
back to the inclusion step.

Our feature improvement step based on GA is included after the exclusion step
in each iteration. The objective is to replace the weakest feature by checking
whether removing any feature in the currently selected feature subset and
adding a promising one at each sequential step potentially improves the current
feature subset. The chromosome structure consists of binary genes
corresponding to individual features. The value of 1 at the /™ gene means that
the i™ feature is selected; otherwise it is 0.

The initial population is generated from the resulting feature exclusion subsets
of size k + 1 from the exclusion step by first removing the weakest features
from the best subset resulting in a subset of size k. Each remaining feature is
thus added to that subset, generating the niched initial population for GA. The
fitness function used in this study is MI. Then, a new population is created by
selection, crossover and mutation. The process is terminated when the current
feature set reaches the size of D-2 features.
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Input Y, is a feature set, m is a predefined number of selected features, J is a
criterion function, P.is the probability of crossover, P, is the probability of
mutation, Population is a set of individuals, max_generation is the maximum
number of generations, and Fitness is a function which determines the quality of
the individuals.

Output :The best solution in all generation.
(1)  Feature Inclusion
Initialize :Yo = {@}; m=0
Find the best feature and update Y,
x " =arg max [J(Y,, — x)]
x/EYm
Y, =Y, +tx m=m+1

(2)  Feature Exclusion
Find the worst feature
x =argmax [J(Y,, —x)]

x/€Ym
IFJ(Y, —x ) > J(Y,,) then
Ym+1 = Ym —X;

Go to Step 3 Else Go to Stepl

(3)  Feature Improvement
Repeat
population < SBFS feature subsets Y,
generation =0;
loop for i from 1 to size(Population )do
s1 € selection (Population, Fitness)
s2 € selection (Population, Fitness)
child € crossover( s/,s2)with pc and check feasibility of n element
child €< mutate(child) with pm and check feasibility of n element
Fitness(child)
generation =generation +1
until generation < max_generation
m =m+1
return the best individual solution Y,

Figure 3 Pseudo-code of the proposed algorithm.

We now provide an illustrative example of how the proposed algorithm works
and how it improves SFFS. Assume that the first five feature sets selected by
the SFS method at each size are {f1}, {fl, f4}, {f1, f4, {5}, {fl, f4, {5, f7} with
the corresponding J values of 4.1, 6.2, 9.1 and 10.2, respectively, and the next
iteration is to determine subsets with five features.
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3.1 Feature Inclusion

A feature is added to the feature subset. The SFS method adds up to a total of
five features to the subset: J(fl1,f4,f5,f7,f6) = 13. Assume that feature f6 is
chosen using the SFS method and J for the 5th features is 14.

3.2 Feature Exclusion

A feature is removed from the feature subset. The SBS method is applied in this
step by backtracking and conditionally removing one feature from the subset
selected in Step 1, returning an improved subset, e.g. (f1,£5,£6,f7) with j value =
11, (f1,f4,£5,£7) with j value = 9, (f1,f4,f7,f6) with j value = 9.5, and
(f4,£5,£7,16) with j value = 10. In this case, the best feature subset of size 4 is
(f1, 5, f6, 17).

3.3  Feature Improvement using Genetic Algorithm

The weakest feature is removed from the subset of size k from the previous
step, which is (f1, f5, f6, {7), by iteratively evaluating the smaller subsets: (f1,
5, £7), (f1, 15, 16), (f5, f6, 7) and (f1, 7, £6). In this case, we assume that the
best performance subset of size 3 is (f5, f7, £6). Then, each feature is added to
each subset of (5, f7, {6) in order to find the best four-feature subset, either (5,
f7, 16, 1), (f5, {7, f6, £2), (5, {7, f6, 13), (5, {7, {6, f4), (f5, f7, 16, 18), or (5, {7,
16, 9.) The top n chromosomes are selected as the initial population for GA and
passed through the crossover and mutation operations.

3.3.1 Crossover Operation

Crossover is a genetic operator mainly responsible for creating new solution
regions in the search space to be explored; it is a random mechanism for
exchanging information among strings in the mating pool [22]. Once a pair of
chromosomes has been selected, crossover can take place to produce child
chromosomes. A crossover point is randomly chosen from two randomly
selected individuals (parents). This point occurs between two bits and divides
each individual into left and right sections. Crossover then swaps the left (or the
right) section of the two individuals, which we refer to as mating with a single
crossover operation as follows:

Parent A ) 15, 17, f6, 12)

[0 [t Jo Jo [t [t [t Jo Jo [o |
Parent B) — 15, 17, f6, f1)

[t Jo [o Jo [t J1 [t Jo [o o |

Suppose the crossover point randomly occurs after the sixth bit, then each new
child receives one half of each parent’s bits:
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Offspringl) — 2, 5, 17, 16)

[0 [t Jo Jo]t1 [t [t Jo Jo Jo |
Offspring2) — fl1, 15, 17, 16)

[t [o Jo o Jo [t [1 [o Jo [0 |

This algorithm continues to select parental chromosomes to apply the crossover
operation. Child chromosomes may have one bit more than the current size of
the features subset, k. In this case, a random bit is automatically flipped to
preserve the size of the chromosome (i.e. current feature set size).

3.3.2 Mutation Operation

The mutation operation is applied to all of the offspring chromosomes from the
crossover step. Mutation operates at the bit level by randomly flipping bits in
the new chromosome within the current population (turning a ‘0’ into a ‘1°, and
vice versa).

Offspringl ) —15, {7, f6, f1)

(1 Jo o Jo [t J1 J1 Jo Jo Jo |
After mutation) — f5, f7, {6, £2)

[0 [t Jo Jo [t Jt |t Jo Jo o |

After all child chromosomes have passed through the mutation operator, the
resultant chromosomes are evaluated by the fitness function. After this, we can
discover the best performing features subset, which is (f5, {7, f6, f2). We
assume that J({f5, f7, f6}) = 8.35, and that J({f5,{7, f6, f2}) = 12, which is
larger than the prior largest value for four features, J = 11 Thus, the best four-
feature subset becomes {f5, f7, f6, 2} with J = 12, whereas the best three-
feature subset remains {f1, f4, £5} since J({f1, f4, £5}) = 9.1 > J({f5, {7, f6}) =
8.35

The improvement step helps discover subsets not discoverable by the greedy
nature of SFFS. From the above example, the SFFS algorithm is not able to
produce this best four-feature four subset because it cannot backtrack to the set
{f5, f7, 16} as a result of J({f1, f4, £5}) = 9.1 > J({f5, {7, f6}) = 8.35 and thus
cannot add feature 2 to subset {f5, f7, f6}. Note that 2 is never selected in the
first best four-feature sets of the SFFS method: {f1}, {fl, f4}, {fl, f4, {5}, and
{f1, 15, fo, f7}.

The example above demonstrates the advantage of our proposed algorithm. The
algorithm replaces the weak feature (feature f1 in our example) in the feature set
{f1,f5,f7,f6} with feature 2, which results in a new set of four features {f5, 7,
fo, 2}, which has a larger J value. Therefore, the search strategy of our
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proposed algorithm is more thorough than the SFFS algorithm and thus it is
more effective.

3.4 Terminating Condition

After each iteration, the selection / crossover / mutation cycle continues until all
possible combinations of chromosomes in the population have been evaluated.
The higher the fitness value, the higher the probability of that chromosome
being selected for reproduction. This generational process is repeated until a
pre-determined termination condition is reached. We terminate the algorithm
when the current feature set reaches d < D features, where D is the total number
of features in the dataset). The pseudo-code is depicted in Figure 3.

A fitness function is commonly needed in GAs to evaluate a candidate
chromosome of an individual to assess whether the latter should survive or not.
At each iteration, calculation of the fitness function is processed repeatedly,
which, because of its simplicity, is a fast process, although it still impacts
performance. In our model, we use the MI criterion as a fitness function.
Basically, it measures the amount of an information feature set in a group of
variables for the sake of predicting the dependent data. In addition, the fitness
function to be calculated includes the calculation of the classification rate,
which requires a classifier.

4 Experimental Evaluations

To evaluate the proposed feature selection algorithm, 20 standard datasets of
various sizes and complexities from the UCI machine-learning repository [20]
were used in the experiments. These datasets have been frequently used as a
benchmark to compare the performance of classification methods and consist of
a mixture of numeric, real and categorical attributes. Numeric features are pre-
discretized by the method demonstrated in [23], which begins by sorting a
dataset and selecting only duplicate values for the cutting point bin. After this
step, the number of discrete values to represent each bin is found. The range
associated with an interval is divided into k intervals depending on the number
of replicated values. This modification enables the discretization process to be
faster and yields a higher performance than is otherwise possible.

Details of the datasets used in the experiments are shown in Table 1. From
experiments, we found that a suitable set of parameters is as follows: a
population size of 4-100 individuals, a bit-flip mutation rate of 0.01, and for
single point crossover, a rate of 0.75-0.85 and the number of generations is 500.
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Three classification modeling techniques were used in the experiments, i.e.
Classification and Regression Tree (CART), Support Vector Machine (SVM)
and Naive Bayes. Training and testing data are used as provided in the datasets.
For those not providing separate testing data, a 5-fold cross validation is
applied. To evaluate a feature subset, MI is applied as the criterion function.

4.1 The Classifiers

Each instance in the training set contains one class label and several feature
variables. The goal of a classifier is to produce a model (based on the training
data) that predicts the target values of the test data given only the test data
attributes. Three classification algorithms were used in the experiments, i.e.
classification and regression tree (CART), Naive Bayes and support vector
machine (SVM).

CART [24] is a well-known decision tree algorithm, which represents a series
of decisions for splitting each node in the tree and assigning a class outcome to
each terminal node. In their study, CART employs the Gini impurity index as
the measure to build the decision tree. Consider parent node 1, which contains
the data that belongs to the jth class; the impurity function for node 1 is given by
Eq. (3) as follow:

i(h=1-%p (. 3)
and the declination of impurity of the split is denoted in Eq. (4) as follow:
Ai(l)=i(l) — pri(nL) — pr i(ng), “4)

where / is a parent node, which is split into nodes n; and ng. After that, the
CART strategy is applied by choosing the feature that maximizes the decrease
of impurity Ai(/) at each subsequent node.

The Naive Bayes algorithm is a statistical classifier for supervised learning [24]
and is based on the principle of conditional probability. It can predict class
membership probabilities, such as the probability that a given sample belongs to
a particular class and its performance has been shown to be excellent in some
domains but poor in specific domains, e.g. those with correlated features. The

classification system is based on Bayes’ rule under the assumption that the
effect of an attribute on a given class is independent from the other attributes.
This assumption is called class conditional independence, which makes
computation simple. A conditional probability model for the classifier is given
as P ( Ci[x). Using Bayes’ theorem, we can write in Eq. (5) as follow:
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(P(Cy) = P(xIC))

P[0 =—F (5)

where C; is the ith class and x is the input vector. In this case, class variable C is
conditional on several feature variables x =x 1,... , X, .

SVMs, originally proposed by Cortes and Vapnik [25] have become important
in many classification problems for a variety of reasons, such as their flexibility,
computational efficiency and capacity to handle high dimensional data. They
are a recent method to extract information from a dataset. Classification is
achieved by a linear or nonlinear separating surface in the input space of the
dataset. SVMs have been applied to a number of applications, such as
bioinformatics, face recognition, text categorization, handwritten digit
recognition and so forth. SVM is a binary classifier that assigns a new data to a
class by minimizing the probability of error.

Given a training set of instance-labelled pairs (x;, yi), i=1, ..., L, where xi €
Rn and y € {1, —1} I, the SVM requires the solution of the following
optimization problem:

) 1 )
Minyp, 3 wlw+CY_ &,

subjecttoy; W @ (X)) +b) =>1—Ei, & >0 (6)
Its dual is:
ming 21 al Qa — eTa =0 (7

subject to yT a =0,

I«Kai «C,ji=1,...,n
wheree is a vector of all ones,C>0 is the upper bound,
Q is an n by n positive semi-definite matrix, and Q;; = y;y;K(x;, x;)d,
where K (xi,x]-) =0 x)To (xj) is the kernel. Here, training vectors are

implicitly mapped into a higher (maybe infinite) dimensional space by the
function @.

4.2 Performance of the Proposed Techniques using Classifiers

We studied the effectiveness of the proposed feature selection using three
different classification methods: CART, SVM and Naive Bayes on 20 standard
UCI datasets [26]. Two performance measures were evaluated: classification
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accuracy and number of selected features. Classification accuracy is the most
common and simplest measure to evaluate a classifier. It is defined as the
proportion of the total number of predictions that are correct. Furthermore, a
good feature selection chooses a small subset of features from the original
features that is sufficient to predict the target label. The 5-fold cross validation
procedure is applied to report the result figures.

Table 1 Datasets used in the experiment.

Dataset Attribute No. of No. of No. of
Characteristics instances  attributes  Classes

Wine Integer 178 13 3
Breast Cancer

S Integer 699 10 2
(original)
Breast Cancer
(WDBC) Real 569 32 2
Breast Cancer
(WPBC) Real 198 34 2
Iris Real 150 4 3
Pima-Indian diabetes Integer, Real 768 8 2
Abalone Categorical, Integer, 4177 ] 3

Real

Dermatology Categorical, Real 366 34 6
Heart Categorical, Real 270 13 2
German (Credit Card)  Categorical, Integer 1,000 20 2
Lung Cancer Integer 32 56 3
Soybean Integer 307 35 4
Spambase Integer, Real 4,601 57 2
Glass Identification Real 214 10 7
Teaching Assistant Categorical, Integer 151 5 3
Contact Lens Categorical 24 4 3
Sonar Real 208 60 2
Statlog (Australian) Categor}({:ell,l Integer, 690 14 2
Tonosphere Integer, Real 351 34 2
Image Segmentation Real 2,310 19 7

The results in Table 2 show that the classification accuracy was noticeably
enhanced by the proposed algorithm with all classifiers compared to that
without feature selection. The best performance was where the accuracy
achieved 100% with 13, 22, 2, and 3 features selected for the Wine, Soybean,
Contact Lenses and Iris datasets, respectively, using SVM. Additionally, high
classification accuracy was achieved with small feature subsets lonosphere,
Soybean, Breast Cancer (WDBC), and Statlog (Australian).
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Table 2 Classification Effectiveness: classification accuracy (%) and resulted
number of selected features in parenthesis.

Proposed

Origi- Proposed Proposed method

No. of . method .
Dataset nal . method with . with
attributes with .

datasets CART SVM Naive

Bayes
Wine 89.87% 13 100.00%(7)  100.00%(7)  97.14%(7)
Br(egjfg?;;‘)’er 93.13% 10 07.82%(5)  97.85%(5)  95.68%(5)
Brf{l;]t)%acnfer 92.23% 3 05.49%(9)  96.13%(9)  91.00%(9)
Br??;tPCBaC“)"er 72.00% 34 83.00%(6)  86.26%(6)  80.00%(6)
Tris 94.00% 4 98.44%(3) 100%(3)  95.68%(3)
pima ];Ieri‘ei;an 72.51% 8 73.18%4)  76.04%4)  71.89%4)
Abalone 49.07% 8 52.00%(3)  58.00%(3)  49.26%(3)
Dermatology ~ 95.08% 34 98.83%(26)  98.85%(26)  94.15%(26)
Heart 76.67% 13 80.00%(6)  81.11%(6)  79.00%(6)
German 68.50% 20 73.50%(6)  71.50%(6)  69.00%(6)
Lung cancer  59.67% 56 75.00%(21)  83.33%(21)  72.00%(21)
Soybean 85.00% 35 100.00%(22)  100.00%(22)  98.28%(22)
Spambase  93.26% 57 96.00%(26)  92.00%(26)  91.76%(26)
I denct}ilf‘:j:tion 62.00% 10 63.13%(5) 66.67%(5)  65.00%(5)
Xeszf;:ﬁ 54.92% 5 58.03%(2) 61.86%(2)  62.00%(2)
ContactLens  76.00% 4 80.00%(2)  100.00%(2)  85.00%(2)
Sonar 69.50% 60 76.86%(7)  62.98%(7)  67.00%(7)
( Ai;‘i‘ﬁ b 6545% 14 7430%(7)  79.04%(7)  75.24%(7)
Ionosphere  84.00% 34 88.00%(5)  90.62%(5)  90.10%(5)
Segfrﬁi“;’;m 85.00% 19 90.95%(14)  88.57%(14)  85.10%(14)

It can be seen that the classification accuracies using SVM, CART, and Naive
Bayes significantly improved from 7% to 15% after applying the proposed
algorithm with feature subsets for the Wine, Breast Cancer, Statlog (Australian),
Soybean, and lonosphere datasets. We also note that Naive Bayes yielded lower
classification accuracy than SVM or CART.

In 97.70% of the cases, the proposed technique improved classification
effectiveness and greatly reduced the number of features selected, thus
increasing classification efficiency, for all of the classification methods. We
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actually achieved 100.00% selection accuracy in four datasets with the proposed
method. Regarding the classification methods, SVM yielded the highest
classification accuracy in 65% of the datasets, while CART gave the highest
accuracy in 35% of the datasets.

As shown in table 3, the proposed algorithm based on SVM and CART
outperformed the others for 8 out of 12 datasets and 7 out of 12 datasets,
respectively. The SVM classifier achieved better results with the Wine, Soybean
and Iris datasets by 1.73%, 2.15% and 18.75%, respectively, compared with
recent research on feature selection by Yang, et al. [27], and a 2.6%
improvement with the Iris dataset compared with Gupta’s study [28].

Table3 Comparison on classification accuracy with other recently reported
methods on common datasets (%).

Proposd Proposed
method method
1 33
Dataset with with [29] [30] [31] [27] 28] [32] [33]
CART SVM
Breast
Cancer 97.80 97.90 - 97.40 94.40 96.50 - - 94.80
(original)
Breast
Cancer 95.50 96.10 95.40 - - - - - 93.00
(WDBC)
Iris 98.40 100.00 97.30 - 97.30 96.70 96.60 -
Pima
Indian 73.20 76.00 73.80 79.90 76.00 73.20 - - -
Diabetes
German 73.50 71.50 72.60 76.20 - 74.50 - 69.90 -
Soybean 100.00 100.00 - 88.30 - 97.80 - - -
Wine 100.00 100.00 - - 91.60 98.30 - - -
Heart 80.00 81.10 - - 61.10  84.80  87.10 ; ]
Sonar 76.80 62.90 - - 83.70 _ _ _ _
Abalone 52.00 58.00 54.50 - - - 30.00 25.70 -
Dermatol 44 g9 98.9 - - - 95.40 - - -
ogy
Contact 76.00 100.00 - - - - 75.00 - -
Lenses

Not only did the proposed algorithm reduce features from 13 to 7, 35 to 22, and
34 to 5 for the Wine, Soybean, and lonosphere datasets, respectively, but also
the classification accuracies improved by 12.35%, 17.64%, and 7.14% when
compared with the accuracy using full datasets. With the Soybean dataset, the
proposed algorithm reduced the number of features from 35 to 22 and the
classification accuracy using SVM was 100.00%, which is much higher
compared to the others methods. Moreover, the proposed algorithm also
reduced the number of features from 8 to 3 and 4 to 2 with the Abalone and
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Contact Lens datasets, respectively, and accuracy was again higher compared to
the other methods.

The proposed algorithm based on a feature selection algorithm produced
effective and small feature sets with higher classification accuracy on several
different datasets because of the feature improvement step using a genetic
algorithm that replaced the weakest features. The algorithm performed a more
thorough search with a better chance of finding the optimal solution. Our
proposed algorithm was able to extract a more relevant and effective feature set
from the original feature set by employing the genetic operations of selection,
crossover, and mutation to discover efficient and effective feature subsets.

5 Conclusions

Feature selection is critical to the performance of classification. In this paper,
we proposed a feature selection algorithm that improves the performance of
SFFS by incorporating a feature improvement step based on a genetic
algorithm. This step helps discover important subsets that are not possible using
SFFS alone. The algorithm employs mutual information as the feature subset
evaluation function. The proposed technique was evaluated using 20 standard
datasets from the UCI repository using three different classification methods.
The results show that the proposed feature selection technique significantly
improved classification accuracy and gave a much smaller feature set, thus
improving efficiency. In addition, it performed very well in comparison with
previously reported methods.
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