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Abstract. Spectrum sensing for cognitive radio is a challenging task since it has 
to be able to detect the primary signal at a low signal to noise ratio (SNR). At a 
low SNR, the variance of noise fluctuates due to noise uncertainty. Detection of 
the primary signal will be difficult especially for blind spectrum sensing methods 
that rely on the variance of noise for their threshold setting, such as energy 
detection. Instead of using the energy difference, we propose a spectrum sensing 
method based on the distribution difference. When the channel is occupied, the 
distribution of the received signal, which propagates under a wireless fading 
channel, will have a non-Gaussian distribution. This will be different from the 
Gaussian noise when the channel is vacant. Kurtosis, a higher order statistic 
(HOS) of the 4th order, is used as normality test for the test statistic. We 
measured the detection rate of the proposed method by performing a simulation 
of the detection process. Our proposed method’s performance proved superior in 
detecting a real digital TV signal in noise uncertainty.  

Keywords: blind spectrum sensing; cognitive radio; HOS; kurtosis; noise uncertainty; 
normality test; spectrum sensing. 

1 0BIntroduction 
The main advantage of software defined radio (SDR) implementation is its 
support for reconfigurable communication systems. In SDR, the electronic 
circuit is replaced by software. Changing transmission parameters, such as 
modulation or transmission frequency, is easily solved by configuring the 
software; a new electronic circuit is not required. SDR is the enabler for shifting 
ordinary radio to cognitive radio. Cognitive radio is a radio that understands the 
context in which it finds itself and as a result it can tailor the communication 
process in line with that understanding [1]. Compared to ordinary radio, 
cognitive radio has cognitive capability and reconfigurability [2]. Cognitive 
capability refers to its ability to sense the environment (e.g. to find the unused 
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spectrum). Once it finds the opportunity to transmit in an unused frequency, the 
communication system can easily be reconfigured to switch to that frequency.  

Cognitive radio has several potential applications, for example incognitive radar 
[3]-[4], satellite communication [5], and wireless communication [6]. The most 
popular application of cognitive radio is for spectrum sharing in wireless 
communication. The recent radio access standard based on the cognitive radio 
concept follows the rule that allows transmission on a vacant channel (i.e. a 
channel that is not being used) [7]. This application comes from the fact that 
while the spectrum is fully allocated, its utilization can be low. It is expected 
that the use of the cognitive radio concept will increase spectrum utilization. In 
this paper, the term cognitive radio refers to spectrum-sharing cognitive radio.  

There are two co-existing users in cognitive radio, the primary user and the 
secondary user. Before transmitting, the secondary user has to find a spectrum 
hole. It must be ensured that when the secondary user occupies a spectrum hole, 
its transmission will not cause harmful interference to the primary user. 
Spectrum sensing has to accurately detect spectrum holes. If the occupied 
spectrum is detected as vacant, this will cause harmful interference, whereas if a 
vacant channel is detected as occupied, it will result in lower spectrum holes 
utilization.  

One of the most challenging tasks in spectrum sensing is the ability to detect a 
very weak signal while dealing with some constraints, such as wireless fading, 
noise fluctuation and limited knowledge of the signal’s parameters. As such, 
several proposed sensing methods provide various levels of performance and 
complexity. Performance is usually measured by probability of detection (Pd) 
and probability of false alarm (Pf). Spectrum sensing in the IEEE 802.22 
standard, for example, requires stringent sensing. For a maximum false-alarm 
probability of 10%, a sensing algorithm should achieve a detection probability 
of 90% for a signal as low as -20 dB SNR. Beside performance, the complexity 
is also important. The complexity can be measured based on computation and 
implementation complexity. 

A blind sensing algorithm that does not require primary signal parameters 
usually gives lower implementation complexity. Energy detection, covariance 
and correlation based algorithm are examples of blind spectrum sensing. Energy 
detection is easy to implement. Unfortunately, due to noise uncertainty, its 
performance is worse at low SNRs. In this paper, we propose a method based 
on higher order statistics (HOS) to enhance the energy detection method’s 
performance. Kurtosis of the received signal is used as test statistics. Their 
values are compared with a predefined threshold to distinguish between 
occupied spectrum and white space. Empirical estimation of the system’s noise 
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is used to find the threshold. Experimental validation showed that its 
performance is better than energy detection in noise of uncertain power. The 
rest of this paper is organized as follows: related previous work is presented in 
Section 2, a system model of the spectrum sensing problem in Section 3, an 
explanation of the proposed method in Section 4, the results of the performance 
evaluation in Section 5, and finally the conclusion in Section 6. 

2 Related Work 
Several sensing methods have been proposed, such as: matched filtering, feature 
detection and energy detection [8]-[9]. In the matched filtering method a 
matched filter is used to recognize the presence of the primary signal. Its 
detection accuracy is high at low SNRs. However, this method requires 
different filters for different primary signals and the filter design itself requires 
information such as the pilot and frame structure of the primary signal. 
Similarly, for the feature detection method that relies on cyclostationarity, 
sufficient signal information must be given as well. In practice, a cognitive 
radio should be able to perform spectrum sensing in case of limited knowledge 
of the primary signal’s structure and other related parameters. 

The energy detection approach differs from both other methods in that it works 
without knowledge of the primary signal’s parameters to be detected [9]. This 
method exploits the energy difference between the occupied and vacant channel 
condition. It compares the energy of the received signal with a pre-defined 
threshold. This method is simple to implement. The works reported in [10] and 
[11] are examples of ED implementation for spectrum sensing. Due to its low 
complexity, energy detection is the most preferable and popular method. 
However, its performance decreases at low SNRs due to noise uncertainty [12] 
and its performance is much lower than that of the matched filtering and feature 
detection method.  

Previous works have adapted a blind sensing method to improve the 
performance of energy detection by increasing the square factor of its statistic 
test [13]-[15]. Other methods exploit the distribution difference. These methods 
are based on the assumption that the distribution of mixed signals and noise is 
different from the sole distribution of noise [16]-[17]. A recent HOS based 
detection of DTV signals using 4th to 6th order cumulants has become the 
recommended sensing method in the IEEE 802.22 standard [7]. The latest 
refinement of this method, based on goodness of fit testing, uses the Jarqur-Bera 
statistic test [16]. Although the proposed methods have impressive performance 
results, they have a high complexity. 
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3 System Model 
There are numerous existing wireless systems and standards for 
communication, wireless sensor netwok, broadcasting, and radar. Each wireless 
system requires a dedicated frequency channel. The available frequency is fully 
allocated. This causes frequency scarcity for future new applications. While the 
available frequency is fully allocated, a paradox exists when some 
measurements show that the frequency utilization by the license holder is quite 
low, only to up 30%. The cognitive radio concept is a solution to increase the 
efficiency of spectrum usage.  

Figure 1 depicts two coexisting systems in spectrum sharing cognitive radio, i.e. 
a primary user network and a cognitive radio network. As a license holder, the 
primary user has the right to transmit on the frequency band at any time. 
Secondary users are allowed to transmit only when the channel is vacant or 
when the channel is not being used by primary users. A secondary user has to 
cease transmission on the vacant channel when a primary user returns to use the 
band. If the secondary user fails to stop transmission, this will cause harmful 
interference to the primary user.  

 
Figure 1 Secondary user uses the vacant channel. 

The primary task of cognitive radio is to perform spectrum sensing. The aim of 
spectrum sensing is to find the unused frequency spectrum by a continuous 
sensing of the primary user’s transmission activity on a certain band. If the 
channel is being used, the spectrum-sensing module will receive the primary 
user’s signal. The received signal may fluctuate due to several factors, such as 
the distance from the primary user, multipath fading and shadowing. This 
fluctuation may make the received signal level fall below the receiver’s thermal 
noise. As such, it is difficult to detect the presence of the signal.  

Suppose r is the received signal. When transmission of a primary signal exists, 
this will comprise the primary user’s signal s and thermal noise w. Hence, we 
have: 

 𝑟(𝑛) = 𝑠(𝑛) +  𝑤(𝑛) (1)   
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S(n) is the primary signal, which is received by spectrum sensing. Wireless 
channel fading effects are already contained in it. S(n) = 0 if there is no 
transmission from the primary signal. W(n) is the receiver noise, which is 
mostly modeled as additive white Gaussian noise (AWGN). 

Spectrum sensing decides which condition of the received signal is the true 
condition. There are two possible conditions at each detection time instance. 
The first condition is H0, when the signal is absent. The second condition is H1, 
when the signal is present. Suppose N samples are used for detection. The 
problem can be modeled as an equation for hypothesis testing [18]:  

 𝐻0: 𝑟(𝑛) = 𝑤(𝑛)𝑛 = 0, 1, … ,𝑁 − 1 (2) 

 𝐻1: 𝑟(𝑛) = 𝑠(𝑛) +  𝑤(𝑛)𝑛 = 0, 1, … ,𝑁 − 1 (3)      

Based on N samples, spectrum sensing has to make the decision: H1 or H0. 

Hypothesis testing in spectrum sensing produces two possible detection results: 
true detection or false detection. The spectrum sensing will give true detection if 
condition H1 is detected by the spectrum sensing as H1. True detection should 
be high because it is important to ensure that active transmission from the 
primary user is detected, even when the received signal is very low. If primary 
user transmission is incorrectly detected as vacant, a secondary user can start to 
transmit a signal. This will cause harmful interference to the primary user. 
Conversely, if a vacant channel (H0) is detected as occupied (H1), the secondary 
user will miss the opportunity to transmit. 

The detection algorithm aims to maximize the true decision, which is measured 
by the probability of detection (Pd). This is the conditional probability of 
𝑃𝑑 = 𝑃�(𝐻1)�(𝐻1)�. Spectrum sensing also has to minimize false decisions 
(probability of false alarm). Probability of false alarm is the probability of 
making a false H1 decision. This is the conditional probability of 𝑃𝑓 =
𝑃�(𝐻1)�(𝐻0)�. Due to the limited knowledge of the probability distribution of 
each condition in cognitive radio, the spectrum-sensing algorithm is a class of 
detector which works based on the Neyman-Pearson theorem [18]. Pd, 
maximized in the condition of Pf, is set to a certain fixed value. For example, 
the IEEE 802.22 standard requires a maximum Pf of 10% [6],[7]. As a 
performance metric, Pd should achieve 90% for the proposed sensing method. 

4 Proposed Method 
The spectrum sensing unit comprises of RF, IF and detection sections. The 
secondary user can perform spectrum sensing in the time domain or frequency 
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domain. The more efficient alternative is spectrum sensing in the frequency 
domain using digital implementation of FFT [19], as described in Figure 2. 

 

Figure 2 Spectrum sensing system block diagram. 

Detection is done by comparing received signal 𝑟 with a certain threshold λ. 
This threshold is generated from the probability of false alarm. The probability 
of false alarm can be defined as: 

 𝑃𝑓 = ∫ 𝑝(𝒓|𝐻0)𝑑𝑟𝒓:𝐿(𝑟)>𝜆  (4) 

We have to adjust the threshold (λ) so that 𝑃𝑓 will be bounded to a certain 
maximum predefined value, for instance 10%.  

After we get λ, we can define a maximum likelihood ratio test (LRT) equation 
as follows: 

 𝐿(𝑟) = 𝑝(𝒓|𝐻1)
𝑝(𝒓|𝐻0) > 𝜆 (5) 

Likelihood ratio 𝐿(𝑟) in Eq. (5) expresses the likelihood of the received samples 
tending to the condition of 𝐻1 or 𝐻0. 

It is assumed that 𝒔 is a vector of WSS Gaussian random variables with 
variance 𝜎𝑠2. And 𝑤 is AWGN with the variance 𝜎2. Then likelihood ratio 𝐿(𝑟) 
in Eq. (5) is: 

 𝐿(𝑟) =

1

�2𝜋�𝜎𝑠2+𝜎2��
𝑁
2
exp�− 1

2�𝜎𝑠2+𝜎2�
∑ 𝑟2(𝑛)𝑁−1
𝑛=0 �

1

�2𝜋𝜎2�
𝑁
2
exp�− 1

2𝜎2
∑ 𝑟2(𝑛)𝑁−1
𝑛=0 �

 (6) 

If we take the logarithmic differentiation for both sides of Eq. (6), we will get 
the log-likelihood ratio: 

 𝑙(𝑟) = 𝑁
2

ln � 𝜎2

𝜎𝑠2+𝜎2
�+ 1

2
𝜎𝑠2

𝜎2�𝜎𝑠2+𝜎2�
∑ 𝑟2(𝑛)𝑁−1
𝑛=0  (7)   

Based on Eq. (7), the detector will decide H1 if ∑ 𝑟2(𝑛)𝑁−1
𝑛=0 > 𝜆.  
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Energy detection is a straightforward and less complex spectrum sensing 
method based on Eq. (7). The power of the received signal is compared with a 
predefined threshold (𝜆). The energy detection algorithm computes the test 
statistic:  

 𝑇(𝒓) = ‖𝒓‖2 = 1
𝑁
∑ 𝑟2(𝑛)𝑁−1
𝑛=0  (8) 

Probability of detection can be expressed as𝑃𝑑 = 𝑃�𝑇 >  𝜆�(𝐻1)�and the 
probability of false alarm as 𝑃𝑓 = 𝑃�𝑇 >  𝜆�(𝐻0)�. We need to find the 
distribution of each possible condition in order to find the analytical expression 
of 𝑃𝑓 and𝑃𝑑. 

Under the hypothesis 𝐻0, only 𝑤(𝑛) is assumed to exist in the received signal. 
As 𝑤(𝑛) has Gaussian distribution with variance 𝜎2, 𝑇(𝒓) will be a chi-squared 
random variable with 2N degrees of freedom and hence the probability of false 
alarm can be expressed as: 

 𝑃𝑓 = 𝑃(𝑇(𝒓) > 𝜆|𝐻0) = 1 − 𝐹2𝑁�2𝜆𝜎2� (9) 

Under the 𝐻1 hypothesis, suppose the signal’s average power or its variance is 
𝜎𝑠2, 𝑇(𝒓) is a chi-squared randorm variable with 2N degrees of freedom, and the 
probability of false alarm is: 

 𝑃𝑑 = 𝑃(𝑇(𝒓) > 𝜆|𝐻1) = 1 − 𝐹2𝑁 � 2𝜆
𝜎𝑠2+𝜎2

� (10) 

Suppose 𝒓 comprises of identically independent distribution (i.i.d.) samples, for 
the large number of 𝒓, using the central limit theorem, we can make an 
approximation so that: 

 𝐹2𝑁(𝑟) ≈ 1 −𝑄 �𝑟−2𝑁
2√𝑁

� (11) 

where 𝑄(𝑥) = 1
√2𝜋 ∫ 𝑒𝑥𝑝�𝑣

2
2 �𝑑𝑣

∞
𝑥  is the Marqum Q-function.  

Denoting that the primary signal’s power is 𝜎𝑠2 and the test statistic 𝑇 is 
Gaussian, distribution of 𝐻0 becomes: 

 𝑇(𝑟)�𝐻0 ~ 𝑁�𝜎2, 1𝑁2𝜎4� (12) 

And distribution in condition 𝐻1 will follow 

 𝑇(𝑟)�𝐻1 ~ 𝑁�𝜎𝑠2 + 𝜎2, 1𝑁2�𝜎𝑠2+𝜎2�
4� (13) 

From Eq. (12) we can express the probability of false alarm in the form of the 
Marqum Q-function as:  
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 𝑃𝑓 = 𝑄�𝜆−𝜎
2

�2
𝑁𝜎

2
� (14) 

And the probability of detection in the form of: 

 𝑃𝑑 = 𝑄�𝜆−�𝜎𝑠
2+𝜎2�

�2
𝑁�𝜎𝑠

2+𝜎2�
� (15) 

Eqs. (14) and (15) provide an easy means to measure the performance of energy 
detection (ED). The performance is a function of received signal power and 
noise variance. We can find a closed form of the required number of samples 
for a certain value of signal to noise ratio (SNR) from Eqs. (14) and (15). The 
SNR is defined here as 𝛾 = 𝜎𝑠2

𝜎2 

 𝑁 = 2�𝑄−1�𝑃𝑓�−𝑄−1(𝑃𝑑)(𝛾+1)�
2

𝛾2
 (16) 

Eq. (16) shows the relationship between number of samples (𝑁), SNR, 𝑃𝑓 and 
𝑃𝑑. For spectrum sensing in cognitive radio, the fixed value of 𝑃𝑓 is 0.1. The 
rest we can always adjust by increasing N to achieve a certain 𝑃𝑑. In other 
words, we can always achieve a desirable performance even at low SNRs by 
increasing the number of samples taken for detection. However, noise 
uncertainty will decrease 𝑃𝑑 at low SNRs regardless of the number of samples 
taken (N) [12].  

Eq. (15) shows that the performance of energy detection at various SNRs 
depends on the threshold value. The threshold can be found from a known noise 
variance. However, there is a limitation because it is not possible to know the 
variance exactly. Its value varies for each time instance. This lack of knowledge 
is a factor known as noise uncertainty (∆). In practice, the noise variance level 
varies due to several factors that affect noise uncertainty, such as: calibration 
errors, thermal noise change due to temperature changes, amplifier gain changes 
due to temperature changes, or interference during calibration [20]. Noise 
uncertainty due to these factors is at least 0.7 dB without considering 
interference. It will be acceptable if it is rounded up to 1 dB.  

If noise variance varies with uncertainty factor 𝜌, then it will have a possible 
value of 𝜎2 ∈ �1𝜌𝜎

2,𝜌𝜎2�. The robust statistics approach is used to model and 
measure the effect of this noise uncertainty on detection performance. This 
approach can be thought of as a worst-case scenario. The upper limit of the 
noise’s PSD 𝜌𝜎2 is used to calculate the probability of false alarm, while the 
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lower limit 1𝜌𝜎
2 is used to calculate the probability of detection. Then, the 

probability of false alarm is: 

 𝑃𝑓 = 𝑄�𝜆−𝜌𝜎
2

�2
𝑁𝜌𝜎

2
� (17) 

and the probability of detection considering noise of uncertain power is: 

 𝑃𝑑 = 𝑄�
𝜆−�𝜎𝑠2+

1
𝜌𝜎

2�

�2
𝑁�𝜎𝑠

2+1𝜌𝜎
2�
� (18) 

We have to modify Eq. (16) to include the noise uncertainty factor. The number 
of samples equation then will be: 

 𝑁 =
2 �𝜌𝑄−1�𝑃𝑓�−𝑄−1(𝑃𝑑)�𝛾+1𝜌��

2

�𝛾− �𝜌−1𝜌��
2  (19) 

When the SNR 𝛾 makes the denominator in Eq. (19) close to zero, N will 
increase to an asymptotic value. This asymptotic value exists in an SNR wall of 
𝑆𝑁𝑅𝑤𝑎𝑙𝑙 = 𝜌2−1

𝜌
. If we receive a low-level primary signal so that its 

corresponding SNR is lower than 𝑆𝑁𝑅𝑤𝑎𝑙𝑙, it will not be possible to detect it, 
regardless of the number of samples. This 𝑆𝑁𝑅𝑤𝑎𝑙𝑙 phenomena, which is caused 
by noise uncertainty, is a factor that makes energy detection perform poorly at 
very low SNRs. We have to find another feature of the received signal to make 
the decision, such as its distribution.  

We propose a spectrum sensing method based on distribution difference. When 
the channel is idle, the real condition will be 𝐻0: 𝑟(𝑛) = 𝑤(𝑛). The noise 𝑤(𝑛) 
is AWGN (additive white Gaussian noise). Its probability distribution is 
𝑁(𝜇𝑤 ,𝜎𝑤2), i.e. a Gaussian random variable with the probability density 
function (pdf):  

 𝑝(𝑤) = 1
�2𝜋𝜎2

exp �− 1
2𝜎2

(𝑤 − 𝜇𝑤)2� (20) 

When the channel is occupied, 𝐻1: 𝑟(𝑛) = 𝑠(𝑛) +  𝑤(𝑛).𝑠(𝑛) is the received 
signal propagating from the primary user, which already includes the wireless 
channel effects. The probability of 𝑠(𝑛) will have several possibilities 
depending on the multipath fading channel model, such as rician, rayleigh, etc. 
Rayleigh can be considered a general condition in wireless environments. The 
rayleigh random variable has a probability density function (pdf) of:  
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 𝑝(𝑠) = 𝑠
𝜎𝑠2

exp �− 𝑠2

2𝜎𝑠2
� (21) 

Where 𝜎𝑠2 is the signal’s variance/power. As 𝑠 and 𝑤 are independent, the 
probability density function of the received signal will be 𝑝(𝑟) = 𝑝(𝑠) ∗ 𝑝(𝑤) 
[21]. The pdf of 𝑟(𝑛) can be calculated as: 

 𝑝(𝑟) = 𝜎𝑠𝑟

��𝜎𝑠2+𝜎2�
3

exp �− 𝑟2

2�𝜎𝑠2+𝜎2�
�𝜙 �𝜎𝑠𝜎

𝑟

�𝜎𝑠2+𝜎2
� + 

              𝜎
√2𝜋�𝜎𝑠2+𝜎2�

exp �− 𝑟2

2𝜎2
� (22) 

where 𝜙(… ) is a cumulative distribution function of a standard normal random 
variable. Based on the distribution difference, the hypothesis testing equation 
becomes: 

1. 𝐻0:𝑑𝑖𝑠𝑡. 𝑜𝑓 𝑟(𝑛) 𝑤𝑖𝑙𝑙 𝑓𝑜𝑙𝑙𝑜𝑤 𝑁(𝜇𝑤 ,𝜎𝑤2)  
2. 𝐻1:𝑑𝑖𝑠𝑡. 𝑜𝑓 𝑟(𝑛) 𝑤𝑖𝑙𝑙 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑁(𝜇𝑤 ,𝜎𝑤2) 

Based on the distribution of received samples 𝒓 = [𝑟1 𝑟1 ⋯ 𝑟𝑁−1]  we have 
to draw a decision. Our goal is to design an efficient spectrum sensing method, 
which works based on this distribution difference.  

In this paper we propose kurtosis as a means to differentiate between Gaussian 
and non-Gaussian samples. Kurtosis is one of several means to measure 
Gaussianity [22]. Kurtosis is defined as: 

 𝑘𝑢𝑟𝑡(𝑟) = 𝐸(𝑟4) − 3�𝐸(𝑟2)�2 (23) 

Suppose r has zero mean and r has been normalized so that its variance is equal 
to one 𝐸(𝑟2) = 1, then Eq. (23) becomes: 

 𝑘𝑢𝑟𝑡(𝑟) = 𝐸(𝑟4) − 3 (24) 

Since r is Gaussian, its fourth moment is equal to: 

 𝐸(𝑟4) = 3�𝐸(𝑟2)�2 = 3 (25) 

So, for samples with Gaussian distribution, the corresponding kurtosis is 0. This 
value will not be exactly equal to 0 if the sample number (N) is not large 
enough. For limited samples of N: 

 𝑘𝑢𝑟𝑡(𝑟) = 1
𝑁
∑ (𝑟𝑛 − 𝑟̅)4𝑁−1
𝑛=0 − 3�1𝑁∑ (𝑟𝑛 − 𝑟̅)2𝑁−1

𝑛=0 �2 (26) 

In terms of digital implementation of spectrum sensing, this offers more 
flexibility by using DFT-based spectral estimation [19]. We have to arrange an 
N-point FFT on 𝑟(𝑛) to get 𝑅(𝑘): 
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 𝑅(𝑘) = ∑ 𝑥(𝑛) exp �−𝑗2𝜋(𝑘 − 1) (𝑛−1)
𝑁

�𝑁−1
𝑛=1  (27) 

𝑅(𝑘) is complex valued sample 𝑅 = 𝑅𝑒(𝑅) +  𝑗 𝐼𝑚 (𝑅). A kurtosis test can be 
applied to 𝑅𝑒(𝑅), 𝐼𝑚 (𝑅), or ‖𝑅‖. When the condition is 𝐻0, the distribution of 
𝑅𝑒(𝑅) and 𝐼𝑚 (𝑅) should be Gaussian. We use a kurtosis test on both 𝑅𝑒(𝑅) 
and 𝐼𝑚 (𝑅) in order to maximize the available information. Then, the test 
statistic (𝑇) in the proposed method is: 

 𝑇 = 𝑘𝑢𝑟𝑡�𝑅𝑒(𝑹)�+𝑘𝑢𝑟𝑡�𝐼𝑚(𝑹)�
2

 (28) 

We propose a sensing algorithm, to be applied as follows: 

1. Step 1: We perform FFT operation to the received sample 𝑟(𝑛). The output 
is complex valued 𝑅(𝑘) 

2. Step 2: Kurtosis is calculated to each frame of real 𝑘𝑢𝑟𝑡�𝑅𝑒(𝑹)� part using 
Eq. (26). 

3. Step 3: Kurtosis is also calculated to each frame of imaginary part or 
𝑘𝑢𝑟𝑡�𝐼𝑚(𝑹)� 

4. Step 4: Calculation of the test statistic according to Eq. (28) is performed by 
using the absolute value of each kurtosis,  

5. Step 5: if 𝑇 >  𝜆 threshold then the detector will decide condition H1, if 
𝑇 <  𝜆 threshold then the decision will be condition H0. 

In the proposed method, the detector works blindly as it does not need any 
information of DTV signal parameters. The threshold is taken empirically from 
noise samples. To get the threshold, the detector will perform detection in the 
condition of H0. Detection events will be counted and divided by the number of 
frames to produce probability of false alarm. Its value should be under 10%. 
The threshold is adjusted until the false alarm probability reaches 10%. The 
resulting threshold will then be used as detection threshold to be compared with 
the test statistic from Eq. (28). 

5 Performance Evaluation 
The performance of the proposed spectrum sensing method was evaluated by 
simulation of the detection process. The goal of the evaluation was to measure 
the sensitivity of the proposed method in the condition of noise uncertainty. The 
sensitivity is shown by the probability of detection (𝑃𝑑) when the received 
signal level is low compared to the noise level (low SNR). We also tested two 
other blind spectrum sensing methods for comparison: the well-known energy 
detection [9] and Jarqur-Bera (JB) detection [16]. While energy detection 
exploits differences in the signal’s power, JB detection is a method recently 
proposed that is based on the distribution of the signal.  
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In our simulation, we tested real captured digital television (DTV) signals from 
[23]. Figure 3 shows the power spectral density of the primary signal. Its 
frequency was 545 MHz, the signal’s bandwidth 6 MHz and it was sampled at 
50 MHz. With an oversampling speed of 87, the number of samples in 1 ms was 
6857. If we have to perform sensing and have to make a decision in 5 ms, this 
will be equal to sensing about 30,000 samples.  

Previously, we derived the expression for the performance limit of energy 
detection in noise of uncertain power. As the performance limit depends on the 
uncertainty factor ρ (Eq. (19)), if the noise uncertainty is considered in the 
detector, the noise variance will be unstable. It will fluctuate between 1𝜌𝜎

2 to 
𝜌𝜎2. To verify the phenomena expressed in the equation, we performed a 
simulation of the energy detection where the noise 𝑤(𝑛) includes the condition 
of 1 dB noise uncertainty. Noise uncertainty of 1 dB is a common acceptable 
worst case condition.  

 
Figure 3 Power spectral density of received signal r(n). 

First, we have to find the threshold to be able to detect the primary signal. In 
this step, the white Gaussian noise (WGN) samples are the input for the 
simulation. The threshold is the value of the sample’s energy, which makes the 
probability of false alarm equal to a predefined value. Based on robust statistics, 
the threshold is found by using noise with 1 dB higher power spectral density. 
The purpose of this setting is to include the noise uncertainty factor into the 
simulation. The energy of the samples in a frame that consists of N samples is 
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calculated as the test statistic. The test statistic for each frame is then compared 
to the threshold. The frames that have energy more than the threshold are added 
up and then divided by the total number of frames to find the probability of 
false alarm (false alarm rate). The threshold is adjusted so that the probability of 
false alarm will be bounded to 0.1.We can get the threshold for a certain value 
of 𝑃𝑓. 

 

Figure 4 Energy detection performance, noise uncertainty=1 dB. 

After the threshold was set, the energy detection method was tested using a 
DTV signal in noise of uncertain power. The signal was scaled to represent a 
certain SNR. The probability of detection for SNRs from -25 dB to 10 dB was 
evaluated for number of samples (N): 60, 300, 1200, and 30000. Figure 4 shows 
the detection results. Here, the probability of detection is the mean of the test 
statistic, which was higher than the threshold. The probability of detection will 
increase if we use more samples for detection. There is an asymptotic SNR in 
which increasing the number of samples will not improve performance. The 
result in Figure 4 confirms the existence of an SNR wall at around -3.3 dB. 
Increasing N will not increase detection performance below the SNR wall. In 
this case, the limitation of energy detection in noise uncertainty needs to be 
improved. 



 A HOS-Based Blind Spectrum Sensing in Noise Uncertainty 33 
 

 
Figure 5 Histogram of 𝑅(𝑘) = 𝑆(𝑘) + 𝑊(𝑘). 

 
Figure 6 Histogram of received signal 𝑊(𝑘). 
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While energy detection exploits the energy difference between the conditions of 
𝐻1 and 𝐻0, our method exploits the distribution difference. Eqs. (20) and (21) 
explain that the distribution of received signal will be different for each 
condition. Before continuing with the performance of the proposed method, we 
present a histogram of the received signal at the FFT output: 𝑅(𝑘). Figure 5 
shows the histogram of 𝑅(𝑘) when the primary signal exists in the received 
signal. Figure 6 is the distribution of 𝑅(𝑘) when only 𝑊(𝑘) exists in the 
inspected band. In both histograms, the upper graph is the real part while the 
lower graph is the imaginary part. The histogram represents the respective 
distributions of the signal in both conditions. Figure 6 shows that 𝑊(𝑘) as 
additive white Gaussian noise (AWGN) has a Gaussian distribution. On the 
other hand, Figure 5 shows that the distribution of the mixture of the primary 
signal and noise can be considered non-Gaussian. The difference in the shape of 
the histograms in Figures 5 and 6 supports our assumption with regards to the 
usage of distribution for spectrum sensing. 

In the second simulation, we performed detection using the proposed method. 
We calculated the kurtosis of 𝑅𝑒(𝑅), 𝐼𝑚 (𝑅) and test statistic 𝑇 (Eq. (28)) for 
every frame of N samples. The same procedure was performed to get the 
threshold as in the experiment with energy detection. The threshold is taken 
empirically from real noise samples. First, we conduct the detection process 
with noise variance set to 1 dB higher than the input for the simulation. The 
result of detection is the false alarm rate. The threshold has to be adjusted to get 
a false alarm rate of 10%. Then we use the threshold for the detection process. 
The simulations use a sample number of N=30,000 and are repeated for about 
1000 times to ensure that the experimental results are statistically correct.  

Once the threshold is set, the detection process using the same DTV signal 
added with noise is ready. The signal is scaled to achieve a certain signal to 
noise ratio. The noise’s variance is 1 dB lower than the respected value to 
model the worst-case scenario of noise uncertainty. The test statistic is counted 
for every N = 30000 samples. The average number of frames with its test 
statistic higher than the threshold is the detection rate. We repeated the 
experiment 1000 times to ensure statistical correctness. 

The performance of the proposed method was compared with two existing 
methods: energy detection and Jarqur-Berra (JB) test based detection [16]. 
Similar to our method, the authors in [16] exploited the distribution difference 
by using the JB statistic of the norm of 𝑅(𝑘) to distinguish between both 
conditions. The detection threshold in their method is calculated analytically. 
The performance is described using the graph of probability of detection versus 
SNR. The performance is evaluated at SNR -25 dB to 0 dB. The number of 
samples in each frame is N = 30,000.  
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Figure 7 Proposed detection performance, noise uncertainty = 1 dB. 

Figure 7 shows the performance of the 3 methods. The graph describes the 
comparison of sensitivity, as represented by the lowest detectable primary 
signal’s level. The graph describes a comparison of sensitivity with regards to 
the lowest primary signal’s level at which it can still be detected by the 
respective methods. Energy detection gave the lowest performance due to its 
vulnerability to noise uncertainty, as described before. Our proposed method 
also gave a higher detection rate compared to the JB test based method. There 
are two different things that make our method perform better: the test statistic 
and the threshold. Originally, the JB test based method is a normality test. The 
method in [16] uses the norm of 𝑅(𝑘). Even if 𝑅(𝑘) = 𝑊(𝑘), the distribution 
of the norm will not be normal. This makes the method suboptimal compared to 
our method. The second reason is that the threshold in our method is 
empirically found, so it can adapt to different noise characteristics, while in the 
JB test based method, the threshold is from a fixed formula.  

Lastly, we used different FFT sizes for comparison. Figure 8 describes the 
simulation results of the proposed method for two different FFT sizes. The 
graph shows that if we increase the FFT points, the detection rate will also 
increase. The reason is that by using a higher number of FFT points, the 𝑅(𝑘) 
reveals more signal characteristics in a higher resolution. Spectrum sharing 
cognitive radio standardized by IEEE 802.22 defines white space in the digital 
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television spectrum. In DVB-T there are 2 alternatives for the number of FFT 
points, i.e. 2048 and 8196. For spectrum sensing purposes, the same FFT 
module for modulation may be used as well. 

 
Figure 8 Effect of FFT size on detection performance noise uncertainty = 1 dB. 

6 Conclusion 
The performance limitation of the energy detection method in noise of uncertain 
power has been discussed in this paper. The weakness of the energy detection 
method is improved by our proposed spectrum sensing method. It exploits the 
distribution difference of the received signal. Our method is able to perform the 
spectrum sensing blindly because it works without primary signal knowledge. 
In the case of noise of uncertain power it outperforms the energy detection 
method as well as the JB based detection method, particularly for SNRs lower 
than the 𝑆𝑁𝑅𝑤𝑎𝑙𝑙. Increasing the N-FFT improves the performance 
significantly. The proposed method can adapt to various noise characteristics 
because the threshold is taken empirically from the system’s noise.  
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