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Abstract. Wavelet-based image compression algorithms have good performance 
and produce a rate scalable bitstream that can be decoded efficiently at several 
bit rates. Unfortunately, the discrete wavelet transform (DWT) has relatively 
high computational complexity. On the other hand, the discrete cosine transform 
(DCT) has low complexity and excellent compaction properties. Unfortunately, 
it is non-local, which necessitates implementing it as a block-based transform 
leading to the well-known blocking artifacts at the edges of the DCT blocks. 
This paper proposes a very fast and rate scalable algorithm that exploits the low 
complexity of DCT and the low complexity of the set partitioning technique used 
by the wavelet-based algorithms. Like JPEG, the proposed algorithm first 
transforms the image using block-based DCT. Then, it rearranges the DCT 
coefficients into a wavelet-like structure. Finally, the rearranged image is coded 
using a modified version of the SPECK algorithm, which is one of the best well-
known wavelet-based algorithms. The modified SPECK consumes slightly less 
computer memory, has slightly lower complexity and slightly better performance 
than the original SPECK. The experimental results demonstrated that the 
proposed algorithm has competitive performance and high processing speed. 
Consequently, it has the best performance to complexity ratio among all the 
current rate scalable algorithms. 
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1 Introduction 
An image compression algorithm generally involves a transformation to 
compact most of the pixels’ energy into a few numbers of decorrelated 
coefficients that are easier to code. The transformed coefficients are then 
quantized and encoded to produce the compressed bitstream. The most widely 
used transforms for image compression applications are the discrete cosine 
transform (DCT) and the discrete wavelet transform (DWT). DCT has low 
complexity and excellent energy compaction. DCT is non-local and hence it is 
not practical to apply it to the whole image. Instead, DCT is implemented as 
block-based transform by which the image is normally divided into a number of 
non-overlapping blocks of (8×8) or (16×16) pixels and the separable two-
dimensional discrete cosine transform (2D-DCT) is applied to these blocks 
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individually. Unfortunately, the block-based DCT suffers from annoying 
blocking artifacts near the edges of the blocks. These artifacts lead to 
discontinuities at the block boundaries, especially at low bit rates. Nevertheless, 
DCT has been used for image and video compression and conferencing 
standards such as JPEG, MPEG, and H.263 due to its low complexity and 
excellent compaction features [1,2]. 

On the other hand, 2D-DWT, in addition to its good energy compaction, has 
additional features such as its space-frequency localization property and multi-
resolution capabilities. The localization property permits DWT to be applied to 
the entire image, which eliminates the blocking artifacts and facilitates rate 
scalability. The multi-resolution capabilities facilitate resolution scalability, 
which permits reconstructing the image in several sizes. Unfortunately, the 
computational time of DWT is longer than that of DCT, as 2D-DCT requires 
only 54 multiplications to transform a block of 64 pixels, while 2D-DWT 
requires at least one multiplication per pixel [3]. In addition, 2D-DWT suffers 
from a blurring and ringing effect near edge regions in the image [4]. 

2D-DWT is usually applied several times to the image, producing what is called 
pyramidal hierarchical decomposition. For example, dyadic 2D-DWT 
decomposition first decomposes the image into four subbands, labeled LL1, 
LH1, HL1, and HH1. The second stage decomposes the LL1 subband into four 
subbands, labeled LL2, HL2, LH2, and HH2. This recursive decomposition for 
the LL subband can be performed K times resulting in 3K+1 subbands. Figure 1 
depicts dyadic DWT decomposition for three stages (K = 3). It can be shown 
that the best DWT efficiency can be obtained with K = 5 [5].  

 

 
Figure 1 Three stages of dyadic 2D-DWT decomposition. 
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A rate scalable image compression system generates a compressed bitstream 
that can be truncated at any point while maintaining the best possible image 
quality for the selected bit rate. This property is a very interesting feature for the 
modern heterogeneous networks as users may have different resource 
capabilities in terms of processing speed, available memory and power. 
Accordingly, each user can request an image quality that fits his needs. In a rate 
scalable image compression system, the image is compressed only once at the 
maximum bit rate. The resulting bitstream is then stored on a server. Different 
users with different bit rate requirements send their requests to the server. The 
server then provides each user with a properly scaled bitstream that fit the user’s 
request by simply truncating the bitstream at the target bit rate [6]. The most 
popular wavelet-based rate scalable image compression algorithms are the set 
partitioning in hierarchical trees (SPIHT) algorithm [7] and the set partitioning 
embedded block (SPECK) algorithm [8]. These coding schemes are very 
efficient and use a low complexity set partitioning technique. In this paper, we 
propose a new algorithm, called the ultrafast and efficient rate scalable 
(UFERS) algorithm. This algorithm makes use of 2D-DCT instead of 2D-DWT 
to work with the wavelet-based set partitioning technique in order to reduce the 
complexity of the overall system.  

2 Literature Survey 
Several algorithms have been presented in the literature that use DCT with 
coding techniques that were initially designed to work with DWT in order to 
reduce their complexity.  

Yen, et al. [4] presented an algorithm that has about the same complexity as 
JPEG using a modified SPIHT. It considers each (8×8) DCT block consisting of 
10 subbands arranged in 3 dyadic decomposition levels according to the 
importance of the coefficients in the DCT block. Then, the DCT coefficients 
that belong to the same subband from every DCT block are grouped together. 
The rearranged image is then encoded using the modified SPIHT. The SPIHT 
algorithm [7] exploits the self-similarities that exist between the wavelet 
coefficients of the subbands across the decomposition levels. It is worth noting 
that this self-similarity feature is a special attribute devoted to the dyadic 2D-
DWT. Thus, the self-similarities are expected to be weak for DCT images. As 
such, the efficiency of the DCT-based SPIHT is expected to be moderate. 
However, it is claimed that the modified SPIHT increases efficiency using two 
additional steps, called the combination and dictator, to eliminate the correlation 
between the same-level subbands for encoding the DCT-based image. In 
addition, it makes use of an enhancement filter in order to improve the image 
quality at low bit rates. Evidently, these steps increase the complexity of the 
algorithm.  
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Song, et al. [9] presented a DCT-based rate scalable algorithm. It also uses the 
aforementioned DCT grouping method. In the coding stage, the magnitudes of 
the DCT coefficients are estimated by the linear sum of four coefficients at the 
same location in the neighboring DCT blocks, while the coefficients with larger 
estimates are given higher priority in encoding. This priority information is also 
used as context for the binary arithmetic coder that performs the actual coding. 
The proposed method is supposed to find more significant coefficients earlier 
than the conventional methods, thereby providing a higher coding gain. The 
algorithm has excellent performance but at the expense of highly increased 
complexity since the complexity of the arithmetic coder is about 4 times higher 
than the Huffman coder used in JPEG [10]. In addition, assigning priority to 
coefficients requires a sorting mechanism, which is not desirable due to its high 
complexity [11].  

Tu, et al. [12] have presented the embedded-context-based entropy coding of 
block transform coefficients (E-CEB) algorithm. The algorithm adopts a 
different reordering method for the DCT coefficients as it combines each DCT 
coefficient located at the same position from every DCT block on the same 
subband. This is equivalent to the wavelet packet decomposition structure [2]. 
Unfortunately, E-CEB has about the same complexity as [9] because it also 
makes use of a binary arithmetic coder with context modeling. 

Panggabean, et al. [13] have proposed a DCT-based algorithm that is suitable 
for real-time tele-immersive collaboration applications. The coder consists of 
three major steps: block ranking, DCT, and entropy coding using variable-
length encoding and run-length encoding. The coder is very fast, rate scalable, 
and fully parallelized. Unfortunately, it has a lower performance than the 
original JPEG, which limits its practical use. 

The proposed UFERS algorithm rearranges the DCT coefficients, using the 
same method as [4] and [9], but it employs a modified version of the SPECK 
algorithm in the coding stage. The motivation of using SPECK is that in 
addition to its good rate-distortion performance and low complexity, it exploits 
the correlation between the wavelet coefficients that exist within the subbands. 
That is, it doesn’t depend on the self-similarities that exist between the wavelet 
coefficients across subbands. Therefore the performance of the DCT-based 
SPECK is expected to be better than the DCT-SPIHT from [4]. Unfortunately, 
SPECK has higher memory requirements and management complexity than 
SPIHT due to using an array of linked lists to store the sets according to their 
sizes. The modified SPECK presented in this paper replaces this array by two 
lists only, similar to those used by SPIHT. 
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The remainder of the paper is organized as follows. Section 3 describes the 
SPECK algorithm. Section 4 presents the proposed UFERS algorithm. Section 5 
gives the experimental performance results of UFERS in conjunction with a 
comparison with several previous rate scalable algorithms. Finally, Section 6 
concludes the paper. 

3 The SPECK Algorithm 
The SPECK algorithm [8] transforms the image to the wavelet domain using the 
dyadic 2D-DWT. Every wavelet coefficient is initially quantized by rounding it 
to the nearest integer and represented by a sign-magnitude format using B bits 
(e.g. 16 bits), where the first bit is the sign bit (e.g. 0 for a positive coefficient 
and 1 for a negative coefficient) and the other B-1 bits are the magnitude bits. 
The quantized DWT image (W) is then bit-plane coded, whereby the magnitude 
bits of the DWT coefficients are coded from most significant bit (MSB) to least 
significant bit (LSB). That is, the image is coded bit-plane by bit-plane rather 
than coefficient by coefficient. To this end, multiple coding passes through W 
are made. Each coding pass corresponds to a bit-plane level. The maximum bit-
plane nmax depends on the maximum value of the DWT coefficients in W and is 
given by: 

 𝑛𝑚𝑚𝑚 =  �𝑙𝑙𝑙2𝑚𝑚𝑚∀(𝑖,𝑗)∈𝑊(�𝑐𝑖𝑖�)� (1) 

where x is the largest integer ≤ x and cij is a quantized DWT coefficient at 
location (i, j) in W. nmax should be signaled to the decoder in order to start 
decoding at bit-plane nmax. For the following description, the term pixel is used 
to designate a quantized DWT coefficient. 

At any bit-plane, n, nmax≥ n ≥ 0, a pixel cij is considered significant (SIG) with 
respect to n if  2𝑛 ≤ �𝑐𝑖𝑖� < 2𝑛+1. Otherwise cij is insignificant (ISIG). 
Similarly, a set of pixels T is considered SIG with respect to n if it contains at 
least one SIG pixel. Otherwise T is ISIG. Once a pixel is found to be SIG, it is 
coded by sending a ‘1’ and its sign bit directly to the bitstream. A pixel that is 
still ISIG is coded by sending ‘0’ to the bitstream. As mentioned earlier, 
SPECK employs the set partitioning technique to partition the SIG sets while 
keeping the ISIG sets. In this way a large area of ISIG pixels is coded by one 
bit. The same process is repeated for the new partitioned SIG sets until all pixels 
are encoded. The SPECK algorithm makes use of quad-tree decomposition to 
split off the SIG sets at the midpoint along each side into four subsets, 
collectively denoted as O(T), each having one-fourth the size of the parent set T, 
as shown in Figure 2.  
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Figure 2 Quad-tree partitioning of a SIG set (T) into 4 subsets O(T). 

SPECK makes use of three linked lists to keep track of the pixels and sets that 
need to be tested and coded, called respectively: list of insignificant pixels 
(LIP), list of significant pixels (LSP), and list of insignificant sets (LIS). LIP 
stores the (i, j) coordinates of the ISIG pixels, LSP stores the (i, j) coordinates 
of the SIG pixels, and LIS stores the (i, j) coordinates of the root of the ISIG 
sets. The root of a set is represented by its top-left pixel. To simplify 
description, when we say a pixel is added to (or removed from) LIP or LSP, this 
means that the pixel’s (i, j) coordinates are added (or removed). Similarly, when 
we say a set is added to (or removed from) LIS, this means that the root’s (i, j) 
coordinates of the set are added (or removed).  

SPECK starts coding by computing the maximum bit-plane, nmax. LIS is 
initialized by the 3K+1 image subbands ordered from the lowest frequency 
subband (LLK) to the highest (HH1); LIP and LSP are initialized empty. Each 
bit-plane coding pass starts with significance testing and coding the (i, j) entries 
of LIP, LIS, and LSP respectively against the current bit-plane (n). Each pixel in 
LIP is tested and coded accordingly and if it is found to be SIG, it is removed 
from LIP and added to the end of LSP to be refined in the next coding passes; 
otherwise it is kept in LIP to be tested in the next coding passes. Then, each set 
T in LIS is tested. If T is still ISIG, a ‘0’ is sent to the bitstream, i.e. the entire 
set is coded by one bit. On the other hand, if T is found to be SIG, a ‘1’ is sent 
to the bitstream, T is removed from LIS, and it is quad-tree partitioned into four 
subsets. Each one of these four subsets is in turn treated as a type T set and 
processed in the same way as the parent set. Any subset that is found ISIG 
during this partitioning process is added to LIS in order to be tested at the next 
lower bit-planes coding passes later on.  

This recursive partition of the new SIG sets continues until the pixel level is 
reached (i.e. the set size is 2×2 pixels). At this stage, if the set is ISIG, a ‘0’ is 
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sent to the bitstream and if it is SIG, a ‘1’ is sent to the bitstream and each one 
of its four pixels is tested and coded accordingly and if a pixel is found to be 
SIG, it is added to LSP in order to be refined in the next bit-planes; otherwise, if 
it is still ISIG, it is added to LIP in order to be tested in the next bit-planes. 
Finally, each pixel in LSP – except for those that were just added during the 
current pass – is refined to an additional bit of precision by sending its nth MSB 
to the bitstream. Finally, the bit-plane is then decremented by one to start a new 
coding pass. This cycle continues until all the bits of all pixels are encoded or 
until the target bit rate is reached. 

It should be noted that at the end of the first coding pass (and the other passes), 
LIS may contain sets of varying sizes due to the adopted recursive quad-tree 
partitioning process. It is well known that the probability of finding SIG pixels 
is inversely proportional to set size. Therefore, LIS is not traversed sequentially 
for processing sets; rather, the sets are processed in increasing order of their 
sizes. That is, sets with a size of (2×2) pixels are processed first; sets with a size 
of (4×4) are processed next, and so on. This would normally involve a sorting 
mechanism, which is not desirable due to its high complexity. However, 
SPECK avoids this sorting using an array of smaller lists of type LIS, each 
containing sets of a fixed size instead of using a single large list having sets of 
varying sizes. That is, LIS is replaced by an array of linked lists LISz, z = 2, 4... 
Z, where Z is the maximum size of the ISIG sets. LISz stores the sets with a size 
of (z×z) pixels. In any coding pass, LISz is processed in increasing order, i.e. 
LIS2, LIS4, and so on. Unfortunately, implementing LIS as an array of linked 
lists imposes the following limitations:  

1. The size of each list of LISz depends on the image size, image type and on 
the compression bit rate. That is, the list size cannot be specified in 
advance. Therefore, the algorithm must either use the dynamic memory 
allocation technique or initialize each list to the maximum size. The former 
solution is not preferable due to its high computational complexity and the 
latter one increases the memory requirements of the algorithm [14]. 
Evidently, these constraints become worse when dealing with multiple 
linked lists as is the case when using the LISz array. 

2. Each one of these linked lists must be accessed randomly for the purpose of 
adding or removing elements to or from them [11]. So dealing with several 
linked lists increases the memory management overhead of the algorithm. 

4 The Proposed UFERS Algorithm 
The proposed ultrafast and efficient rate scalable (UFERS) algorithm 
outperforms the standard JPEG coding in terms of the peak signal to noise ratio 
(PSNR) versus bit rate. In addition, the embedded feature of the coder allows 
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the encoding and/or decoding to achieve an exact bit rate with the best PSNR 
without the use of an explicit rate allocation mechanism. Furthermore, the 
proposed algorithm has lower complexity than the original JPEG because it is 
based on the set partitioning coding approach, which is simpler than the 
Huffman or the arithmetic coding used by JPEG [10]. The UFERS algorithm 
consists of two main stages: the transformation and pyramidal hierarchical 
subbands construction stage, and the coding stage that produces the rate scalable 
bitstream using the modified SPECK algorithm. 

It is worth noting that the UFERS algorithm works with grayscale images that 
have single component pixels, i.e. each pixel has a single value ranging from 0 
to 2b – 1, where b is the bit depth. However, it can be easily applied to color 
images that have multi-component pixels such as the red-green-blue (RGB) 
color model, where each pixel has three components representing the amount of 
the red, green, and blue color in the pixel. This is achieved by applying the 
algorithm to each component separately. In addition, the performance can be 
slightly improved by performing component transformation to exploit the 
correlation that exists among the color components. More details about color 
image compression can be found in [1,2,5].  

4.1 Transformation and Hierarchical Subband Construction 
In this step, the image is subdivided into non-overlapping blocks with a size of 
(2K×2K) pixels each, where K is an integer > 2. Each block is then transformed 
using the 2D-DCT. Each DCT block has one DC coefficient (at location (0, 0)) 
and (2K×2K − 1) AC coefficients. The DC coefficient represents the average 
value of the block’s pixels and the values of the AC coefficients are expected to 
decrease with increasing their position. Thus there is some correlation between 
the coefficients across the DCT blocks according to their locations. This work 
adopts the same method used by [4] and [9] for grouping the DCT coefficients 
into subbands. More precisely, a (2K×2K) DCT block is considered to consist of 
3K + 1 subbands ordered in K dyadic decomposition levels. The DCT 
coefficients that belong to the same subband from every DCT block are grouped 
together. The resulting rearranged image will look like a DWT image with K 
dyadic decomposition levels. Figure 3 depicts an (8×8) DCT block considered 
as a DWT image with three decomposition levels (K = 3) and 10 subbands (G0 
to G9), where the labels indicate the corresponding group that constitutes a 
given subband after grouping. For example, G0 is the DC coefficient at location 
(0, 0) with respect to the corresponding DCT block. Grouping G0 from all DCT 
blocks together results in subband LL3 in the reordered DWT image; G4 consists 
of the four DCT coefficients at location {(0, 2), (0, 3), (1, 2), (1, 3)}. Grouping 
G4 from all DCT blocks together results in subband HL2, and so on. 
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Figure 3 8×8 DCT block considered as a DWT image with 3 dyadic levels. 

4.2 Coding 
The coding stage uses a modified SPECK algorithm (MSPECK) with slightly 
lower memory and simpler memory management than SPECK. This is achieved 
by replacing the LISz array by two lists only: LIS2 and LIS4. LIS2 stores the 
sets that have (2×2) pixels and LIS4 stores the sets that have at least (4×4) 
pixels. The reason for this separation is that the probability of finding SIG 
pixels is higher for sets of size (2×2) pixels than sets of bigger sizes. Therefore, 
better embedding performance is achieved if these sets are encoded first in each 
bit-plane coding pass.  

An important difference between SPECK and MSPECK lies in how the sets are 
formed and partitioned. As shown, SPECK starts with sets of variable sizes and 
uses recursive quad-tree partitioning. Consequently, there isn’t any particular 
order of the sets stored in LIS. In contrast, MSPECK starts with sets of equal 
size and it make uses of a step-wise quad tree partitioning process. This means 
that when a set T in LIS4 is found to be SIG, one step of quad-tree partitioning 
is performed on T and the four children subsets (O(T)) are not partitioned 
immediately. Instead, they are added to the end of LIS4 to be processed later on 
at the same bit-plane coding pass. Consequently, the sets in LIS4 will be 
arranged in decreasing order of their sizes. As will be demonstrated, the adopted 
coding method has better embedding performance than SPECK without the 
need to use the LISz array.  
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The coding starts by dividing the image into Q sets of equal size, where Q is a 
power-of-two integer ≥ 4. For instance, for an image size of (512×512) pixels 
and Q = 4, we get four sets with a size of (256×256) pixels each. The (i, j) 
coordinates of the roots of these Q sets of equal size are stored in LIS4. The 
LIP, LIS2, and LSP are initialized as empty lists. 

Each bit-plane coding pass, except the first one, starts by processing the (i, j) 
entries in the LIP, LIS2, LIS4, and LSP respectively. The first pass processes 
LIS4 only because the other lists are still empty. Each pixel cij in LIP is tested 
for significance and coded accordingly and if cij is found to be SIG, it is 
removed from LIP and added to the end of LSP to be refined in the next coding 
passes; otherwise it is kept in LIP to be tested in the next coding passes. Then, 
each set T in LIS2, which has (2×2) pixels, is passed to the split2 procedure for 
encoding. Next, each set T in LIS4, which has (4×4) pixels or more, is passed to 
the split4 procedure for encoding. Finally, each pixel in LSP that is added 
during the previous passes is refined by sending its nth MSB to the bitstream. 
Then, the bit-plane, n is decremented by one to start a new coding pass. 

The split2 procedure for a set T having (2×2) pixels starts by testing T. If T is 
ISIG, a ‘0’ is send to the bitstream and if T is not in LIS2, it is added to LIS2 to 
be tested in the next coding passes. On the other hand, if T is SIG, a ‘1’ is sent 
to the bitstream, and if T is in LIS2, it is removed from it. Then each one of its 
four pixels is tested and coded, and the SIG pixels are added to the end of LSP 
while the ISIG ones are added to LIP.  

The split4 procedure for a set T with size z ≥ 4 starts by testing T. If T is ISIG, a 
‘0’ is send to the bitstream and it is kept in LIS4 to be tested in the next coding 
passes. On the other hand, if T is SIG, it is removed from LIS4, a ‘1’ is sent to 
the bitstream, and T is partitioned into four children subsets, each having a size 
of z/2. If z > 4, these subsets are added to LIS4; otherwise, if z = 4, each subset 
is passed to split2 for encoding. 

The following pseudo code describes the main encoding steps of the UFERS 
algorithm. 

Stage 1: Transformation and Subband Construction  
 Transform the image using (2K×2K) 2D-DCT blocks; 
 Reorder the DCT blocks into 3K+1 subbands; 

Stage 2: Coding using MSPECK  
Step1: Initialization 

• Output 𝑛𝑚𝑚𝑚 =  �𝑙𝑙𝑙2𝑚𝑚𝑚∀(𝑖,)∈𝐹��𝑐𝑖𝑖��� and set n = nmax 
• LSP = LIP = LIS2 = {φ}, LIS4 = {Tm}, 1 ≤ m ≤ Q; 
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Step 2: Bit-plane Coding Passes 
2.1 ∀ (i, j) entry ∈ LIP do:  
• if cij is SIG do: 
 output (1); 
 output sign (cij);  
 remove (i, j) from LIP and add it to the end of LSP; 

• else output (0); // cij is ISIG 
2.2 ∀ (i, j) entry ∈ LIS2 do: 𝑆𝑆𝑆𝑆𝑆2(𝑇(𝑖,𝑗),𝑛); 
2.3 ∀ (i, j) entry ∈ LIS4 do: 𝑆𝑆𝑆𝑆𝑆4(𝑇(𝑖,𝑗)

𝑧 ,𝑛) 
2.4 ∀ (i, j) entry ∈ LSP added in the previous passes then 

output the nth MSB of cij. 
2.5 Bit-plane level update 
• if n > 0 then n = n – 1 and go to 2.1; 
• else terminate coding; 

Procedure𝑆𝑆𝑆𝑆𝑆2(𝑇(𝑖,𝑗),𝑛){ 
 if T is SIG do: 

• output (1); 
• if (i, j) ∈ LIS2 then remove (i, j) from LIS2; 
• ∀cxy∈T, x = i, i+1, y = j, j+1, do: 

 ifcxy is SIG do: 
 output (1); 
 output sign (cxy);  
 add (x, y) to the end of LSP 

 else do://cxy is ISIG  
 output (0); 
 add (x, y) to LIP; 

 else do: //T is ISIG 
• output (0); 
• if (i, j) ∉ LIS2 then add (i, j) to LIS2; } 

Procedure𝑆𝑆𝑆𝑆𝑆4(𝑇(𝑖,𝑗)
𝑧 ,𝑛){ 

 if T is SIG do: 
• output (1); 
• remove (i, j) from LIS4; 
• if z > 4 do: // the set size > (4×4) pixels 
 z = z /2; 
 Add each O(T) to LIS4; // add the four children subsets to LIS4 
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• else if z = 4 do: // the set size = (4×4) pixels 
 z = z /2;  
 ∀O(T) ∈Tdo: 𝑆𝑆𝑆𝑆𝑆2(𝑂(𝑇),𝑛);  

 else output (0); // T is ISIG } 

4.3 Decoding 
Like other set partitioning algorithms, the UFERS encoding and decoding 
processes are synchronized. That is, the decoder duplicates the encoder’s 
execution path as follows: at any execution point, when the decoder receives 
‘1’, the corresponding set or pixel is SIG; otherwise it is ISIG. More precisely, 
if the corresponding set is SIG, it is partitioned, and if it is ISIG, it is simply 
bypassed. On the other hand, if the corresponding pixel is SIG, the decoder 
knows that it lies in the interval [2n, 2n+1), so it is reconstructed at the center of 
the interval which is equal to ±1.5×2n depending on its sign bit. For example, 
assume that n = 4; so at the encoder, a pixel with magnitude = +29 is SIG, 
because 24 ≤ +29 < 25. At the decoder it is reconstructed to 1.5 × 24 = +24.  

Every refinement (REF) bit updates the value of the pixel found SIG in previous 
bit-planes by adding or subtracting a value of (0.5×2n) depending on its sign. 
More specifically, if the pixel is positive, a value of (0.5×2n) is added to it if the 
REF bit is 1, while a value of (0.5×2n) is subtracted from it if the bit is 0. On the 
other hand, if the pixel is negative, a value of (0.5×2n) is subtracted from it if 
the REF bit is 1, while (0.5×2n) is added if the bit is 0. For example, the pixel 
+29 which is reconstructed to +24 at n = 4, is updated to 24 + (0.5×23) = 28 at n 
= 3. In this way the reconstructed pixel values approach the originals ones and 
hence the distortion decreases as more bits are decoded.  

It is worth noting that the decoder has lower complexity than the encoder. This 
is because the decoder doesn’t need to scan the sets’ pixels to see if the set is 
SIG or not: at any execution point, when the decoder receives ‘1’, the 
corresponding set is SIG to be partitioned; otherwise it is ISIG and will be 
bypassed. This complexity asymmetry property is very valuable with scalable 
image compression since the image is compressed only once and may be 
decompressed many times. The following pseudo code describes the main 
decoding steps of the UFERS algorithm. 

Stage 1: Decoding using MSPECK  
Step1: Initialization 
n = received nmax; LSP = LIP = LIS2 = {φ}, LIS4 = {Tm}, 1 ≤ m ≤ Q; 
Step 2: Bit-plane Coding Passes 
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2.1 ∀ (i, j) entry ∈ LIP do:  
• if the received bit = 1 do: // cij is SIG 
 if the received bit is 0 then cij = +½ 2n//positive pixel 
 else cij = –½ 2n; //negative pixel 
 remove (i, j) from LIP and add it to the end of LSP; 

2.2 ∀ (i, j) entry ∈ LIS2 do: 𝑑𝑑𝑑𝑑𝑑𝑑2(𝑇(𝑖,𝑗),𝑛); 
2.3 ∀ (i, j) entry ∈ LIS4 do: 𝑑𝑑𝑑𝑑𝑑𝑑4(𝑇(𝑖,𝑗)

𝑧 ,𝑛); 
2.4 ∀ (i, j) entry ∈ LSP added in the previous passes then 

Update cij according to the received bit; 
2.5 Bit-plane level update 
• if the target bit rate is not achieved then 

n = n – 1 and go to 2.1; 
• else terminate decoding process; 

Stage 2: DCT Blocks Rebuilding and Inverse 2D-DCT 
 Rebuilt the (2K×2K) DCT blocks from the Reordered DCT image; 
 Do the inverse 2D-DCT for the (2K×2K) DCT blocks;  

 
Procedure𝑑𝑑𝑑𝑑𝑑𝑑2(𝑇(𝑖,𝑗),𝑛){ 

 if the received bit = 1 do: //T is SIG 
• if (i, j) ∈ LIS2 then remove (i, j) from LIS2; 
• ∀cxy ∈ T, x = i, i+1, y = j, j+1, do: 

 if the received bit = 1 do: //cxy is SIG 
 if the received bit = 0 then cxy = +½ 2n;  
 else cxy = –½ 2n; 
 add (x, y) to the end of LSP; 

 else add (x, y) to LIP //cxy is ISIG 
 else //T is ISIG  

• if (i, j) ∉ LIS2 then add (i, j) to LIS2; } 
Procedure𝑑𝑑𝑑𝑑𝑑𝑑4(𝑇(𝑖,𝑗)

𝑧 ,𝑛){ 
 if the received bit = 1 do: //T is SIG 

• remove (i, j) from LIS4; 
• if z > 4 do: 
 z = z /2; 
 Add each O(T) to LIS4; 

• else if z = 4 do: 
 z = z /2;  



Ultrafast & Efficient Scalable Image Compression Algorithm 227 
 

 ∀O(T) ∈ T do: 𝑑𝑑𝑑𝑑𝑑𝑑2(𝑂(𝑇), 𝑛); } 

5 Experimental Results and Discussion 
The proposed UFERS algorithm was evaluated and tested using the Borland 
C++ programming language version 5.02 using a PC equipped with Intel Core 
i3 and 1.8 GHz CPU and 2GB RAM. The test was performed using the popular 
grayscale (512×512) pixels, 8 bits per pixel ‘Lena’, ‘Barbara’, ‘Goldhill’, and 
‘Mandrill’ test images shown in Figure 4. 

 
Figure 4 Grayscale (512×512) pixels test images. 

 

 
(a) Lena 

  

 
(b) Barbara 

  

  

  

 
(c) Goldhill 

  

  

  

 
(d) Mandrill 
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The algorithm’s rate distortion performance is represented by the peak signal to 
noise ratio (PSNR) measured in decibel (dB) vs. the compression bit rate 
defined as the average number of bits per pixel (bpp) of the compressed image. 
For 8 bpp grayscale images where the maximum pixel value is 28 = 255, the 
PSNR is given by: 

 𝑃𝑃𝑃𝑃 = 10 𝑙𝑙𝑙10
255 2

𝑀𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑑𝑑) (2) 

where MSE is mean-squared error between the original image Io and the 
reconstructed image Ir, each with a size of M×N pixels, defined as: 

 𝑀𝑀𝑀 =  1
𝑀×𝑁

∑ ∑ [𝐼𝑜(𝑖, 𝑗) − 𝐼𝑟(𝑖, 𝑗)]2𝑁
𝑗=1

𝑀
𝑖=1  (3) 

Another commonly used metric is the compression ratio (CR), which is the ratio 
of the size of the original image to the size of the compressed image, defined as 
[1,2]: 

 𝐶𝐶 =  𝑆𝑆𝑆𝑆 𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖 (𝐵𝐵𝐵𝐵𝐵)
𝑆𝑆𝑆𝑆 𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖 (𝐵𝐵𝐵𝐵𝐵)

 (4) 

For instance, CR = 50 means that the memory size of the compressed image is 
50 times smaller than its original size after compression. Obviously, for any bit 
rate or CR, the highest PSNR is desired and for any PSNR, the lowest bit rate 
and highest CR is desired. 

5.1  UFERS vs. other DWT-based Algorithms 
In order to compare the proposed MSPECK to the wavelet-based SPECK and 
SPIHT algorithms, we used the DWT at the transformation stage and the 
transformed image was coded by MSPECK. For this purpose, we employed the 
bi-orthogonal 9/7 Daubechies 2D-DWT with 5 dyadic decomposition levels at 
the transformation stage for all algorithms. The initial set size for MSPECK was 
(128×128) pixels (Q = 8). Table 1 shows the PSNR versus bit rate and the 
compression ratio (CR) of the algorithms. The results of SPIHT and SPECK 
were taken from [14] because no arithmetic coding was used in the significance 
test or any symbols produced by the SPIHT or SPECK algorithms for these 
results, i.e. the output bits were written directly to the bitstream. In this way, the 
comparison is fair and meaningful. Arithmetic coding using contexts and joint 
encoding generally improves SPIHT and SPECK by about 0.5 dB but at the 
same time increases their complexities [10]. The table depicts the following: 

1. SPECK had better PSNR than SPIHT for all images and bit rates. 
2. The proposed MSPECK had slightly better PSNR for the “Lena” image, 

except at bit rate 2 bpp. 
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3. For the “Barbara” image, which has high-frequency content, the MSPECK 
outperformed SPECK for all bit rates. 

4. MSPECK and SPECK had very similar PSNR for the “Goldhill” image. 

These results indicate that the MSPECK and the SPECK algorithms have very 
similar PSNR. The advantage of MSPECK is the reduction of the memory 
requirements of the algorithm and the simplification of its memory management 
due to eliminating the array of the linked lists LISz that is used by SPECK. 

Table 1 PSNR vs. Bit Rate and Compression Ratio (CR) for Gray-Scale 
(512×512) Pixels Test Images for the DWT-based SPIHT, SPECK, and 
MSPECK Algorithms. 

5.2 UFERS vs. other DCT-based Algorithms 
In this subsection, we will compare the proposed DCT-based UFERS to the 
optimized JPEG [15], the DCT-based algorithm of Song, et al. [9] and the E-
CEB of Tu, et al. [12]. In addition, a DCT version of SPIHT is also given, in 
order to depict the superiority of SPECK over SPIHT when used with DCT 
images. SPIHT was implemented using the public license program presented by 
Mustafa, et al. in [16]. For UFERS and DCT-SPIHT, the image was first DCT 
transformed using a block size of (16×16) pixels. The DCT coefficients were 
then rearranged into the dyadic wavelet structure before coding. Notice that a 
block size of (16×16) produces 13 subbands arranged in 4 wavelet 
decomposition levels. The initial set size for UFERS was (128×128) pixels (Q = 
8). Table 2 shows the PSNR versus bit rate and the CR for the different DCT-
based algorithms. 

 

 

Image 

Bit Rate 
(bpp) 0.0625 0.125 0.25 0.5 1 2 

CR 128 64 32 16 8 4 

Lena SPIHT - 30.25 33.46 36.68 39.88 44.15 
SPECK - 30.36 33.56 36.79 39.98 44.37 
MSPECK 27.72 30.65 33.67 36.80 39.98 44 

Barbara SPIHT - 24.39 26.92 30.71 35.78 41.82 
SPECK - 24.7 27.48 31.26 36.18 42.22 
MSPECK 23.67 25.16 28.02 31.99 37.05 43.43 

Goldhill SPIHT - 27.90 29.91 32.40 35.69 40.83 
SPECK - 28 30.13 32.71 36.01 41.13 
MSPECK 26.19 28.19 30.17 32.56 35.91 40.99 
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Table 2 PSNR vs. Bit Rate and Compression Ratio (CR) for Gray-Scale 
(512×512) Pixels Test Images for DCT Algorithms. 

   
The table depicts the following: 

1. DCT-SPIHT had the lowest PSNR among all algorithms. This is expected 
because as stated previously, SPIHT depends strongly on the self-similarity 
between the wavelet coefficients, which is a special feature of the dyadic 
2D-DWT.  

2. The proposed UFERS algorithm outperformed the optimized JPEG for all 
images and rates. As mentioned previously, the optimized JPEG uses 
Huffman coding, which is 4 times slower than the set partitioning approach 
that is adopted by UFERS. This means that UFERS is faster and more 
efficient than the optimized JPEG. In contrast, the algorithm of Panggabean 
from [13] was also faster than JPEG but it had lower efficiency.  

3. The proposed UFERS algorithm is very competitive with DWT-MSPECK. 
The superiority of UFERS over MSPECK is the reduced complexity 
attained by using DCT instead of DWT.    

Image 
Bit Rate (bpp) 0.0625 0.125 0.25 0.5 1 2 
CR 128 64 32 16 8 4 

Lena 

UFERS  26.76 29.62 32.92 36.37 39.69 44 
Optimized JPEG - - 32.30 35.90 39.60 - 
DCT-SPIHT  22.78 27.30 31.39 35.35 38.90 43.56 
[9] 27.57 30.28 33.36 36.64 39.93 - 
E-CEB 26.82  29.83 33.16 36.63 40.08 - 
MSPECK 27.72 30.65 33.67 36.80 39.98 44 

Barbara 

UFERS  23.54 25.69 28.62 32.42 37.50 43.43 
Optimized JPEG - - 26.70 30.60 35.90 - 
DCT-SPIHT  21.01 23.63 26.93 30.87 36.30 42.4 
[9] 24.06 26.43 29.27 32.82 37.52 - 
E-CEB 22.73 24.99 27.83 31.91 36.98 - 
MSPECK 23.67 25.16 28.02 31.99 37.05 43.43 

Goldhill 

UFERS  26.02 27.82 29.81 32.47 35.84 40.99 
DCT-SPIHT  22.87 26.35 28.98 31.71 35.07 40.01 
[9] 26.62 28.32 30.41 32.95 36.44 - 
E-CEB 25.96 27.99 30.32 32.97 35.84  
MSPECK 26.19 28.19 30.17 32.56 35.91 40.99 

Mandrill 

UFERS  20.35 21.41 22.82 25.13 28.61 34.14 
DCT-SPIHT  19.13 20.52 22.23 24.46 27.97 33.53 
[9] 20.59 21.66 23.11 25.56 28.97 - 
MSPECK 20.58 21.44 22.87 25.08 28.63 34.11 
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4. The algorithm of Song [9] performed slightly better than UFERS. 
Unfortunately, the cost paid for this enhancement is the highly increased 
complexity since the complexity of the context-based arithmetic coder used 
by [9] is about (6-8) times higher than that the set partitioning technique 
used by UFERS or SPECK [10,15]. Consequently, this complexity 
increment reduces the low-complexity benefits of using DCT instead of 
DWT. 

5. Compared to the E-CEB algorithm [12], which has about the same 
complexity as [9] as it also uses a context-based arithmetic coder, the 
UFERS had better PSNR for the Barbara and Goldhill images, which have 
high-frequency contents. This means that UFERS has better performance 
and has lower complexity than E-CEB. 

It is worth noting that our UFERS algorithm is better than JPEG objectively (in 
terms of PSNR) as well as subjectively, where the reconstructed images are 
evaluated by viewers, due to the blocking artifacts of JPEG. This is depicted in 
Figure 5, which shows the Lena image decoded using UFERS (left) and the 
JPEG (right) at 0.25 bpp. As can clearly be seen, although both algorithms have 
about the same PSNR (≈ 32 dB), the UFERS is subjectively better.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
   

Figure 5 Lena image decoded at 0.25 bpp; (a) using UFERS; (b) using JPEG. 

Finally, Table 3 shows the processing speed of the proposed MSPIHT and 
UFERS algorithms. The processing speed is represented as the average 
computer execution time for the four grayscale test images, measured in 
milliseconds (msec), of the compression and decompression processes against 
the compression bit rate. All algorithms were evaluated using C++ under a PC 

 
 

(a) Decoded by UFERS (PSNR = 32.92) 

 
 

(b) Decoded with JPEG (PSNR = 32.3) 
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with Core i3, 1.8 GHz CPU and 2GB RAM. The compression time as well as 
the decompression time consists of a fixed time for the forward and reverse 
transformation stages, and a variable time for the coding and decoding 
processes that varies with the compression bit rate. 

Table 3 Average Compression Time and Decompression Time vs. Bit Rate of 
Proposed MSPECK and UFERS Algorithms. 

Bit Rate (bpp) 
Compression time (msec) Decompression time (msec) 

MSPECK UFERS MSPECK UFERS 
0.125 49 46 41 38 

0.25 81 78 57 54 
0.5 101 98 79 76 

1 113 110 105 102 
2 128 125 118 115 

   
The following observations can be deduced from this table: 

1. For all algorithms, the decompression time was shorter than the 
compression time due to their asymmetric property, since the decoder 
doesn’t need to scan the sets’ pixels at every bit-plane to see if the set 
becomes SIG. 

2. UFERS was slightly faster than MSPECK due to using 2D-DCT instead of 
2D-DWT. In addition, the difference in time was fixed (3 msec) because the 
transform time was fixed. It should be noted that the implemented DCT was 
not fully optimized for speed. In other words, the speed of DCT can be 
improved by using a fast DCT like the Fast Fourier Transform (FFT) [2].  

The relation between the algorithm’s performance and complexity is usually 
clarified by its performance to complexity ratio (PCXR), which is defined as the 
ratio between the algorithm’s PSNR and the execution time that is needed to 
obtain this PSNR measured in dB/sec [17]. Evidently, a high PCXR with good 
PSNR is preferable. Table 4 depicts the average PCXR vs. the bit rate for the 
MSPECK and the UFERS algorithms at the encoder and decoder sides. The 
average PCXR represents the ratio of the average PSNR to the average 
execution time for the four test images. As can be seen, in spite of its (slightly) 
lower PSNR, the UFERS had a higher PCXR than MSPECK due to the speed 
advantage of DCT over DWT. In addition, the PCXR at the decoder was higher 
than that at the encoder for both algorithms due to their asymmetric property. 
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Table 4 Average Performance to Compression Ratio (PCXR) in dB/sec vs. Bit 
Rate of Proposed MSPECK and UFERS Algorithms. 

Bit Rate 
(bpp) 

Average PCXR at Encoder Average PCXR at Decoder 
MSPECK UFERS MSPECK UFERS 

0.125 538 568 643 688 
0.25 354 366 503 529 

0.5 312 323 400 416 
1 313 322 337 347 
2 317 325 344 353 

 
In order to appreciate the superiority in processing speed of our algorithm over 
the algorithm of Song, et al. [9], it is given in [9] that the average encoding time 
of the algorithm is equal to 7.18 seconds evaluated using a Pentium 4 PC 
equipped with 2.4 GHz CPU, and 1 GB RAM. Unfortunately, the bit rate at 
which the encoding time was calculated and the employed programming 
language were not specified. However, assume that the encoding time in [9] was 
calculated at the worst case, where the bit rate was the highest possible rate and 
the programming language was Matlab (the slowest language). For the purpose 
of comparison, we have implemented our UFERS algorithm using Matlab too. 
The average encoding time at full rate was about 1.25 seconds, which indicates 
that the proposed UFERS is about 5 times faster than that of [9]. More 
importantly, at full bit rate, the average PSNR of UFERS was 38.45 dB, so the 
average PCXR was equal to 30.76 dB/sec. On the other hand, assuming that the 
average PSNR of [9] at full bit rate is 40 dB (a reasonable assumption (see 
Table 2), then the average PCXR is 5.57 dB/sec. This result is expected due the 
highly complexity of the sorting mechanism and the context-based arithmetic 
coding adopted by the algorithm of [9]. 

6 Conclusion 
In this paper, we presented the UFERS algorithm. UFERS is a rate scalable 
algorithm that has good rate distortion performance and low computational 
complexity. The main contribution of the new algorithm is that it has the 
highest performance to complexity ratio among all current rate scalable 
algorithms. The speed advantage of the proposed algorithm makes it is very 
suitable for color image compression and real-time applications such as video 
transmission where compression speed is more important than efficiency. 
Furthermore, a fast algorithm requires short processing time and consequently it 
consumes less energy. This means that UFERS can be used with limited power 
devices such as mobile phones, digital cameras, etc. to preserve the life of the 
device’s battery. Another advantage of UFERS over the algorithms from 
[9,12,13] is its asymmetric property as its decoding time is much faster than its 
encoding time. This asymmetric property is very valuable with scalable image 
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compression since the image is compressed only once and may be 
decompressed many times. Finally, the DC subband represents a thumbnail for 
the entire image or video frame. Thumbnails are very useful for fast image and 
video browsing, as only a rough approximation of the image or video is 
sufficient for deciding whether the image needs to be decoded in full or not. 
Thus, the proposed UFERS can be used with Web image and video browsers 
for fast browsing. 

References 
[1] Yun, Q.S. & Huifang, S., Image and Video Compression for Multimedia 

Engineering: Fundamentals, Algorithms, and standards, 2nd ed., CRC 
Press, Massachusetts, USA, 2008. 

[2] Salomon, D., Data Compression: the Complete Reference, 3rd ed., 
Springer, New York, USA, 2004. 

[3] Feig, E., A Fast Scaled DCT Algorithm, in Proc. SPIE Image Processing 
Algorithms and Techniques, Santa Clara, USA, 1244, pp. 2-13, Feb. 
1990. 

[4] Yen, W. & Chen, Y., DCT-Based Image Compression with Efficient 
Enhancement Filter, 23rd Inter. Technical Conference on 
Circuits/Systems, Computers and Communications, Shimonoseki City, 
Japan, pp. 1225-1228, 2008. 

[5] Rabbani, M. & Joshi, R., An Overview of the JPEG 2000 Still Image 
Compression Standard, Signal Processing: Image Communication, 17(1), 
pp. 3-48, 2002. 

[6] Al-Janabi, A.K., Highly Scalable Single List Set Partitioning in 
Hierarchical Trees Image Compression, IOSR Journal of Electronics and 
Communication Engineering, 9(1), pp. 36-47, 2014. DOI: 10.9790/2834-
09133647. 

[7] Said, A. & Pearlman, W.A., A New, Fast, and Efficient Image Codec 
Based on Set Partitioning in Hierarchical Trees, IEEE Trans. on Circuits 
& Systems for Video Technology, 6(3), pp. 243-250, 1996. 

[8] Pearlman, W.A, Islam, A., Nagaraj, N. & Said, A., Efficient, Low 
Complexity Image Coding with a Set-Partitioning Embedded Block 
Coder, IEEE Trans. on Circuits &Systems for Video Technology, 14(11), 
pp. 1219-1235, Nov. 2004. 

[9] Song, H.S. & Cho, N.I., DCT-Based Embedded Image Compression with 
a New Coefficient Sorting Method, IEEE Signal Processing Letters, 
16(5), pp. 410-413, 2009. 

[10] Pearlman, W.A., Trends of Tree-Based, Set-Partitioning Compression 
Techniques in Still and Moving Image Systems, Proceedings Picture 
Coding Symposium (PCS-2001), Seoul, Korea, 25-27, pp. 1-8, April, 
2001. 



Ultrafast & Efficient Scalable Image Compression Algorithm 235 
 

[11] Berman, A.M., Data Structures via C++: Objects by Evolution, 1st 
edition, Oxford University Press, New York, USA, 1997. 

[12] Tu, C. & Tran, T.D., Context-Based Entropy Coding of Block Transform 
Coefficients for Image Compression, IEEE Trans. Image Processing, 
11(11), pp. 1271-1283, 2002. 

[13] Panggabean, M., Maciej W., Harald, Ø. & Leif, A.R., Ultrafast Scalable 
Embedded DCT Image Coding for Tele-immersive Delay-Sensitive 
Collaboration, Inter. Journal of Advanced Computer Science and 
Applications, 4(12), pp. 202-211, 2013. 

[14] Wheeler, F.W. & Pearlman, W.A., Combined Spatial and Subband Block 
Coding of Images, IEEE Int. Conf. on Image Processing (ICIP2001), 
Vancouver, BC, Canada, Sept., 2000. 

[15] Xiong, Z., Ramchandran, K., Orchard, M.T. & Zhang, Y.Q., A 
Comparative Study of DCT and Wavelet-based Image Coding, IEEE 
Trans. On Circuits & Systems for Video Technology, 9(5), pp. 692-695, 
1999. 

[16] http://www.cipr.rpi.edu/research/SPIHT (Visited at January 2015). 
[17] Malvar, H., Progressive Wavelet Coding of Images, IEEE Data 

Compression Conference, Salt Lake City, UT, pp. 336-343, March 1999. 
 

 

http://www.cipr.rpi.edu/research/SPIHT

	1 Introduction
	2 Literature Survey
	3 The SPECK Algorithm
	4 The Proposed UFERS Algorithm
	4.1 Transformation and Hierarchical Subband Construction
	4.2 Coding
	4.3 Decoding

	5 Experimental Results and Discussion
	5.1  UFERS vs. other DWT-based Algorithms
	5.2 UFERS vs. other DCT-based Algorithms

	6 Conclusion

