

J. ICT Res. Appl., Vol. 13, No. 3, 2019, 241-256 241

Received July 4th, 2019, Revised December 31st, 2019, Accepted for publication December 31st, 2019.
Copyright © 2019 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/ itbj.ict.res.appl.2019.13.3.5

Ultrasound Nerve Segmentation Using Deep Probabilistic
Programming

Iresha Rubasinghe & Dulani Meedeniya*

Department of Computer Science and Engineering, Faculty of Engineering, University
of Moratuwa, Moratuwa 10400, Sri Lanka

*E-mail: dulanim@cse.mrt.ac.lk

Abstract. Deep probabilistic programming concatenates the strengths of deep
learning to the context of probabilistic modeling for efficient and flexible
computation in practice. Being an evolving field, there exist only a few
expressive programming languages for uncertainty management. This paper
discusses an application for analysis of ultrasound nerve segmentation-based
biomedical images. Our method uses the probabilistic programming language
Edward with the U-Net model and generative adversarial networks under
different optimizers. The segmentation process showed the least Dice loss
(-0.54) and the highest accuracy (0.99) with the Adam optimizer in the U-Net
model with the least time consumption compared to other optimizers. The
smallest amount of generative network loss in the generative adversarial network
model gained was 0.69 for the Adam optimizer. The Dice loss, accuracy, time
consumption and output image quality in the results show the applicability of
deep probabilistic programming in the long run. Thus, we further propose a
neuroscience decision support system based on the proposed approach.

Keywords: deep learning; deep probabilistic programming; generative adversarial
network; nerve segmentation; neuroscience decision support.

1 Introduction
Deep learning (DL) has become a leading technique in data science research
with its rapid algorithmic improvements, advances in hardware technology and
support for exponentially growing data. DL is advantageous over traditional
machine learning (ML) mainly due to the automatic feature learning capability
on larger datasets, higher accuracy and faster inference [1,2]. The basis of DL
architectures is similar to that of the human nervous system, where large sets of
neurons are linked and pass data [3].

Deep probabilistic programming (DPP) is a DL technique that is a blend of a
deep neural network and a probabilistic model that is able to perform
computations efficiently and flexibly. A deep neural network (DNN) is an
automatic hierarchical representation of a learning model that consists of several
layers between the input and the output layer. DNN uses mathematical concepts

242 Iresha Rubasinghe & Dulani Meedeniya

and languages for complex data processing. Probabilistic programming
describes probabilistic models, performs inferencing and supports decision
making under uncertainty. DNN exemplifies the models in deep learning using
its feed-forward neural networks with hidden layers. A generative adversarial
network (GAN) is a type of DNN that trains two models in parallel [1]. The
convolutional neural network (CNN) is a DNN architecture for spatial data that
is widely used, for example in image classification with minimal pre-
processing, and is inspired by the human visual system [1,4]. The need for
probabilistic programming for DL models has eventually led to the growth of
deep probabilistic programming languages (DPPL) [5,6]. The expressiveness
and powerful inferencing capabilities of DPPLs facilitate the uncertainty
management of DL models. However, the use of DPPLs in DL model solutions
has not been evaluated well due to the novelty of the leading DPPLs.

The contribution of this study is to propose an application of a DL GAN
architecture with probabilistic modeling using the novel DPPL Edward, which
addresses the software engineering perspective of DL and DPPL [5]. Nerve
segmentation on ultrasound image data was used in an experiment to test the
proposed methodology [7]. The accurate identification of nerve structures is
important during surgery when catheters are inserted to reduce pain. Manually
differentiating nerves in an ultrasound scan is a complex process, which
motivated the authors to research ultrasound nerve image segmentation.

The main aim was to see the possibility of applying both DL and DPPL to
decide nerve points in support of surgical catheter insertion. First, the principles
of GAN were embedded into the popular biomedical image segmentation model
U-Net. The performance was analyzed using a set of ultrasound images with
prominent optimizers [3]. Then, GAN with inferencing capabilities was applied
in DPPL Edward on the same dataset. The performance was analyzed using the
same set of optimizers [5]. The novelty of this study is the exploration of the
applicability of DPPL for medical image segmentation. Furthermore, we also
propose a generic model for a decision support system based on healthcare data.

2 Background

2.1 Overview of DPPLs
Probabilistic programming provides an abstract way to specify probabilistic
models as programs and compile them into inference procedures without
exposing the underlying complex inference algorithms. Thus, probabilistic
programming languages (PPLs) eliminate the representational gap between
general purpose programming and probabilistic modeling [5]. There exist PPLs
that extend general languages. For example, Dimple extends Java, PRISM

 GAN with DPP for Ultrasound Nerve Segmentation 243

extends Prolog, Infer.NET extends the .NET framework, and Anglican extends
Clojure, while Stan is an example of a self-contained state-of-the-art PPL
written in C++ [5,8]. Stan is a mature, expressive and imperative PPL that
supports conditional statements and variable declarations, where all expressions
are statically typed, including variables. It is based on Hamiltonian Monte Carlo
(HMC) with built-in inference engines, including Markov Chain Monte Carlo
(MCMC) samplers and optimizers, which perform Bayesian inference [8].

According to related studies on PPLs, Birch is an imperative, Turing complete,
universal PPL [9]. A unique option in Birch is delayed sampling, which delays
the execution of a reached checkpoint to provide optimization for inference
problems using partial analytical solutions. The work in [10] extended the
delayed sampling concept by focusing on Sequential Monte Carlo to reduce the
variance in estimations. Although it has a better user experience for PPLs, it has
an additional computational cost. Another domain-specific PPL is TerpreT [11],
which is based on gradient descent and linear program relaxation on graphical
models. TerpreT compiles different inference algorithms by separating the
model specification from the inference algorithm. Thus, hierarchical modeling
becomes a powerful method for probabilistic programming. Most of the PPLs
adhere to general MCMC methods for inference is because of the inability to
specialize the inference techniques over language expressiveness. Thus, PPLs
trade off the expressiveness of the language against the computational
efficiency of the inference [5,8].

DPPLs have started to evolve into a combination of DL and PPL with the
introduction of variational inference (VI), which converts an inference problem
to an optimization problem and outperforms the sampling-based Monte Carlo
methods in Bayesian on larger datasets [5,6,12]. Edward and Pyro are two of the
leading state-of-the-art, Turing complete DPPLs that are actively used in current
research. Edward [5] is based on TensorFlow [13] and defines two
compositional representations as random variables and inference. It is capable
of a variety of inference methods, from point estimation to VI, to MCMC,
which makes it a deep PPL. Edward shows that reusing the modeling
representation within inference can improve variational models and GANs and
is more than 35 times faster than Stan, not having any runtime overhead. Pyro
[6] released by Uber AI Labs after Edward, is based on the PyTorch framework
[14]. Pyro scales to larger datasets by adapting a gradient-based stochastic VI
algorithm that uses SGD along with other probabilistic inference algorithms.
Further, Pyro has better language expressiveness in terms of dynamic control in
comparison to both Stan PPL and Edward, which have static control flow. In
contrast, Edward is more concise than Pyro. Otherwise, Edward and Pyro have
similar scalability and flexibility characteristics. Due to DPPLs’ success, Stan
has also been extending towards DeepStan using VI on PyTorch like Pyro [12].

244 Iresha Rubasinghe & Dulani Meedeniya

In this approach, the Stan programs were primarily translated into Pyro.
Another novelty was added to the DPPL context in related work [15], which
presented a modular DPPL library called MXFusion. It introduced reusable
building blocks, called probabilistic modules, consisting of random variables
with probabilistic distribution and inference methods to reduce the performance
gap. Hence, DPPL has significant promise as a new active research field.

2.2 Machine-Learning Frameworks
Several machine-learning frameworks that provide built-in functions for pre-
processing are available, such as TensorFlow [13], PyTorch [14], Microsoft
Cognitive Toolkit (CNTK) [16], Apache MXNet [17], etc. Table 1 summarizes
the applicability and limitations of these machine-learning frameworks.

Table 1 Comparison of DL frameworks.

Features TensorFlow PyTorch CNTK Apache MXNet
ML/ DL

Applicability High High High High

Scalability High Low High High
In-built

visualization TensorBoard Low Low Low

Programming
language
support

Python Python
Python,
C++, C#
and Java

Python, JavaScript, Julia,
C++, Matlab, Scala, R,
Perl, Go and Wolfram

API support High Low High High
Debugging Low High High High

TensorFlow [13] is an open-source machine-learning framework, comprising a
set of ML and DL algorithms that provides functions to obtain data, train the
model, predict and refine the results on a large scale. The front-end application
is based on Python and the backend execution is based on C++. TensorFlow is
platform-independent and several studies have used it for image classification.
The developer can describe the abstract structure of the data flow using a set of
nodes, where each node consists of a computation. Each link among the nodes
is a tensor or a data array. Thus, the user can get an overall view of the
application without knowledge of the internal functional handling.

Similarly, PyTorch [14] is a high-performance and interactive development
model. This enables efficient development, but it may have scalability issues
and limitations in complex workflows compared to TensorFlow. CNTK is also
an open-source framework, which mainly considers the efficient creation of DL
neural networks. It uses a node-link structure with a set of computations to
represent the dataflow. This can be included as a library in Python, Java, C++

 GAN with DPP for Ultrasound Nerve Segmentation 245

and C# or as a standalone tool using its model description language. Apache
MXNet [17] is another leading DL framework, with a scalability feature among
many GPUs and machines. It supports a range of programming languages such
as Python, JavaScript, Julia, C++, Matlab, Scala, R, Perl, Go and Wolfram.

2.3 Related Studies
Various imaging modalities are used in practice for advanced diagnosis
purposes, such as MRI, fMRI, EEG and CT scans [4,18,19]. Manual analysis of
biomedical imaging data is challenging due to its complexity. Thus,
computational models for diagnosis of biomedical imaging data using deep
learning are actively investigated [20,21]. Table 1 summarizes related work that
has incorporated DL and the use of DPPLs related to probabilistic aspects, such
as VI, VAE and GAN for neuroimaging.

Table 2 Related work on medical imaging analysis using learning models.

Related work Dataset Advantages Limitations

A variational Bayes
method for MRI image

segmentation [18].

Synthetic data
from Brainweb
and real MRIs

from OASIS, IXI.

Increases computational
stability and robustness.

Low accuracy in
real data due to the
complexity in MRI.
DPPL not included.

Handling uncertainties
in CNN-based MRI

image segmentation [4].

T2-weighted
MRIs of 60

fetuses.

Better uncertainty
estimation and

minimization of
incorrect predictions.

Support small
training dataset due

to performance
issues. DPPL not

incorporated.
Visualizing thoughts

from brain EEGs
(ThoughtViz) [19].

EEG data from 3
public datasets.

Suitability for the
domain- and scale-

independent datasets.

Suited for small
datasets. DPPL not

incorporated.
Synthesizing medical
images from a source

image to a target
without a scan [22].

MRIs and CT scan
from 3 real

datasets including
ADNI database.

Reduce medical imaging
costs for patients.

Removes the blurry
effect in the output.

DPPL not
incorporated.

Pelvic organ
segmentation from MRI

(STRAINet) [20].

MRIs of 50
prostate cancer

patients.

Resolves limitations in
normal FCNs. Robust
and high performance.

DPPL not
incorporated.

Decode neuroimaging
data in EEG

(Brain2Image) [21].

EEG signal
dataset with 2000

images.

Higher performance and
shows that GAN is

ahead of VAE.

Noise removal needs
to be improved.

DPPL not
incorporated.

3 Design and Implementation
The methodology consisted of two phases. In Phase 1, nerve segmentation was
performed using the U-Net DL model by embedding GAN features to identify
the use of GAN and an ideal optimizer for U-Net model other than its originally
specified SGD optimizer [23]. In Phase 2, a GAN model was implemented in

246 Iresha Rubasinghe & Dulani Meedeniya

DPPL Edward and applied to the same dataset to determine the usefulness of an
individual GAN model together with DPPL towards segmentation by improving
image quality. The variations of applying different optimizers on a single GAN
model were also analyzed in Phase 2. A publicly available dataset of ultrasound
images published for a nerve segmentation competition held by Kaggle was
selected for the application proposed in this work. It consists of 5635 ultrasound
images of the neck in Tagged Image File Format (TIFF), each with dimensions
of 580 x 420 [7]. Implementation was carried out in an environment consisting
of Intel® Core (TM) i7-4790 CPU @ 3.600GHz and 8GB RAM.

3.1 Phase 1: Nerve Segmentation by U-Net CNN
Generally, segmentation groups similar pixels in an unsupervised learning
approach, where parameter estimation is essential. Nerve segmentation
determines the nerves in an ultrasound image [24]. Manually, it is challenging
to differentiate the nerve structures accurately, which is crucial during surgical
activities. Phase 1 of our methodology determined the segmentation
performance of GAN adapted to U-Net and identified the differences in the
performance of prominent optimizers, as shown in Figure 1.

Figure 1 Phase 1 workflow.

U-Net is a fully convolutional network (FCN) specific for medical image
segmentation by predicting classes of pixels [1]. The original U-Net model has
convolutional layers combined with Max Pooling, ReLu activation functions
and SGD optimizer [23]. We adjusted this U-Net model architecture, as shown
in Figure 2, by convolution with 2x2 strides adapted from the GAN structure to
download, instead of the originally specified Max Pooling. Further, we replaced
the dense layers by 1x1 convolutional layers. The Keras neural network API in
Python with TensorFlow as the backend was used for the implementation of the
modified U-Net model [25]. Algorithm 1 summarizes the overall process.

First, the ultrasound images were pre-processed, resized to 96x96 and saved in
NumPy binary file (.npy) format using NumPy Python library. Then, the dataset

 GAN with DPP for Ultrasound Nerve Segmentation 247

was trained and validated for distinct optimizers, i.e. Adam, RMSProp, Nadam,
Adadelta and Adagrad in addition to U-Net’s initial SGD optimizer. Further,
TensorBoard graph visualization was integrated to monitor the training results.

Figure 2 Modified U-Net model.

Algorithm: Phase 1
Pre-process (images)
Save in NumPy
Split dataset (images)
Training set = (0.8)*images
Validation set = (0.2)*images
TensorBoard log ()
Optimizers = [Adam, SGD, RMSProp, Nadam, Adadelta, Adagrad]
For optimizer in Optimizers:

Training (Training set, optimizer)
Validation (Validation set, optimizer)

 Save images

3.2 Phase 2: GAN model in DPPL
In the second phase, we implemented a GAN model in one of the leading
DPPLs, Edward, on the same dataset with the ideal optimizer results obtained
from phase 1 [5]. GAN has a generator that creates noise data and a
discriminator that determines the real data. Thus, both the model and the loss
functions are trained in a GAN, where the generator and discriminator sub-
networks compete. On the other hand, DPPL Edward is powered with support
for GAN using only a nominal amount of code as the GAN model structure is
highly applicable for probabilistic modeling [5]. Figure 3 illustrates the abstract
design combining GAN with inferencing capabilities in Edward.

248 Iresha Rubasinghe & Dulani Meedeniya

Figure 3 GAN model with DPPL.

Our goal in this phase was to infer a model that transforms ultrasound images
for successful segmentation to mitigate performance and quality preservation
issues in individual DL models and to increase the accuracy with probabilistic
uncertainty handling. The same pre-processed dataset in NumPy file format in
Phase 1 was used in Phase 2 to maintain the uniformity between both phases for
comparison. As shown in Figure 3, we first implemented a generator
subnetwork that feeds data in batches of size 128 into GAN.

The generative process can be formally specified as in Eq. (1), where G (.; θ)
denotes a generator subnetwork that takes in ε samples and p(ε) represents
injected random noisy data. Accordingly, we performed parameter estimation
from the generative sub-network by adapting likelihood-free algorithms that
encourage samples only from the model to learn by comparison [26].

 ε ~ p(ε), x = G(ε; θ) ; (1)

Secondly, we implemented the discriminator sub-network D (.; θ) using
TensorFlow layers with ReLu activation function to compute the probability
that a given data (x) obtained by the discriminator is from the real data.
Consequently, the optimization problem we used in GAN is as shown in Eq.
(2), where p*(x) denotes the real data distribution.

In the DPPL Edward, we implemented this using the existing function
GANInference, which takes in a density model of the input data with a
parameterized method called discriminator. We applied optimizers to the
generator and the discriminator sub-networks by considering the different
optimizer results gained from Phase 1.

 (2)

Thirdly, GAN training was conducted with parameter learning. However, the
criticism capabilities of the model for evaluation, which is a major portion of
Edward, is currently an open challenge for GAN. Thus, the results were

 GAN with DPP for Ultrasound Nerve Segmentation 249

analyzed using TensorBoard graph visualizations and produced sample
outcomes of ultrasound images. Algorithm 2 summarizes the process.

Algorithm: Phase 2
Batch = Generator (batch size)
Inference = Edward GANInference (data, Discriminative network ())
Initialize inference (Generative network Optimizer, Discriminative network Optimizer,
Iterations)
For iteration in Iterations:

Update inference (Batch)
Save images

4 Evaluation of the Results
The GAN embedded U-Net network considered in Phase 1 consisted of a total
of 7,759,521 parameters and was trained for 20 epochs under each optimizer
based on the computational capabilities of the used hardware. A constant
learning rate of 1.0 x 10-5, batch size of 32, the Dice-coefficient, which is a
popular loss function in image segmentation, training and testing metrics for
measuring accuracy were configured. The dataset was split so that 20% was
used for validation of the trained model following the characteristics in related
works [19,22].

Table 3 presents the training and validation summary of our GAN embedded U-
Net model, including Dice loss, accuracy and time taken for the leading
optimizers. The results show that Adam exceeded both the accuracy and the
performance of the other optimizers, including U-Net’s originally specified
optimizer, SGD. The lowest accuracy was obtained by the SGD and Adagrad
optimizers. Figure 4 shows an instance of nerve segmented image outcomes for
the Adam optimizer applied in the training and testing session.

Table 3 Summary of GAN embedded U-Net model results.

Next, the GAN model implemented in DPPL Edward was applied to the same
dataset with a batch size of 128 and 1.0 x 104 epochs since it requires a large set

Optimizer Training
Dice loss

Validation
Dice loss

Training
accuracy

Validation
accuracy

Time
hr: min

Adam -0.54 -0.30 0.99 0.99 4:58
SGD -0.02 -0.02 0.72 0.76 5:07

RMSProp -0.29 -0.04 0.98 0.99 5:18
Nadam -0.38 -0.18 0.98 0.98 4:58

Adadelta -0.02 -0.02 0.86 0.86 5:10
Adagrad -0.03 -0.03 0.19 0.24 5:12

250 Iresha Rubasinghe & Dulani Meedeniya

of training data to learn parameter estimation. It performed better compared to
the GAN embedded U-Net model training where the epoch count was 20. We
performed training for the same set of optimizers to see whether the ideal
optimizer in Phase 1 was the same in Phase 2.

In this complete GAN model in Edward, two optimizers were required, one for
the generator sub-network and one for the discriminator sub-network. The
TensorBoard-monitored scalar loss graphs thus obtained for all the optimizers
in the generator and the discriminator subnetwork are shown in Figures 5 and 6,
respectively.

Figure 4 Nerve segmentation using GAN, U-Net and Adam.

Figure 5 The generative loss in the DPPL-based GAN model.

 GAN with DPP for Ultrasound Nerve Segmentation 251

Figure 6 The discriminative loss for the DPPL-based GAN model.

The competitive behavior between the generator and the discriminator sub-
networks in GAN can be clearly observed in the generative loss and the
discriminative loss graphs. Hence, if the generative loss of an optimizer is low,
it eventually means a higher discriminative loss. For instance, the ideal
discriminative performance was shown by the Adam optimizer, which
performed the best with Phase 1 U-Net too. However, Adam performed the
worst in terms of generative loss. These results highlight the impact of the
selected optimizer both in the DL model and the DPPL probabilistic model and
suggest that the Adam optimizer is superior with or without DPPL. Table 4
summarizes the results. As shown in Figure 7, the GAN model with DPPL
performed well towards nerve segmentation, with less computational cost and
comparatively better performance compared to the non-DPPL U-Net model.

Table 4 Summary of GAN model results.

Optimizer Generative network
loss

Discriminative network
loss Time min:sec

Adam 0.693 1.386 25:25
SGD 2.142 0.359 25:17

RMSProp 2.110 0.281 28:13
Nadam 1.608 0.560 23:51

Adadelta 1.243 0.971 26:31
Adagrad 2.452 0.261 26:38

Thus, it is possible to improve the DL model with DPPL inferencing, criticism
capabilities to handle uncertainty with the use of language expressiveness,
scalability and speed in DPPLs. Adapting GAN with DPPL as a pre-
segmentation task is one possibility, so that the segmentation can be performed

252 Iresha Rubasinghe & Dulani Meedeniya

on more noise-removed quality images. Also, adapting it as a post-segmentation
task is advantageous for the preparation of quality-segmented images. The
Adam optimizer can be incorporated into either case as it showed comparatively
the best results in both Phases 1 and 2.

Figure 7 The output of the GAN probabilistic model for Adam.

5 Discussion and Future Work
DPPL benefits from its underlying DL framework, such as Edward from
TensorFlow and Pyro from PyTorch [5,6]. DPPL is a challenging and novel
research field due to the existing trade-offs between their characteristics. For
instance, Edward lacks the ability to provide complex control flows with
flexible inference, which is still an open challenge. Pyro has maintained a
balance between these design aspects with higher language expressiveness than
Edward. Table 5 gives a comparison with existing studies. Compared to the
discussed related works [4,19], who also applied the Adam optimizer and
achieved a dice coefficient of 85+% and 80+% accuracy respectively.
According to the table all these related works obtained 80+% for the Dice score
and accuracy without experimenting with DPPL aspects [4,18-22].

The DPPL-based approach presented in this study can be extended to other
domains as well. For instance, DPPL can be used in the diagnosis of
psychophysiological disorders using neuroimaging data [27,28]. Figure 8
illustrates a possible abstract design of such a generalized neuroscience decision
support system model that can identify different diseases and disorders using
neuroimaging data. The DPPL- and GAN-based approach together with the

 GAN with DPP for Ultrasound Nerve Segmentation 253

Adam optimizer addressed in this work can be used to increase the performance
of the segmentation process, as indicated by the highlighted area in Figure 8.

Generally, neuroimaging processing has a high computational cost. A deep
probabilistic approach can be used to minimize this associated cost and increase
the performance. Accordingly, the combination of deep learning and
probabilistic programming is a research field with strong potential, encouraging
future contributions to achieve advances in DL outcomes.

Table 5 Comparison with related works.

Related work

V
ar

ia
tio

na
l

 i

nf
er

en
ce

 T
es

t-
tim

e

A
ug

m
en

ta
tio

n
A

dv
er

sa
ri

al
 le

ar
ni

ng

 i
nf

er
en

c e

 F
C

N

 R
es

id
ua

l l
ea

rn
in

g

 V
ar

ia
tio

na
l A

ut
oe

nc
od

er
s

 (V
A

E
)

 G
A

N

 D
PP

L

 R
es

ul
ts

A variational Bayes
method for MRI image

segmentation [18].
√ Dice

90+%

Uncertainty handling
in CNN-based MRI
segmentation [4].

 √ Dice
85+%

Visualizing thoughts
from brain EEG

(ThoughtViz) [19].
 √ √ Accurac

y 80+%

Synthesizing medical
images from a source

image to a target
without a practical

scan [22].

 √ √ Dice
80+%

Pelvic organs
segmentation from

MRI (STRAINet) [20].
 √ √ √ Dice

86+%

Decode neuroimaging
data in EEG

(Brain2Image) [21].
 √ √ Accurac

y 80+%

Presented in this study. √ √ √ Accurac
y 99%

254 Iresha Rubasinghe & Dulani Meedeniya

Figure 8 Proposed neuroscience decision support system.

6 Conclusion
The requirement of powerful Deep Probabilistic Programming Languages
(DPPL) to cope with deep learning (DL) models has arisen due to the associated
model uncertainties and excessive computational costs. This paper addressed
the possibility of the adaptation of GAN using DPPL and the Adam optimizer to
improve the image quality during the segmentation process. This approach was
applied in the domain of biomedical images to segment ultrasound images of
nerves. The obtained noise-removed quality images can be passed on to the
learning model. Hence, they support classification accuracy. As a novel
contribution, we used an application of Edward, which is a DPPL adapted to a
GAN DL model in the context of neuroimaging, by showing positive results and
research directions. For instance, U-Net model-based segmentation with the
Adam optimizer showed the lowest Dice loss (-0.54) and the highest accuracy
(0.99). With the GAN model, the Adam optimizer showed the lowest network
loss (0.69). Thus, DPP used to generate quality segmentation with least dice
loss, high accuracy and less time consumption.

Acknowledgement
The authors acknowledge the support received from the Conference &
Publishing grant, University of Moratuwa, Sri Lanka for publishing this paper.

References

[1] Deng, L. & Yu, D., Deep Learning: Methods and Applications, Found.
Trends® Signal Process., 7, pp. 197-387, 2014.

[2] Ghahramani, Z., Probabilistic Machine Learning and Artificial
Intelligence, Nature, 521, pp. 452-459, 2015.

[3] Bottou L., Large-Scale Machine Learning with Stochastic Gradient
Descent, in Proceedings of COMPSTAT, pp. 177-186, 2010.

 GAN with DPP for Ultrasound Nerve Segmentation 255

[4] Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S. & Vercauteren,
T., Aleatoric Uncertainty Estimation with Test-time Augmentation for
Medical Image Segmentation with Convolutional Neural Networks,
Neurocomputing, 338, pp. 34-45, 2019.

[5] Baudart, G., Hirzel, M. & Mandel, L., Deep Probabilistic Programming
Languages: A Qualitative Study, arXiv:1804.06458, 2018.

[6] Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N.,
Karaletsos, T., Singh, R., Szerlip, P., Horsfall, P. & Goodman, N.D.,
Pyro: Deep Universal Probabilistic Programming, Journal of Machine
Learning Research, 20, pp. 1-6, 2019.

[7] Kaggle Inc., Ultrasound Nerve Segmentation, 2019. Available:
https://www.kaggle.com/c/ultrasound-nerve-segmentation. (16-Jan-
2019).

[8] Carpenter B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P. & Riddell, A., Stan: A
Probabilistic Programming Language, J. Stat. Softw., 76, pp. 1-32, 2017.

[9] Murray, L.M. & Schön, T.B., Automated Learning with a Probabilistic
Programming Language: Birch, Annu. Rev. Control, 46, pp. 29-43,
2018.

[10] Murray, L.M., Lundén, D., Kudlicka, J., Broman, D. & Schön T.B.,
Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic
Programs, Proc. 21st Int. Conf. Artif. Intell. Stat., 2017.

[11] Gaunt, A.L., Brockschmidt, M., Singh, R., Kushman, N., Kohli, P.,
Taylor, J. & Tarlow, D., TerpreT: A Probabilistic Programming
Language for Program Induction, CoRR, arXiv:1608.04428, 2016.

[12] Burroni, J., Baudart, G., Mandel, L., Hirzel, M. & Shinnar, A., Extending
Stan for Deep Probabilistic Programming, CoRR, arXiv:1810.00873,
2018.

[13] Rampasek, L. & Goldenberg, A., TensorFlow: biology’s gateway to
deeplearning?, Cell Syst, 2, pp. 12–14, 2016.

[14] Ketkar, N., Introduction to PyTorch, Deep Learning with Python, Apress,
pp. 195-208, 2017.

[15] Dai, Z., Meissner, E., & Lawrence, N.D., MXFusion: A Modular Deep
Probabilistic Programming Library, NIPS Workshop MLOSS, 2018.

[16] Docs.microsoft.com, The Microsoft Cognitive Toolkit, available:
https://docs.microsoft.com/en-us/cognitive-toolkit/. (03-Jul-2019)

[17] Mxnet.apache.org, MXNet, available: https://mxnet.apache.org/. (03-Jul-
2019).

[18] Blaiotta, C., Cardoso, M.J. & Ashburner, J., Variational Inference for
Medical Image Segmentation, Comput. Vis. Image Underst., 151, pp. 14-
28, 2016.

256 Iresha Rubasinghe & Dulani Meedeniya

[19] Tirupattur, P., Rawat, Y.S., Spampinato, C., & Shah M., ThoughtViz:
Visualizing Human Thoughts Using Generative Adversarial Network, in
Multimedia Conference on Multimedia Conference, pp. 950–958, 2018.

[20] Nie, D., Wang, L., Gao, Y., Lian, J. & Shen, D., STRAINet: Spatially
Varying Stochastic Residual Adversarial Networks for MRI Pelvic Organ
Segmentation, IEEE Trans. Neural Networks Learn. Syst., pp. 1-13, 2018.

[21] Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D. & Shah, M.,
Brain2Image: Converting Brain Signals into Images, in Proceedings of
the 2017 ACM on Multimedia Conference, pp. 1809-1817, 2017.

[22] Nie, D., Trullo, R., Lian, J., Wang, L., Petitjean, C., Ruan, S., Wang, Q.
& Shen, D., Medical Image Synthesis with Deep Convolutional
Adversarial Networks, IEEE Trans. Biomed. Eng., 65, pp. 2720-2730,
2018.

[23] Ronneberger, O., Fischer, P. & Brox, T., U-Net: Convolutional Networks
for Biomedical Image Segmentation, Springer, Cham, pp. 234-241, 2015.

[24] Klette, R., Concise Computer Vision, London: Springer London, 2014.
[25] Chollet, F., Keras, 2015. Available: https://keras.io/. (03-Jan-2019).
[26] Marin, J.M., Pudlo, P., Robert, C.P. & Ryder, R.J., Approximate

Bayesian Computational Methods, Stat. Comput., 22(6), pp. 1167-1180,
2012.

[27] De Silva, S., Dayarathna, S., Ariyarathne, G., Meedeniya, D., &
Jayarathna, S., A Survey of Attention Deficit Hyperactivity Disorder
Identification Using Psychophysiological Data, International Journal of
Online and Biomedical Engineering, 15(13), pp. 61-76, 2019.

[28] Brihadiswaran, G., Haputhanthri, D., Gunathilaka, S., Meedeniya, D., &
Jayarathna, S., EEG-based Processing and classification methodologies
for Autism Spectrum Disorder: A Review, Journal of Computer Science,
15(8), pp. 1161.1183, 2019.

	1 Introduction
	2 Background
	2.1 Overview of DPPLs
	2.2 Machine-Learning Frameworks
	2.3 Related Studies

	3 Design and Implementation
	3.1 Phase 1: Nerve Segmentation by U-Net CNN
	3.2 Phase 2: GAN model in DPPL

	4 Evaluation of the Results
	5 Discussion and Future Work
	6 Conclusion
	Acknowledgement

