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Abstract. Deep probabilistic programming concatenates the strengths of deep 
learning to the context of probabilistic modeling for efficient and flexible 
computation in practice. Being an evolving field, there exist only a few 
expressive programming languages for uncertainty management. This paper 
discusses an application for analysis of ultrasound nerve segmentation-based 
biomedical images. Our method uses the probabilistic programming language 
Edward with the U-Net model and generative adversarial networks under 
different optimizers. The segmentation process showed the least Dice loss 
(-0.54) and the highest accuracy (0.99) with the Adam optimizer in the U-Net 
model with the least time consumption compared to other optimizers. The 
smallest amount of generative network loss in the generative adversarial network 
model gained was 0.69 for the Adam optimizer. The Dice loss, accuracy, time 
consumption and output image quality in the results show the applicability of 
deep probabilistic programming in the long run. Thus, we further propose a 
neuroscience decision support system based on the proposed approach. 

Keywords: deep learning; deep probabilistic programming; generative adversarial 
network; nerve segmentation; neuroscience decision support.  

1 Introduction 
Deep learning (DL) has become a leading technique in data science research 
with its rapid algorithmic improvements, advances in hardware technology and 
support for exponentially growing data. DL is advantageous over traditional 
machine learning (ML) mainly due to the automatic feature learning capability 
on larger datasets, higher accuracy and faster inference [1,2]. The basis of DL 
architectures is similar to that of the human nervous system, where large sets of 
neurons are linked and pass data [3].  

Deep probabilistic programming (DPP) is a DL technique that is a blend of a 
deep neural network and a probabilistic model that is able to perform 
computations efficiently and flexibly. A deep neural network (DNN) is an 
automatic hierarchical representation of a learning model that consists of several 
layers between the input and the output layer. DNN uses mathematical concepts 
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and languages for complex data processing. Probabilistic programming 
describes probabilistic models, performs inferencing and supports decision 
making under uncertainty. DNN exemplifies the models in deep learning using 
its feed-forward neural networks with hidden layers. A generative adversarial 
network (GAN) is a type of DNN that trains two models in parallel [1]. The 
convolutional neural network (CNN) is a DNN architecture for spatial data that 
is widely used, for example in image classification with minimal pre-
processing, and is inspired by the human visual system [1,4]. The need for 
probabilistic programming for DL models has eventually led to the growth of 
deep probabilistic programming languages (DPPL) [5,6]. The expressiveness 
and powerful inferencing capabilities of DPPLs facilitate the uncertainty 
management of DL models. However, the use of DPPLs in DL model solutions 
has not been evaluated well due to the novelty of the leading DPPLs. 

The contribution of this study is to propose an application of a DL GAN 
architecture with probabilistic modeling using the novel DPPL Edward, which 
addresses the software engineering perspective of DL and DPPL [5]. Nerve 
segmentation on ultrasound image data was used in an experiment to test the 
proposed methodology [7]. The accurate identification of nerve structures is 
important during surgery when catheters are inserted to reduce pain. Manually 
differentiating nerves in an ultrasound scan is a complex process, which 
motivated the authors to research ultrasound nerve image segmentation.  

The main aim was to see the possibility of applying both DL and DPPL to 
decide nerve points in support of surgical catheter insertion. First, the principles 
of GAN were embedded into the popular biomedical image segmentation model 
U-Net. The performance was analyzed using a set of ultrasound images with 
prominent optimizers [3]. Then, GAN with inferencing capabilities was applied 
in DPPL Edward on the same dataset. The performance was analyzed using the 
same set of optimizers [5]. The novelty of this study is the exploration of the 
applicability of DPPL for medical image segmentation. Furthermore, we also 
propose a generic model for a decision support system based on healthcare data.   

2 Background 

2.1 Overview of DPPLs 
Probabilistic programming provides an abstract way to specify probabilistic 
models as programs and compile them into inference procedures without 
exposing the underlying complex inference algorithms. Thus, probabilistic 
programming languages (PPLs) eliminate the representational gap between 
general purpose programming and probabilistic modeling [5]. There exist PPLs 
that extend general languages. For example, Dimple extends Java, PRISM 
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extends Prolog, Infer.NET extends the .NET framework, and Anglican extends 
Clojure, while Stan is an example of a self-contained state-of-the-art PPL 
written in C++ [5,8]. Stan is a mature, expressive and imperative PPL that 
supports conditional statements and variable declarations, where all expressions 
are statically typed, including variables. It is based on Hamiltonian Monte Carlo 
(HMC) with built-in inference engines, including Markov Chain Monte Carlo 
(MCMC) samplers and optimizers, which perform Bayesian inference [8]. 

According to related studies on PPLs, Birch is an imperative, Turing complete, 
universal PPL [9]. A unique option in Birch is delayed sampling, which delays 
the execution of a reached checkpoint to provide optimization for inference 
problems using partial analytical solutions. The work in [10] extended the 
delayed sampling concept by focusing on Sequential Monte Carlo to reduce the 
variance in estimations. Although it has a better user experience for PPLs, it has 
an additional computational cost. Another domain-specific PPL is TerpreT [11], 
which is based on gradient descent and linear program relaxation on graphical 
models. TerpreT compiles different inference algorithms by separating the 
model specification from the inference algorithm. Thus, hierarchical modeling 
becomes a powerful method for probabilistic programming. Most of the PPLs 
adhere to general MCMC methods for inference is because of the inability to 
specialize the inference techniques over language expressiveness. Thus, PPLs 
trade off the expressiveness of the language against the computational 
efficiency of the inference [5,8]. 

DPPLs have started to evolve into a combination of DL and PPL with the 
introduction of variational inference (VI), which converts an inference problem 
to an optimization problem and outperforms the sampling-based Monte Carlo 
methods in Bayesian on larger datasets [5,6,12]. Edward and Pyro are two of the 
leading state-of-the-art, Turing complete DPPLs that are actively used in current 
research. Edward [5] is based on TensorFlow [13] and defines two 
compositional representations as random variables and inference. It is capable 
of a variety of inference methods, from point estimation to VI, to MCMC, 
which makes it a deep PPL. Edward shows that reusing the modeling 
representation within inference can improve variational models and GANs and 
is more than 35 times faster than Stan, not having any runtime overhead. Pyro 
[6] released by Uber AI Labs after Edward, is based on the PyTorch framework 
[14]. Pyro scales to larger datasets by adapting a gradient-based stochastic VI 
algorithm that uses SGD along with other probabilistic inference algorithms. 
Further, Pyro has better language expressiveness in terms of dynamic control in 
comparison to both Stan PPL and Edward, which have static control flow. In 
contrast, Edward is more concise than Pyro. Otherwise, Edward and Pyro have 
similar scalability and flexibility characteristics. Due to DPPLs’ success, Stan 
has also been extending towards DeepStan using VI on PyTorch like Pyro [12]. 
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In this approach, the Stan programs were primarily translated into Pyro. 
Another novelty was added to the DPPL context in related work [15], which 
presented a modular DPPL library called MXFusion. It introduced reusable 
building blocks, called probabilistic modules, consisting of random variables 
with probabilistic distribution and inference methods to reduce the performance 
gap. Hence, DPPL has significant promise as a new active research field.  

2.2 Machine-Learning Frameworks 
Several machine-learning frameworks that provide built-in functions for pre-
processing are available, such as TensorFlow [13], PyTorch [14], Microsoft 
Cognitive Toolkit (CNTK) [16], Apache MXNet [17], etc. Table 1 summarizes 
the applicability and limitations of these machine-learning frameworks. 

Table 1 Comparison of DL frameworks. 

Features TensorFlow PyTorch CNTK Apache MXNet 
ML/ DL 

Applicability High High High High 

Scalability High Low High High 
In-built 

visualization TensorBoard Low Low Low 

Programming 
language 
support 

Python Python 
Python, 
C++, C# 
and Java 

Python, JavaScript, Julia, 
C++, Matlab, Scala, R, 
Perl, Go and Wolfram 

API support High Low High High 
Debugging Low High High High 

 

TensorFlow [13] is an open-source machine-learning framework, comprising a 
set of ML and DL algorithms that provides functions to obtain data, train the 
model, predict and refine the results on a large scale. The front-end application 
is based on Python and the backend execution is based on C++. TensorFlow is 
platform-independent and several studies have used it for image classification. 
The developer can describe the abstract structure of the data flow using a set of 
nodes, where each node consists of a computation. Each link among the nodes 
is a tensor or a data array. Thus, the user can get an overall view of the 
application without knowledge of the internal functional handling.  

Similarly, PyTorch [14] is a high-performance and interactive development 
model. This enables efficient development, but it may have scalability issues 
and limitations in complex workflows compared to TensorFlow. CNTK is also 
an open-source framework, which mainly considers the efficient creation of DL 
neural networks. It uses a node-link structure with a set of computations to 
represent the dataflow. This can be included as a library in Python, Java, C++ 
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and C# or as a standalone tool using its model description language. Apache 
MXNet [17] is another leading DL framework, with a scalability feature among 
many GPUs and machines. It supports a range of programming languages such 
as Python, JavaScript, Julia, C++, Matlab, Scala, R, Perl, Go and Wolfram. 

2.3 Related Studies 
Various imaging modalities are used in practice for advanced diagnosis 
purposes, such as MRI, fMRI, EEG and CT scans [4,18,19]. Manual analysis of 
biomedical imaging data is challenging due to its complexity. Thus, 
computational models for diagnosis of biomedical imaging data using deep 
learning are actively investigated [20,21]. Table 1 summarizes related work that 
has incorporated DL and the use of DPPLs related to probabilistic aspects, such 
as VI, VAE and GAN for neuroimaging. 

Table 2 Related work on medical imaging analysis using learning models. 

Related work Dataset Advantages Limitations 

A variational Bayes 
method for MRI image 

segmentation [18]. 

Synthetic data 
from Brainweb 
and real MRIs 

from OASIS, IXI. 

Increases computational 
stability and robustness. 

Low accuracy in 
real data due to the 
complexity in MRI. 
DPPL not included. 

Handling uncertainties 
in CNN-based MRI 

image segmentation [4]. 

T2-weighted 
MRIs of 60 

fetuses. 

Better uncertainty 
estimation and 

minimization of 
incorrect predictions. 

Support small 
training dataset due 

to performance 
issues. DPPL not 

incorporated. 
Visualizing thoughts 

from brain EEGs 
(ThoughtViz) [19]. 

EEG data from 3 
public datasets. 

Suitability for the 
domain- and scale-

independent datasets. 

Suited for small 
datasets.  DPPL not 

incorporated. 
Synthesizing medical 
images from a source 

image to a target 
without a scan [22]. 

MRIs and CT scan 
from 3 real 

datasets including 
ADNI database. 

Reduce medical imaging 
costs for patients. 

Removes the blurry 
effect in the output. 

DPPL not 
incorporated. 

Pelvic organ 
segmentation from MRI 

(STRAINet) [20]. 

MRIs of 50 
prostate cancer 

patients. 

Resolves limitations in 
normal FCNs. Robust 
and high performance. 

DPPL not 
incorporated. 

Decode neuroimaging 
data in EEG 

(Brain2Image) [21]. 

EEG signal 
dataset with 2000 

images. 

Higher performance and 
shows that GAN is 

ahead of VAE. 

Noise removal needs 
to be improved. 

DPPL not 
incorporated. 

3 Design and Implementation 
The methodology consisted of two phases. In Phase 1, nerve segmentation was 
performed using the U-Net DL model by embedding GAN features to identify 
the use of GAN and an ideal optimizer for U-Net model other than its originally 
specified SGD optimizer [23]. In Phase 2, a GAN model was implemented in 
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DPPL Edward and applied to the same dataset to determine the usefulness of an 
individual GAN model together with DPPL towards segmentation by improving 
image quality. The variations of applying different optimizers on a single GAN 
model were also analyzed in Phase 2. A publicly available dataset of ultrasound 
images published for a nerve segmentation competition held by Kaggle was 
selected for the application proposed in this work. It consists of 5635 ultrasound 
images of the neck in Tagged Image File Format (TIFF), each with dimensions 
of 580 x 420 [7]. Implementation was carried out in an environment consisting 
of Intel® Core (TM) i7-4790 CPU @ 3.600GHz and 8GB RAM. 

3.1 Phase 1: Nerve Segmentation by U-Net CNN 
Generally, segmentation groups similar pixels in an unsupervised learning 
approach, where parameter estimation is essential. Nerve segmentation 
determines the nerves in an ultrasound image [24]. Manually, it is challenging 
to differentiate the nerve structures accurately, which is crucial during surgical 
activities. Phase 1 of our methodology determined the segmentation 
performance of GAN adapted to U-Net and identified the differences in the 
performance of prominent optimizers, as shown in Figure 1. 

  

Figure 1 Phase 1 workflow. 

U-Net is a fully convolutional network (FCN) specific for medical image 
segmentation by predicting classes of pixels [1]. The original U-Net model has 
convolutional layers combined with Max Pooling, ReLu activation functions 
and SGD optimizer [23]. We adjusted this U-Net model architecture, as shown 
in Figure 2, by convolution with 2x2 strides adapted from the GAN structure to 
download, instead of the originally specified Max Pooling. Further, we replaced 
the dense layers by 1x1 convolutional layers. The Keras neural network API in 
Python with TensorFlow as the backend was used for the implementation of the 
modified U-Net model [25]. Algorithm 1 summarizes the overall process. 

First, the ultrasound images were pre-processed, resized to 96x96 and saved in 
NumPy binary file (.npy) format using NumPy Python library. Then, the dataset 
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was trained and validated for distinct optimizers, i.e. Adam, RMSProp, Nadam, 
Adadelta and Adagrad in addition to U-Net’s initial SGD optimizer. Further, 
TensorBoard graph visualization was integrated to monitor the training results. 

 

Figure 2 Modified U-Net model. 

  
Algorithm: Phase 1 
Pre-process (images) 
Save in NumPy 
Split dataset (images) 
Training set = (0.8)*images 
Validation set = (0.2)*images 
TensorBoard log () 
Optimizers = [Adam, SGD, RMSProp, Nadam, Adadelta, Adagrad] 
For optimizer in Optimizers: 

Training (Training set, optimizer) 
Validation (Validation set, optimizer) 

 Save images 

3.2 Phase 2: GAN model in DPPL 
In the second phase, we implemented a GAN model in one of the leading 
DPPLs, Edward, on the same dataset with the ideal optimizer results obtained 
from phase 1 [5]. GAN has a generator that creates noise data and a 
discriminator that determines the real data. Thus, both the model and the loss 
functions are trained in a GAN, where the generator and discriminator sub-
networks compete. On the other hand, DPPL Edward is powered with support 
for GAN using only a nominal amount of code as the GAN model structure is 
highly applicable for probabilistic modeling [5]. Figure 3 illustrates the abstract 
design combining GAN with inferencing capabilities in Edward. 
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Figure 3 GAN model with DPPL. 

Our goal in this phase was to infer a model that transforms ultrasound images 
for successful segmentation to mitigate performance and quality preservation 
issues in individual DL models and to increase the accuracy with probabilistic 
uncertainty handling. The same pre-processed dataset in NumPy file format in 
Phase 1 was used in Phase 2 to maintain the uniformity between both phases for 
comparison. As shown in Figure 3, we first implemented a generator 
subnetwork that feeds data in batches of size 128 into GAN.  

The generative process can be formally specified as in Eq. (1), where G (.; θ) 
denotes a generator subnetwork that takes in ε samples and p(ε) represents 
injected random noisy data. Accordingly, we performed parameter estimation 
from the generative sub-network by adapting likelihood-free algorithms that 
encourage samples only from the model to learn by comparison [26]. 

 ε ~ p(ε),  x = G(ε; θ) ;  (1) 

Secondly, we implemented the discriminator sub-network D (.; θ) using 
TensorFlow layers with ReLu activation function to compute the probability 
that a given data (x) obtained by the discriminator is from the real data. 
Consequently, the optimization problem we used in GAN is as shown in Eq. 
(2), where p*(x) denotes the real data distribution.  

In the DPPL Edward, we implemented this using the existing function 
GANInference, which takes in a density model of the input data with a 
parameterized method called discriminator. We applied optimizers to the 
generator and the discriminator sub-networks by considering the different 
optimizer results gained from Phase 1. 

 (2) 

Thirdly, GAN training was conducted with parameter learning. However, the 
criticism capabilities of the model for evaluation, which is a major portion of 
Edward, is currently an open challenge for GAN. Thus, the results were 
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analyzed using TensorBoard graph visualizations and produced sample 
outcomes of ultrasound images. Algorithm 2 summarizes the process. 

Algorithm: Phase 2 
Batch = Generator (batch size) 
Inference = Edward GANInference (data, Discriminative network ()) 
Initialize inference (Generative network Optimizer, Discriminative network Optimizer, 
Iterations) 
For iteration in Iterations: 

Update inference (Batch) 
Save images 

4 Evaluation of the Results 
The GAN embedded U-Net network considered in Phase 1 consisted of a total 
of 7,759,521 parameters and was trained for 20 epochs under each optimizer 
based on the computational capabilities of the used hardware. A constant 
learning rate of 1.0 x 10-5, batch size of 32, the Dice-coefficient, which is a 
popular loss function in image segmentation, training and testing metrics for 
measuring accuracy were configured. The dataset was split so that 20% was 
used for validation of the trained model following the characteristics in related 
works [19,22].  

Table 3 presents the training and validation summary of our GAN embedded U-
Net model, including Dice loss, accuracy and time taken for the leading 
optimizers. The results show that Adam exceeded both the accuracy and the 
performance of the other optimizers, including U-Net’s originally specified 
optimizer, SGD. The lowest accuracy was obtained by the SGD and Adagrad 
optimizers. Figure 4 shows an instance of nerve segmented image outcomes for 
the Adam optimizer applied in the training and testing session. 

Table 3 Summary of GAN embedded U-Net model results. 

Next, the GAN model implemented in DPPL Edward was applied to the same 
dataset with a batch size of 128 and 1.0 x 104 epochs since it requires a large set 

Optimizer Training  
Dice loss 

Validation  
Dice loss 

Training  
accuracy 

Validation  
accuracy 

Time  
hr: min 

Adam -0.54 -0.30 0.99 0.99 4:58 
SGD -0.02 -0.02 0.72 0.76 5:07 

RMSProp -0.29 -0.04 0.98 0.99 5:18 
Nadam -0.38 -0.18 0.98 0.98 4:58 

Adadelta -0.02 -0.02 0.86 0.86 5:10 
Adagrad -0.03 -0.03 0.19 0.24 5:12 
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of training data to learn parameter estimation. It performed better compared to 
the GAN embedded U-Net model training where the epoch count was 20. We 
performed training for the same set of optimizers to see whether the ideal 
optimizer in Phase 1 was the same in Phase 2.  

In this complete GAN model in Edward, two optimizers were required, one for 
the generator sub-network and one for the discriminator sub-network. The 
TensorBoard-monitored scalar loss graphs thus obtained for all the optimizers 
in the generator and the discriminator subnetwork are shown in Figures 5 and 6, 
respectively.  

 

Figure 4 Nerve segmentation using GAN, U-Net and Adam. 

 

Figure 5 The generative loss in the DPPL-based GAN model. 
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Figure 6 The discriminative loss for the DPPL-based GAN model. 

The competitive behavior between the generator and the discriminator sub-
networks in GAN can be clearly observed in the generative loss and the 
discriminative loss graphs. Hence, if the generative loss of an optimizer is low, 
it eventually means a higher discriminative loss. For instance, the ideal 
discriminative performance was shown by the Adam optimizer, which 
performed the best with Phase 1 U-Net too. However, Adam performed the 
worst in terms of generative loss. These results highlight the impact of the 
selected optimizer both in the DL model and the DPPL probabilistic model and 
suggest that the Adam optimizer is superior with or without DPPL. Table 4 
summarizes the results. As shown in Figure 7, the GAN model with DPPL 
performed well towards nerve segmentation, with less computational cost and 
comparatively better performance compared to the non-DPPL U-Net model.  

Table 4 Summary of GAN model results. 

Optimizer Generative network 
loss 

Discriminative network 
loss Time min:sec 

Adam 0.693 1.386 25:25 
SGD 2.142 0.359 25:17 

RMSProp 2.110 0.281 28:13 
Nadam 1.608 0.560 23:51 

Adadelta 1.243 0.971 26:31 
Adagrad 2.452 0.261 26:38 

Thus, it is possible to improve the DL model with DPPL inferencing, criticism 
capabilities to handle uncertainty with the use of language expressiveness, 
scalability and speed in DPPLs. Adapting GAN with DPPL as a pre-
segmentation task is one possibility, so that the segmentation can be performed 
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on more noise-removed quality images. Also, adapting it as a post-segmentation 
task is advantageous for the preparation of quality-segmented images. The 
Adam optimizer can be incorporated into either case as it showed comparatively 
the best results in both Phases 1 and 2. 

 
Figure 7 The output of the GAN probabilistic model for Adam. 

5 Discussion and Future Work 
DPPL benefits from its underlying DL framework, such as Edward from 
TensorFlow and Pyro from PyTorch [5,6]. DPPL is a challenging and novel 
research field due to the existing trade-offs between their characteristics. For 
instance, Edward lacks the ability to provide complex control flows with 
flexible inference, which is still an open challenge. Pyro has maintained a 
balance between these design aspects with higher language expressiveness than 
Edward. Table 5 gives a comparison with existing studies. Compared to the 
discussed related works [4,19], who also applied the Adam optimizer and 
achieved a dice coefficient of 85+% and 80+% accuracy respectively. 
According to the table all these related works obtained 80+% for the Dice score 
and accuracy without experimenting with DPPL aspects [4,18-22]. 

The DPPL-based approach presented in this study can be extended to other 
domains as well. For instance, DPPL can be used in the diagnosis of 
psychophysiological disorders using neuroimaging data [27,28]. Figure 8 
illustrates a possible abstract design of such a generalized neuroscience decision 
support system model that can identify different diseases and disorders using 
neuroimaging data. The DPPL- and GAN-based approach together with the 
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Adam optimizer addressed in this work can be used to increase the performance 
of the segmentation process, as indicated by the highlighted area in Figure 8.  

Generally, neuroimaging processing has a high computational cost. A deep 
probabilistic approach can be used to minimize this associated cost and increase 
the performance. Accordingly, the combination of deep learning and 
probabilistic programming is a research field with strong potential, encouraging 
future contributions to achieve advances in DL outcomes. 

Table 5 Comparison with related works. 
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A variational Bayes 
method for MRI image 

segmentation [18]. 
√        Dice 

90+% 

Uncertainty handling 
in CNN-based MRI 
segmentation [4]. 

 √       Dice 
85+% 

Visualizing thoughts 
from brain EEG 

(ThoughtViz) [19]. 
  √    √  Accurac

y 80+% 

Synthesizing medical 
images from a source 

image to a target 
without a practical 

scan [22]. 

  √ √     Dice 
80+% 

Pelvic organs 
segmentation from 

MRI (STRAINet) [20]. 
  √ √ √    Dice 

86+% 

Decode neuroimaging 
data in EEG 

(Brain2Image) [21]. 
     √ √  Accurac

y 80+% 

Presented in this study. √      √ √ Accurac
y 99% 
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Figure 8 Proposed neuroscience decision support system. 

6 Conclusion 
The requirement of powerful Deep Probabilistic Programming Languages 
(DPPL) to cope with deep learning (DL) models has arisen due to the associated 
model uncertainties and excessive computational costs. This paper addressed 
the possibility of the adaptation of GAN using DPPL and the Adam optimizer to 
improve the image quality during the segmentation process. This approach was 
applied in the domain of biomedical images to segment ultrasound images of 
nerves. The obtained noise-removed quality images can be passed on to the 
learning model. Hence, they support classification accuracy. As a novel 
contribution, we used an application of Edward, which is a DPPL adapted to a 
GAN DL model in the context of neuroimaging, by showing positive results and 
research directions. For instance, U-Net model-based segmentation with the 
Adam optimizer showed the lowest Dice loss (-0.54) and the highest accuracy 
(0.99). With the GAN model, the Adam optimizer showed the lowest network 
loss (0.69). Thus, DPP used to generate quality segmentation with least dice 
loss, high accuracy and less time consumption. 
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