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Abstract. The use of graph pattern association rules (GPARs) on the Yago
knowledge base is proposed. Extending association rules for itemsets, GPARS
can help to discover regularities between entities in a knowledge base. A rule-
generated graph pattern (RGGP) algorithm was used for extracting rules from the
Yago knowledge base and a GPAR algorithm for creating the association rules.
Our research resulted in 1114 association rules, with the value of standard
confidence at 50.18% better than partial completeness assumption (PCA)
confidence at 49.82%. Besides that the computation time for standard confidence
was also better than for PCA confidence.
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1 Introduction

The Yago knowledge base [1] contains common sense knowledge. It is a
collection of commonly known facts and information. Yago was built by
extraction of data from Wikipedia and using the WordNet ontology. However,
WordNet’s ontology is limited, so Yago developed its own proprietary
ontology. Yago evolved into Yago 2 [2] with the addition of data extracted from
GeoNames so Yago 2 can describe spatial entities using spatial data such as
longitude and latitude from GeoNames. Yago 2 was expanded into Yago 3 [3]
in view of multilinguality; in previous versions Yago only extracted data from
English Wikipedia, while in Yago 3 multilingual extraction from Wikipedia was
done and grouping of entities was also done based on languages supported by
Wikipedia.

Luis [4] developed the AMIE system to mine rules with incomplete facts using
association rules [5]. AMIE uses the Yago KB and horn rules with data
representation in the form of a relational database [6]. Luis explored the horn
rules and tuples contained in the relations of each entity. Each entity is
represented by a function and has a maximum functionality value of 1 and a
minimum functionality value of 0. The function has an inverse function that
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also has a functionality value. For example: function export(x,y) has inverse
function isExported (y,x). The functionality values of the function and the
inverse function of each entity are compared and the largest value will be used
by the system. The various connections between entities in the form of patterns
were not discussed too much by Luis. The function and its inverse can be used
on the relational database to find rules. Partial completeness assumption (PCA)
confidence is used to generate or predict negative evidence, but these
measurements need more processing time and more computational resources
than standard confidence. In contrast, our research focused on diversified graph
pattern association to generate rules.

Fan [7] proposed association rules utilizing graph patterns. The proposed
method uses parallel computation and focuses on social graphs. It obtains
potential customers using the diversified mining problem (DMP) technique and
the entity identification problem (EIP) technique based on the support of each
entity. This is different for knowledge bases, especially when determining
association rules. Fan claimed PCA confidence does not perform better than
Bayes factor-based confidence if facts are presented in graph patterns [8].
However, he used a different dataset under local closed world assumption
(LCWA). Therefore we decided to use the graph pattern approach from Fan [7]
and the mining model from Luis [6]. We wanted to investigate whether PCA
confidence performs better than standard confidence when using graph patterns.

Our research used this combination of techniques on the Yago KB [9]. We used
graph representation as data representation for connected data and for
visualizing the graph database. The flexibility of the graph model allows us to
add entities and their relationships without affecting or modifying existing data
[10]. Some well-known apps like Facebook, Google, Wikipedia and IMDB as
well as many other apps use graph representation as data representation.

We propose association rule mining of the Yago knowledge base. Finding these
rules can serve several purposes, among others to predict new facts that are not
in the dataset, to verify facts in the dataset when there are different facts from
the rules, and to help understand the data better. More precisely, our
contributions are: (1) we used graph pattern association rules (GPARS) on the
Yago knowledge base; (2) we defined support and confidence for GPARS; 3)
we experimentally verified the scalability and effectiveness of our algorithms
for creating and mining rules.

The rest of this paper is structured as follows. Section 2 discusses related works.
Section 3 introduces the preliminaries and Section 4 presents our mining model.
Section 5 discusses the implementation of the graph pattern association rules.
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Section 6 presents our experiments, and Section 7 contains the conclusion and
recommendations for future work.

2 Related Work

The Yago KB has the form of an RDF triple. RDF only has positive examples.
It operates under open world assumption (OWA). This means that something
not found in the KB is not necessarily assumed to be wrong but classified as
unknown. This is a fundamental difference with database settings operating
under closed world assumption (CWA). In CWA, facts that are not in the
dataset cannot be assumed. For example, a KB contains the statement ‘John was
born in Paris’. Then there is the question: “Was Alice also born in Paris?” Under
CWA we get ‘no’ as the answer, while under OWA we get ‘unknown’ as the
answer. CWA eliminates the possibility that Alice was born in Paris, while
OWA keeps open the possibility that Alice was born in Paris or not.

Association rules were introduced by Agrawal [5]. Association rules combine
multiple items into antecedents and have one item as consequent. Two steps are
executed to generate the association rules. Firstly, finding all itemsets that are
present in at least c% of transactions. Secondly, finding association rules
efficiently. Association rules have been well studied for discovering regularities
between items in relational databases for promotional pricing and product
placement. They have the traditional form of X = Y, where X and Y are
disjoint itemsets.

Fanizzi [11] has attempted to mine rules from the semantic web using the
inductive logic model (ILP). The goal was to find a hypothesis that included all
positive examples in the absence of a negative example. This requires rules of
various positive and negative examples to be investigated [12]. This is a
problem in KBs because in KBs there are no negative examples. Another
problem is that the ILP system cannot process large amounts of data while KBs
contain a large amount of data.

Mining rules using ordinary techniques (inductive logic programming, logical
rules) can only mine complete facts contained in a database. Incomplete facts
cannot be used with this technique. Luis [13] used association rules under open
world assumption (OWA) for KBs, introducing new thresholds for mining
models called head coverage. This notion is used to filter rules based on the size
of the head, replacing the count of support with an absolute number. Moreover,
it uses a new notion of confidence measurement called partial completeness
assumption (PCA) confidence. Our research applied this confidence for
comparison with standard confidence [5].
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The GPAR algorithm proposed by Fan [7] was used to create graph patterns for
mining association rules in social media marketing and identifying potential
customers under CWA using parallel computation. There are also existing
algorithms for pattern mining graph databases. Large-scale mining techniques in
a single graph have also been studied, notably top-k algorithms to reduce cost
and scalable subgraph isomorphism algorithms adapted to generate pattern
candidates [14].

Yago KB graph properties [15] can be seen as a set of facts, where each fact
consists of two nodes that are connected by one edge (x,r,y) with x denoting
node 1, r the relation (or edge), and y denoting node 2 of the fact. There are
several equivalent alternative representations of facts. In this study, we
borrowed the notation from Datalog and represent facts as r(x, y). For example,
we write isLocatedIin(Bandung,Indonesia).

3 Mining Model

In this paper, we focus on Yago KB graph properties [15]. A graph property
model is a graph consisting of nodes, edge, and properties [10]. We use
properties such as entity properties. Each node has properties as depicted in
Figure 1. It shows two nodes with the person label and a node with the book
label. The two nodes are connected with the edge label hasRead. The person
node has the property name and value John Smith, and the book node has two
sets of properties, title and author. The title has the value graph database and
the author has the value lan Robinson.

S = 3
—— Book
r.(/ Person /’/
TJonm

/ Title: Graph
| Smith | .'I database

Y __."I | Author: lan

A / "\ Robinson f,f’

., - h /

Figure 1 Graph property model.

In this section, we will explain the mining model that will be generated. Most of
the models we present were adopted from Luis [13] and Fan [7]. We adopted
the approach of Luis for support, head coverage and confidence for graph
patterns. We used a different approach than Fan’s for graph patterns (see
Section 4). The difference is explained as follows:
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3.1 Support

The support of a rule quantifies the number of correct rules, i.e. the size of A. A
rule’s support is the frequency or number of itemsets in the data set. Support is
calculated from the calculated number of itemsets compared to the total number
of itemsets in the dataset. Support graph pattern P in a graph G, denoted by
supp(P,G), indicates the number of Ps contained in G. Our approach uses
support as the number of instantiations of a rule that appear in a KB. The
support of graph pattern p is denoted by supp(P (G)). This is the number of
nodes and edge pairs found in graph pattern P (G). Support of rule R is denoted
by supp R, i.e. the number of nodes and edge pairs present in R.

supp(P(G)) = |P(G)|, supp R = |R|

3.2 Head Coverage

As mentioned above, we use head coverage (HC) as the threshold for the
strength of a rule (R), as in Egs. (1) and (2). In association rules usually min
support is used as the threshold for the strength of a rule. We used min HC =
0.01.

R:P(G) > r(u,w) @
_ supp (R)
HC = o )

where HC is head coverage, supp (R) is the number of rules R, and | r | is the
size of the head in the dataset.

3.3 Confidence, Standard Confidence and PCA Confidence

This is a measure to determine the strength of a rule. The value is between 0 and
1. A rule with high confidence is close to 1 and, vice versa, a rule with low
confidence is close to 0. In this research, we used two types of confidence:
standard confidence and PCA confidence.

Standard confidence (conf) is a measure of the ratio of the number of rules R
compared to the facts we know in the form of graph pattern P (G), as in Eq. (3)
below:

[Ril
1Pl

conf(R;) = ®)
Standard confidence does not distinguish between facts that are not in the
dataset and wrong facts in the dataset. In other words, standard confidence
cannot distinguish between wrong facts and unknown facts. Since the
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knowledge base has no negative facts, the partial completeness approach (PCA)
was used, as proposed by Luis [4]. If r (u, w) € G for nodes u and w then:

vw' =r(u,w) € G Unew true = r(u,w’) €G

In other words, we assume that if graph G knows some attribute x of u, then we
can see all attributes x of u. This assumption is converted to standard
confidence, so it can be obtained with Eq. (4):

IR

PCAconf(R) = ot ?

4 Graph Pattern Association Rules

In this section we will discuss the approach used in this research in detail.
Graph pattern association rule P(x, y) is defined as B(X, y) = r(x, y), where B(X,
y) is a graph pattern in which x and y are two designated nodes and r(x, y) is an
edge labeled r from x to y on which the same search conditions as in B are
imposed. We refer to B and r as the antecedent and consequent of P,
respectively [7].

We use graph patterns to mine the association rules. We chose this option for
the following reasons: we follow the Agrawal model by starting from 1
antecedent and increasing the number of antecedents to 2, 3 and 4. In the tool
we use, we can automatically search for a graph pattern, but there is a problem
with the edge direction: there is only one edge direction. This is certainly
different from the actual data in the database, where the relationship can come
from both sides, from the subject or the object. Figure 2 shows two graph
patterns that have different directions in R2.

. RO
8@

R1 %
@) (b)
Figure 2 Graph pattern.
In Figure 2(a), R2 has the same direction as R1 but in Figure 2(b), R2 has the

opposite direction from R1. This cannot be executed by one query; instead there
should be a query for each graph pattern. In graph theory, the graph motif



168 Wahyudi, et al.

technique is used, i.e. the isomorphism of two subgraphs is determined by the
interaction pattern between node and edge. In the proposed method, we use the
edge property (relation) as the motif for determining the isomorphism of
subgraphs. Thus we use the graph pattern to get all possible directions from
each of the existing entities. This is different from Fan [7], who used a pattern
generator [14]. We use ten graph patterns, consisting of patterns that have one
relation, two relations and, three relations, as shown in Table 1 below.

Table 1 Graph patterns used in this research.

Graph Pattern Association Rule Graph Pattern Association Rule
R
1ol X—[R]->Y=X~-[R]~Y Y« [R]-X—[R]~>Y
|Pe
. R
®F
mJ g XRISB-R] Y= Y [R]-X—[R B~
1 X=[R] =¥ [R;) — ¥
|\X/I— ?L—
(B
Ry )  X—[R]->Be[R]-Y=> Ve [R]-X—[R] > B«
®— -7 X=[R]~Y [R,] Y
B
R1 Y) X<[R]-B-[R)]->Y=> Y < [R]—X < [Ry] - B -
X)— ¢ — X—[R]-Y [R] =Y
R¢
. Ry =
[\ >—i\ =
R X—[RISB- IR C- Y [R]—X — [Ry] ~ B~
Xr —Y) [Rs] > Y =X—[R]-Y [R2] > C—[Rs] - Y
I(_:Iiﬂi—::
R, IRs X—[R] > B—[Ry] > C Y < [R]=X—[Ry] > B~
_Rc_.w\. [Rs]—Y = X—[R.]~Y [Rs] » C « [Rs] — Y
ALY v
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Graph Pattern

Association Rule

Graph Pattern Association Rule

X < [R]=B—=[R] > C~-
[Rs] > Y =X—[R]->Y

X< [R]=B—[R]->C«
[Rs] - Y =X—[R]->Y

X—[R] =B« [R]-C—
[Rs] > Y =X —[R]-Y

X—[R] =B« [R]-C«
[Rs] - Y =X—[R]>Y

Y<[R]—X<«<[R]-B~
[Rz]*C—[R3]—’Y

Y<[R]—-X<[R]-B-
[R2] » C < [R3] -V

We developed the algorithm shown in Figure 3 to generate rules from graph
patterns. This algorithm is called the Rule-Generated Graph Pattern (RGGP)
algorithm. It has as input a knowledge base and graph patterns. In the first step,
we sort the ten graph patterns in an array and select them one by one with the
matchPattern function. The expected results are rule body (r,), rule head (r,) and
the count of rules (c) generated.

Algorithm 1 Rule-gencrated graph pattern (RGGFP)

I

Input : Knowledge Bases (), Graph Pattern g
Output: Collection of rules(collection) {< Ry, Iy, =, c}

(;J'l = [PerE-HPn]
Sot eollection = []
for cach P, € Gp do

list < fip, fiy > = matchPattern(F;, i)

= count(< Ry, Ry, =)
collection.add{< Ry, Ry, >,c}
return collection

Figure 3 Rule-generated graph pattern (RGGP) algorithm.
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Finally, rules are generated from the RGGP algorithm. The next step is to
determine the rules to be used in the association rules. The algorithm used is the
graph-pattern association rules (GPAR) algorithm shown in Figure 4. This
algorithm has as input the collection rules that were generated by the RGGP
algorithm. The first step of the algorithm is to process the rules one by one,
from the first rule to the last, after the values of head coverage, support,
standard confidence, and PCA confidence have been set to zero. Each rule
counts the number of body rules and head rules, after which the value of head
coverage is counted. Rules that qualify are rules that have minimum head
coverage > 0.01. Support, standard confidence and PCA confidence are
calculated for each rule.

Algorithm 2 Graph-pattern association rule
Input : Collection of rules(collection) {< Ry, Ry, =, c}
Output:Confidence output (out) {< rbody, rhead >, suppr, minHC,
stdConf, peaCon f}

1: Set out = {}
2: Set minHC, stdConf, peaConf =0
3: for cach {< Ry, Ry =, ¢} € collection do

d: rhcad = collection.get Ry,
5 rhody = collection.gel. Ry,
B! suppr = collection.get.e
T ch = count{rhead)
8: minH(C = =Lt
9 if minHC = (L01 then
100 ch = count(rbody)
11: for each < rbody, rhead > do
12; name(pary, pars) = getNameParameter(rfead)
13: rpea = addRel name(pary, z)
14 removeRel rhead
15: cpea = count{rpea)
16: stdConf = =5
17: peaConf = %
18: con f.add(< rbody, rhead >, suppr, minHC, stdCon f, pcaConf)

19: return out

Figure 4 Graph-pattern association rule (GPAR) algorithm.

5 Experiment

Using the graph properties of the Yago KB, we conducted an experiment to
generate collection rules and association rules. The experiment used the 20
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types of graph patterns shown in Table 1. It used standard confidence as well as
PCA confidence, because we wanted to investigate whether PCA confidence
performs better than standard confidence when using graph patterns.

5.1  Experimental Setup

We used Neodj for visualizing the graph database and graph processing. Our
dataset, Yago, had 600 K nodes of more than 50 different types, and 980 K
edges of 30 types, such as isPoliticianOf, isLeaderOf, etc. All experiments ran
on a laptop with 8 GB of RAM and four physical CPUs (Intel core i3 at 1.7
GHz).

We tested the Neo4J web server. We compared query execution to generate
nodes with Neo4j running time queries. Our research used indexation on nodes
in the dataset with node name (nn) properties to increase the query execution
time. The index speeds up the search for data based on certain properties (in this
research nn properties). This test displays graph visualization, so it requires
additional time compared to graph processing. For query execution that
produces 10-100 nodes requires 2-5 seconds running time. The full results are in
Table 2

Table 2 Comparison of Neo4J execution time.

Running time (s) Nodes Generated

<1 <10
2-5 10-100
-12 101-500
13-20 500 -800
>20 > 800

5.2 Standard Confidence vs PCA Confidence

This experiment generated 1114 rules that met head coverage >= 0.01. For each
rule its confidence was calculated using standard confidence and PCA
confidence. From the result of the experiment 559 rules had standard confidence
better than PCA confidence (50.18%), whereas 555 rules (49.82%) had PCA
confidence better than standard confidence, as shown in Figures 5(a) and 5(b).
Table 3 shows the 3 rules that had the best standard confidence vs PCA
confidence.

We conducted tests on the top 3 standard confidence and PCA confidence rules.
We used the QAGPAR tools [16] and tested 50 times for each rule. The results
can be seen in Table 2. Figure 5(d) is a comparision of the performance
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precision of each rule. The results obtained show that the performance of PCA
confidence was better than that of standard confidence for the top 3 rules.

Table 3  Top 3 Rules for Standard Confidence vs PCA Confidence

(@) Top 3 standard confidence rules

Graph Pattern Standard Confidence PCA Confidence Precision
isLeaderOf

isLeaderOf

0.86 1.00 74%
isPoIitEanOf
hasChild
e
0.59 0.74 52%
2
" hasChild
diedln
5,_ _:_;
3 E 0.53 0.02 28%

isPoliticianOf

(b) Top 3 PCA confidence rules
Graph Pattern Standard Confidence PCA Confidence Precision

isLeaderOf

g 0.86 1.00 74%
'\sPoli;anOf
hasChild
z 0.59 0.74 54%
7ismgrrieidTo
hasChild
©
0.59 0.74 52%
=2

__ 4

hasChild
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Standard Confidence vs PCA Confidence Rules

1.000
& 0.800
S 0.600
& 0.400
S 0.200
0.000
Rules
e Standar Confidence = === PCA Confidence
(@) Confidence values of each rule
Standard Confidence vs PCA Confidence Values
,, 800
<
= 600
o 400
o
2 200 II
2 ) mE
0-0.01 0.01-0.1 0.1-05 05-1
range values
m Standard Confidence  mPCA Confidence
(b) Range of confidence values
Standard Confidence vs PCA Confidence Processsing
2500
—~ 2000 -
2 1500 -~
£ 1000 - - -
- —
F 500 - -
-
0 =
1 2 3 4

Relation
e Standard Confidence = == PCA Confidence

(c) Processing time by relation

Figure 5 Evaluation of confidence measures.
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Precision Top 3 Rules Standard Confidence vs PCA Confidence

80
5 60
8 40
a
X 20

0

50 100 150
QA samples

e Standard Confidence = == PCA Confidence

(d) Precision test on 3 top rules

Figure 5 Continued. Evaluation of confidence measures.

We evaluated the scalability of standard confidence vs PCA confidence using
used relation = 1 and found that different relations had impact. We found that
there were differences in the generated number of nodes and edges for standard
confidence vs PCA confidence in the same relation. This caused the processing
time for PCA confidence to be higher than that for standard confidence, as
shown in Figure 5(c).

6 Conclusion and Future Works

In this paper, graph pattern association rules (GPARs) were proposed for
itemsets in syntax and semantics to support confidence metrics and graph
properties for mining association rules from the Yago knowledge base. Our
confidence metrics used standard confidence and PCA confidence. The
experimental result indicated that standard confidence performed slightly better
than PCA confidence. We obtained an average value for PCA confidence that
was lower than that of standard confidence for the graph patterns. Therefore,
further research is needed to determine the appropriate confidence for graph
patterns.
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