

214

J. ICT Res. Appl. Vol. 9, No. 3, 2015, 214-235

Received February 1st, 2015, 1st Revision August 23rd, 2015, 2nd Revision November 2nd 2015, Accepted for
publication November 6th, 2015.
Copyright © 2015 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2015.9.3.2

Ultrafast and Efficient Scalable Image Compression
Algorithm

Ali Kadhim Jaber Al-Janabi

University of Kufa, Faculty of Engineering,
Department of Electrical Engineering, Kufa Street, Najaf 21, Iraq

Email: alik.aljanabi@uokufa.edu.iq

Abstract. Wavelet-based image compression algorithms have good performance
and produce a rate scalable bitstream that can be decoded efficiently at several
bit rates. Unfortunately, the discrete wavelet transform (DWT) has relatively
high computational complexity. On the other hand, the discrete cosine transform
(DCT) has low complexity and excellent compaction properties. Unfortunately,
it is non-local, which necessitates implementing it as a block-based transform
leading to the well-known blocking artifacts at the edges of the DCT blocks.
This paper proposes a very fast and rate scalable algorithm that exploits the low
complexity of DCT and the low complexity of the set partitioning technique used
by the wavelet-based algorithms. Like JPEG, the proposed algorithm first
transforms the image using block-based DCT. Then, it rearranges the DCT
coefficients into a wavelet-like structure. Finally, the rearranged image is coded
using a modified version of the SPECK algorithm, which is one of the best well-
known wavelet-based algorithms. The modified SPECK consumes slightly less
computer memory, has slightly lower complexity and slightly better performance
than the original SPECK. The experimental results demonstrated that the
proposed algorithm has competitive performance and high processing speed.
Consequently, it has the best performance to complexity ratio among all the
current rate scalable algorithms.

Keywords: DCT; DWT; JPEG; rate scalable image compression; SPIHT; SPECK.

1 Introduction
An image compression algorithm generally involves a transformation to
compact most of the pixels’ energy into a few numbers of decorrelated
coefficients that are easier to code. The transformed coefficients are then
quantized and encoded to produce the compressed bitstream. The most widely
used transforms for image compression applications are the discrete cosine
transform (DCT) and the discrete wavelet transform (DWT). DCT has low
complexity and excellent energy compaction. DCT is non-local and hence it is
not practical to apply it to the whole image. Instead, DCT is implemented as
block-based transform by which the image is normally divided into a number of
non-overlapping blocks of (8×8) or (16×16) pixels and the separable two-
dimensional discrete cosine transform (2D-DCT) is applied to these blocks

Ultrafast & Efficient Scalable Image Compression Algorithm 215

individually. Unfortunately, the block-based DCT suffers from annoying
blocking artifacts near the edges of the blocks. These artifacts lead to
discontinuities at the block boundaries, especially at low bit rates. Nevertheless,
DCT has been used for image and video compression and conferencing
standards such as JPEG, MPEG, and H.263 due to its low complexity and
excellent compaction features [1,2].

On the other hand, 2D-DWT, in addition to its good energy compaction, has
additional features such as its space-frequency localization property and multi-
resolution capabilities. The localization property permits DWT to be applied to
the entire image, which eliminates the blocking artifacts and facilitates rate
scalability. The multi-resolution capabilities facilitate resolution scalability,
which permits reconstructing the image in several sizes. Unfortunately, the
computational time of DWT is longer than that of DCT, as 2D-DCT requires
only 54 multiplications to transform a block of 64 pixels, while 2D-DWT
requires at least one multiplication per pixel [3]. In addition, 2D-DWT suffers
from a blurring and ringing effect near edge regions in the image [4].

2D-DWT is usually applied several times to the image, producing what is called
pyramidal hierarchical decomposition. For example, dyadic 2D-DWT
decomposition first decomposes the image into four subbands, labeled LL1,
LH1, HL1, and HH1. The second stage decomposes the LL1 subband into four
subbands, labeled LL2, HL2, LH2, and HH2. This recursive decomposition for
the LL subband can be performed K times resulting in 3K+1 subbands. Figure 1
depicts dyadic DWT decomposition for three stages (K = 3). It can be shown
that the best DWT efficiency can be obtained with K = 5 [5].

Figure 1 Three stages of dyadic 2D-DWT decomposition.

LL1 HL1

LL2 HL2

HL1

LL3 HL3
HL2

HL1
LH3 HH3

LH2 HH2 LH2 HH2

HH1 HH1 HH1 HH1 HH1 HH1

(a) First stage

(c) Third stage

(b) Second stage

216 Ali Kadhim Jaber Al-Janabi

A rate scalable image compression system generates a compressed bitstream
that can be truncated at any point while maintaining the best possible image
quality for the selected bit rate. This property is a very interesting feature for the
modern heterogeneous networks as users may have different resource
capabilities in terms of processing speed, available memory and power.
Accordingly, each user can request an image quality that fits his needs. In a rate
scalable image compression system, the image is compressed only once at the
maximum bit rate. The resulting bitstream is then stored on a server. Different
users with different bit rate requirements send their requests to the server. The
server then provides each user with a properly scaled bitstream that fit the user’s
request by simply truncating the bitstream at the target bit rate [6]. The most
popular wavelet-based rate scalable image compression algorithms are the set
partitioning in hierarchical trees (SPIHT) algorithm [7] and the set partitioning
embedded block (SPECK) algorithm [8]. These coding schemes are very
efficient and use a low complexity set partitioning technique. In this paper, we
propose a new algorithm, called the ultrafast and efficient rate scalable
(UFERS) algorithm. This algorithm makes use of 2D-DCT instead of 2D-DWT
to work with the wavelet-based set partitioning technique in order to reduce the
complexity of the overall system.

2 Literature Survey
Several algorithms have been presented in the literature that use DCT with
coding techniques that were initially designed to work with DWT in order to
reduce their complexity.

Yen, et al. [4] presented an algorithm that has about the same complexity as
JPEG using a modified SPIHT. It considers each (8×8) DCT block consisting of
10 subbands arranged in 3 dyadic decomposition levels according to the
importance of the coefficients in the DCT block. Then, the DCT coefficients
that belong to the same subband from every DCT block are grouped together.
The rearranged image is then encoded using the modified SPIHT. The SPIHT
algorithm [7] exploits the self-similarities that exist between the wavelet
coefficients of the subbands across the decomposition levels. It is worth noting
that this self-similarity feature is a special attribute devoted to the dyadic 2D-
DWT. Thus, the self-similarities are expected to be weak for DCT images. As
such, the efficiency of the DCT-based SPIHT is expected to be moderate.
However, it is claimed that the modified SPIHT increases efficiency using two
additional steps, called the combination and dictator, to eliminate the correlation
between the same-level subbands for encoding the DCT-based image. In
addition, it makes use of an enhancement filter in order to improve the image
quality at low bit rates. Evidently, these steps increase the complexity of the
algorithm.

Ultrafast & Efficient Scalable Image Compression Algorithm 217

Song, et al. [9] presented a DCT-based rate scalable algorithm. It also uses the
aforementioned DCT grouping method. In the coding stage, the magnitudes of
the DCT coefficients are estimated by the linear sum of four coefficients at the
same location in the neighboring DCT blocks, while the coefficients with larger
estimates are given higher priority in encoding. This priority information is also
used as context for the binary arithmetic coder that performs the actual coding.
The proposed method is supposed to find more significant coefficients earlier
than the conventional methods, thereby providing a higher coding gain. The
algorithm has excellent performance but at the expense of highly increased
complexity since the complexity of the arithmetic coder is about 4 times higher
than the Huffman coder used in JPEG [10]. In addition, assigning priority to
coefficients requires a sorting mechanism, which is not desirable due to its high
complexity [11].

Tu, et al. [12] have presented the embedded-context-based entropy coding of
block transform coefficients (E-CEB) algorithm. The algorithm adopts a
different reordering method for the DCT coefficients as it combines each DCT
coefficient located at the same position from every DCT block on the same
subband. This is equivalent to the wavelet packet decomposition structure [2].
Unfortunately, E-CEB has about the same complexity as [9] because it also
makes use of a binary arithmetic coder with context modeling.

Panggabean, et al. [13] have proposed a DCT-based algorithm that is suitable
for real-time tele-immersive collaboration applications. The coder consists of
three major steps: block ranking, DCT, and entropy coding using variable-
length encoding and run-length encoding. The coder is very fast, rate scalable,
and fully parallelized. Unfortunately, it has a lower performance than the
original JPEG, which limits its practical use.

The proposed UFERS algorithm rearranges the DCT coefficients, using the
same method as [4] and [9], but it employs a modified version of the SPECK
algorithm in the coding stage. The motivation of using SPECK is that in
addition to its good rate-distortion performance and low complexity, it exploits
the correlation between the wavelet coefficients that exist within the subbands.
That is, it doesn’t depend on the self-similarities that exist between the wavelet
coefficients across subbands. Therefore the performance of the DCT-based
SPECK is expected to be better than the DCT-SPIHT from [4]. Unfortunately,
SPECK has higher memory requirements and management complexity than
SPIHT due to using an array of linked lists to store the sets according to their
sizes. The modified SPECK presented in this paper replaces this array by two
lists only, similar to those used by SPIHT.

218 Ali Kadhim Jaber Al-Janabi

The remainder of the paper is organized as follows. Section 3 describes the
SPECK algorithm. Section 4 presents the proposed UFERS algorithm. Section 5
gives the experimental performance results of UFERS in conjunction with a
comparison with several previous rate scalable algorithms. Finally, Section 6
concludes the paper.

3 The SPECK Algorithm
The SPECK algorithm [8] transforms the image to the wavelet domain using the
dyadic 2D-DWT. Every wavelet coefficient is initially quantized by rounding it
to the nearest integer and represented by a sign-magnitude format using B bits
(e.g. 16 bits), where the first bit is the sign bit (e.g. 0 for a positive coefficient
and 1 for a negative coefficient) and the other B-1 bits are the magnitude bits.
The quantized DWT image (W) is then bit-plane coded, whereby the magnitude
bits of the DWT coefficients are coded from most significant bit (MSB) to least
significant bit (LSB). That is, the image is coded bit-plane by bit-plane rather
than coefficient by coefficient. To this end, multiple coding passes through W
are made. Each coding pass corresponds to a bit-plane level. The maximum bit-
plane nmax depends on the maximum value of the DWT coefficients in W and is
given by:

 𝑛𝑚𝑚𝑚 = �𝑙𝑙𝑙2𝑚𝑚𝑚∀(𝑖,𝑗)∈𝑊(�𝑐𝑖𝑖�)� (1)

where x is the largest integer ≤ x and cij is a quantized DWT coefficient at
location (i, j) in W. nmax should be signaled to the decoder in order to start
decoding at bit-plane nmax. For the following description, the term pixel is used
to designate a quantized DWT coefficient.

At any bit-plane, n, nmax≥ n ≥ 0, a pixel cij is considered significant (SIG) with
respect to n if 2𝑛 ≤ �𝑐𝑖𝑖� < 2𝑛+1. Otherwise cij is insignificant (ISIG).
Similarly, a set of pixels T is considered SIG with respect to n if it contains at
least one SIG pixel. Otherwise T is ISIG. Once a pixel is found to be SIG, it is
coded by sending a ‘1’ and its sign bit directly to the bitstream. A pixel that is
still ISIG is coded by sending ‘0’ to the bitstream. As mentioned earlier,
SPECK employs the set partitioning technique to partition the SIG sets while
keeping the ISIG sets. In this way a large area of ISIG pixels is coded by one
bit. The same process is repeated for the new partitioned SIG sets until all pixels
are encoded. The SPECK algorithm makes use of quad-tree decomposition to
split off the SIG sets at the midpoint along each side into four subsets,
collectively denoted as O(T), each having one-fourth the size of the parent set T,
as shown in Figure 2.

Ultrafast & Efficient Scalable Image Compression Algorithm 219

Figure 2 Quad-tree partitioning of a SIG set (T) into 4 subsets O(T).

SPECK makes use of three linked lists to keep track of the pixels and sets that
need to be tested and coded, called respectively: list of insignificant pixels
(LIP), list of significant pixels (LSP), and list of insignificant sets (LIS). LIP
stores the (i, j) coordinates of the ISIG pixels, LSP stores the (i, j) coordinates
of the SIG pixels, and LIS stores the (i, j) coordinates of the root of the ISIG
sets. The root of a set is represented by its top-left pixel. To simplify
description, when we say a pixel is added to (or removed from) LIP or LSP, this
means that the pixel’s (i, j) coordinates are added (or removed). Similarly, when
we say a set is added to (or removed from) LIS, this means that the root’s (i, j)
coordinates of the set are added (or removed).

SPECK starts coding by computing the maximum bit-plane, nmax. LIS is
initialized by the 3K+1 image subbands ordered from the lowest frequency
subband (LLK) to the highest (HH1); LIP and LSP are initialized empty. Each
bit-plane coding pass starts with significance testing and coding the (i, j) entries
of LIP, LIS, and LSP respectively against the current bit-plane (n). Each pixel in
LIP is tested and coded accordingly and if it is found to be SIG, it is removed
from LIP and added to the end of LSP to be refined in the next coding passes;
otherwise it is kept in LIP to be tested in the next coding passes. Then, each set
T in LIS is tested. If T is still ISIG, a ‘0’ is sent to the bitstream, i.e. the entire
set is coded by one bit. On the other hand, if T is found to be SIG, a ‘1’ is sent
to the bitstream, T is removed from LIS, and it is quad-tree partitioned into four
subsets. Each one of these four subsets is in turn treated as a type T set and
processed in the same way as the parent set. Any subset that is found ISIG
during this partitioning process is added to LIS in order to be tested at the next
lower bit-planes coding passes later on.

This recursive partition of the new SIG sets continues until the pixel level is
reached (i.e. the set size is 2×2 pixels). At this stage, if the set is ISIG, a ‘0’ is

T

O(T)

220 Ali Kadhim Jaber Al-Janabi

sent to the bitstream and if it is SIG, a ‘1’ is sent to the bitstream and each one
of its four pixels is tested and coded accordingly and if a pixel is found to be
SIG, it is added to LSP in order to be refined in the next bit-planes; otherwise, if
it is still ISIG, it is added to LIP in order to be tested in the next bit-planes.
Finally, each pixel in LSP – except for those that were just added during the
current pass – is refined to an additional bit of precision by sending its nth MSB
to the bitstream. Finally, the bit-plane is then decremented by one to start a new
coding pass. This cycle continues until all the bits of all pixels are encoded or
until the target bit rate is reached.

It should be noted that at the end of the first coding pass (and the other passes),
LIS may contain sets of varying sizes due to the adopted recursive quad-tree
partitioning process. It is well known that the probability of finding SIG pixels
is inversely proportional to set size. Therefore, LIS is not traversed sequentially
for processing sets; rather, the sets are processed in increasing order of their
sizes. That is, sets with a size of (2×2) pixels are processed first; sets with a size
of (4×4) are processed next, and so on. This would normally involve a sorting
mechanism, which is not desirable due to its high complexity. However,
SPECK avoids this sorting using an array of smaller lists of type LIS, each
containing sets of a fixed size instead of using a single large list having sets of
varying sizes. That is, LIS is replaced by an array of linked lists LISz, z = 2, 4...
Z, where Z is the maximum size of the ISIG sets. LISz stores the sets with a size
of (z×z) pixels. In any coding pass, LISz is processed in increasing order, i.e.
LIS2, LIS4, and so on. Unfortunately, implementing LIS as an array of linked
lists imposes the following limitations:

1. The size of each list of LISz depends on the image size, image type and on
the compression bit rate. That is, the list size cannot be specified in
advance. Therefore, the algorithm must either use the dynamic memory
allocation technique or initialize each list to the maximum size. The former
solution is not preferable due to its high computational complexity and the
latter one increases the memory requirements of the algorithm [14].
Evidently, these constraints become worse when dealing with multiple
linked lists as is the case when using the LISz array.

2. Each one of these linked lists must be accessed randomly for the purpose of
adding or removing elements to or from them [11]. So dealing with several
linked lists increases the memory management overhead of the algorithm.

4 The Proposed UFERS Algorithm
The proposed ultrafast and efficient rate scalable (UFERS) algorithm
outperforms the standard JPEG coding in terms of the peak signal to noise ratio
(PSNR) versus bit rate. In addition, the embedded feature of the coder allows

Ultrafast & Efficient Scalable Image Compression Algorithm 221

the encoding and/or decoding to achieve an exact bit rate with the best PSNR
without the use of an explicit rate allocation mechanism. Furthermore, the
proposed algorithm has lower complexity than the original JPEG because it is
based on the set partitioning coding approach, which is simpler than the
Huffman or the arithmetic coding used by JPEG [10]. The UFERS algorithm
consists of two main stages: the transformation and pyramidal hierarchical
subbands construction stage, and the coding stage that produces the rate scalable
bitstream using the modified SPECK algorithm.

It is worth noting that the UFERS algorithm works with grayscale images that
have single component pixels, i.e. each pixel has a single value ranging from 0
to 2b – 1, where b is the bit depth. However, it can be easily applied to color
images that have multi-component pixels such as the red-green-blue (RGB)
color model, where each pixel has three components representing the amount of
the red, green, and blue color in the pixel. This is achieved by applying the
algorithm to each component separately. In addition, the performance can be
slightly improved by performing component transformation to exploit the
correlation that exists among the color components. More details about color
image compression can be found in [1,2,5].

4.1 Transformation and Hierarchical Subband Construction
In this step, the image is subdivided into non-overlapping blocks with a size of
(2K×2K) pixels each, where K is an integer > 2. Each block is then transformed
using the 2D-DCT. Each DCT block has one DC coefficient (at location (0, 0))
and (2K×2K − 1) AC coefficients. The DC coefficient represents the average
value of the block’s pixels and the values of the AC coefficients are expected to
decrease with increasing their position. Thus there is some correlation between
the coefficients across the DCT blocks according to their locations. This work
adopts the same method used by [4] and [9] for grouping the DCT coefficients
into subbands. More precisely, a (2K×2K) DCT block is considered to consist of
3K + 1 subbands ordered in K dyadic decomposition levels. The DCT
coefficients that belong to the same subband from every DCT block are grouped
together. The resulting rearranged image will look like a DWT image with K
dyadic decomposition levels. Figure 3 depicts an (8×8) DCT block considered
as a DWT image with three decomposition levels (K = 3) and 10 subbands (G0
to G9), where the labels indicate the corresponding group that constitutes a
given subband after grouping. For example, G0 is the DC coefficient at location
(0, 0) with respect to the corresponding DCT block. Grouping G0 from all DCT
blocks together results in subband LL3 in the reordered DWT image; G4 consists
of the four DCT coefficients at location {(0, 2), (0, 3), (1, 2), (1, 3)}. Grouping
G4 from all DCT blocks together results in subband HL2, and so on.

222 Ali Kadhim Jaber Al-Janabi

 0 1 2 3 4 5 6 7

0 G0
LL3

G1
HL3 G4

HL2
G7

HL1

1 G2
LH3

G3
HH3

2
G5

LH2
G6

HH2 3

4

G8
LH1

G9
HH1

5

6

7

Figure 3 8×8 DCT block considered as a DWT image with 3 dyadic levels.

4.2 Coding
The coding stage uses a modified SPECK algorithm (MSPECK) with slightly
lower memory and simpler memory management than SPECK. This is achieved
by replacing the LISz array by two lists only: LIS2 and LIS4. LIS2 stores the
sets that have (2×2) pixels and LIS4 stores the sets that have at least (4×4)
pixels. The reason for this separation is that the probability of finding SIG
pixels is higher for sets of size (2×2) pixels than sets of bigger sizes. Therefore,
better embedding performance is achieved if these sets are encoded first in each
bit-plane coding pass.

An important difference between SPECK and MSPECK lies in how the sets are
formed and partitioned. As shown, SPECK starts with sets of variable sizes and
uses recursive quad-tree partitioning. Consequently, there isn’t any particular
order of the sets stored in LIS. In contrast, MSPECK starts with sets of equal
size and it make uses of a step-wise quad tree partitioning process. This means
that when a set T in LIS4 is found to be SIG, one step of quad-tree partitioning
is performed on T and the four children subsets (O(T)) are not partitioned
immediately. Instead, they are added to the end of LIS4 to be processed later on
at the same bit-plane coding pass. Consequently, the sets in LIS4 will be
arranged in decreasing order of their sizes. As will be demonstrated, the adopted
coding method has better embedding performance than SPECK without the
need to use the LISz array.

Ultrafast & Efficient Scalable Image Compression Algorithm 223

The coding starts by dividing the image into Q sets of equal size, where Q is a
power-of-two integer ≥ 4. For instance, for an image size of (512×512) pixels
and Q = 4, we get four sets with a size of (256×256) pixels each. The (i, j)
coordinates of the roots of these Q sets of equal size are stored in LIS4. The
LIP, LIS2, and LSP are initialized as empty lists.

Each bit-plane coding pass, except the first one, starts by processing the (i, j)
entries in the LIP, LIS2, LIS4, and LSP respectively. The first pass processes
LIS4 only because the other lists are still empty. Each pixel cij in LIP is tested
for significance and coded accordingly and if cij is found to be SIG, it is
removed from LIP and added to the end of LSP to be refined in the next coding
passes; otherwise it is kept in LIP to be tested in the next coding passes. Then,
each set T in LIS2, which has (2×2) pixels, is passed to the split2 procedure for
encoding. Next, each set T in LIS4, which has (4×4) pixels or more, is passed to
the split4 procedure for encoding. Finally, each pixel in LSP that is added
during the previous passes is refined by sending its nth MSB to the bitstream.
Then, the bit-plane, n is decremented by one to start a new coding pass.

The split2 procedure for a set T having (2×2) pixels starts by testing T. If T is
ISIG, a ‘0’ is send to the bitstream and if T is not in LIS2, it is added to LIS2 to
be tested in the next coding passes. On the other hand, if T is SIG, a ‘1’ is sent
to the bitstream, and if T is in LIS2, it is removed from it. Then each one of its
four pixels is tested and coded, and the SIG pixels are added to the end of LSP
while the ISIG ones are added to LIP.

The split4 procedure for a set T with size z ≥ 4 starts by testing T. If T is ISIG, a
‘0’ is send to the bitstream and it is kept in LIS4 to be tested in the next coding
passes. On the other hand, if T is SIG, it is removed from LIS4, a ‘1’ is sent to
the bitstream, and T is partitioned into four children subsets, each having a size
of z/2. If z > 4, these subsets are added to LIS4; otherwise, if z = 4, each subset
is passed to split2 for encoding.

The following pseudo code describes the main encoding steps of the UFERS
algorithm.

Stage 1: Transformation and Subband Construction
 Transform the image using (2K×2K) 2D-DCT blocks;
 Reorder the DCT blocks into 3K+1 subbands;

Stage 2: Coding using MSPECK
Step1: Initialization

• Output 𝑛𝑚𝑚𝑚 = �𝑙𝑙𝑙2𝑚𝑚𝑚∀(𝑖,)∈𝐹��𝑐𝑖𝑖��� and set n = nmax
• LSP = LIP = LIS2 = {φ}, LIS4 = {Tm}, 1 ≤ m ≤ Q;

224 Ali Kadhim Jaber Al-Janabi

Step 2: Bit-plane Coding Passes
2.1 ∀ (i, j) entry ∈ LIP do:
• if cij is SIG do:
 output (1);
 output sign (cij);
 remove (i, j) from LIP and add it to the end of LSP;

• else output (0); // cij is ISIG
2.2 ∀ (i, j) entry ∈ LIS2 do: 𝑆𝑆𝑆𝑆𝑆2(𝑇(𝑖,𝑗),𝑛);
2.3 ∀ (i, j) entry ∈ LIS4 do: 𝑆𝑆𝑆𝑆𝑆4(𝑇(𝑖,𝑗)

𝑧 ,𝑛)
2.4 ∀ (i, j) entry ∈ LSP added in the previous passes then

output the nth MSB of cij.
2.5 Bit-plane level update
• if n > 0 then n = n – 1 and go to 2.1;
• else terminate coding;

Procedure𝑆𝑆𝑆𝑆𝑆2(𝑇(𝑖,𝑗),𝑛){
 if T is SIG do:

• output (1);
• if (i, j) ∈ LIS2 then remove (i, j) from LIS2;
• ∀cxy∈T, x = i, i+1, y = j, j+1, do:

 ifcxy is SIG do:
 output (1);
 output sign (cxy);
 add (x, y) to the end of LSP

 else do://cxy is ISIG
 output (0);
 add (x, y) to LIP;

 else do: //T is ISIG
• output (0);
• if (i, j) ∉ LIS2 then add (i, j) to LIS2; }

Procedure𝑆𝑆𝑆𝑆𝑆4(𝑇(𝑖,𝑗)
𝑧 ,𝑛){

 if T is SIG do:
• output (1);
• remove (i, j) from LIS4;
• if z > 4 do: // the set size > (4×4) pixels
 z = z /2;
 Add each O(T) to LIS4; // add the four children subsets to LIS4

Ultrafast & Efficient Scalable Image Compression Algorithm 225

• else if z = 4 do: // the set size = (4×4) pixels
 z = z /2;
 ∀O(T) ∈Tdo: 𝑆𝑆𝑆𝑆𝑆2(𝑂(𝑇),𝑛);

 else output (0); // T is ISIG }

4.3 Decoding
Like other set partitioning algorithms, the UFERS encoding and decoding
processes are synchronized. That is, the decoder duplicates the encoder’s
execution path as follows: at any execution point, when the decoder receives
‘1’, the corresponding set or pixel is SIG; otherwise it is ISIG. More precisely,
if the corresponding set is SIG, it is partitioned, and if it is ISIG, it is simply
bypassed. On the other hand, if the corresponding pixel is SIG, the decoder
knows that it lies in the interval [2n, 2n+1), so it is reconstructed at the center of
the interval which is equal to ±1.5×2n depending on its sign bit. For example,
assume that n = 4; so at the encoder, a pixel with magnitude = +29 is SIG,
because 24 ≤ +29 < 25. At the decoder it is reconstructed to 1.5 × 24 = +24.

Every refinement (REF) bit updates the value of the pixel found SIG in previous
bit-planes by adding or subtracting a value of (0.5×2n) depending on its sign.
More specifically, if the pixel is positive, a value of (0.5×2n) is added to it if the
REF bit is 1, while a value of (0.5×2n) is subtracted from it if the bit is 0. On the
other hand, if the pixel is negative, a value of (0.5×2n) is subtracted from it if
the REF bit is 1, while (0.5×2n) is added if the bit is 0. For example, the pixel
+29 which is reconstructed to +24 at n = 4, is updated to 24 + (0.5×23) = 28 at n
= 3. In this way the reconstructed pixel values approach the originals ones and
hence the distortion decreases as more bits are decoded.

It is worth noting that the decoder has lower complexity than the encoder. This
is because the decoder doesn’t need to scan the sets’ pixels to see if the set is
SIG or not: at any execution point, when the decoder receives ‘1’, the
corresponding set is SIG to be partitioned; otherwise it is ISIG and will be
bypassed. This complexity asymmetry property is very valuable with scalable
image compression since the image is compressed only once and may be
decompressed many times. The following pseudo code describes the main
decoding steps of the UFERS algorithm.

Stage 1: Decoding using MSPECK
Step1: Initialization
n = received nmax; LSP = LIP = LIS2 = {φ}, LIS4 = {Tm}, 1 ≤ m ≤ Q;
Step 2: Bit-plane Coding Passes

226 Ali Kadhim Jaber Al-Janabi

2.1 ∀ (i, j) entry ∈ LIP do:
• if the received bit = 1 do: // cij is SIG
 if the received bit is 0 then cij = +½ 2n//positive pixel
 else cij = –½ 2n; //negative pixel
 remove (i, j) from LIP and add it to the end of LSP;

2.2 ∀ (i, j) entry ∈ LIS2 do: 𝑑𝑑𝑑𝑑𝑑𝑑2(𝑇(𝑖,𝑗),𝑛);
2.3 ∀ (i, j) entry ∈ LIS4 do: 𝑑𝑑𝑑𝑑𝑑𝑑4(𝑇(𝑖,𝑗)

𝑧 ,𝑛);
2.4 ∀ (i, j) entry ∈ LSP added in the previous passes then

Update cij according to the received bit;
2.5 Bit-plane level update
• if the target bit rate is not achieved then

n = n – 1 and go to 2.1;
• else terminate decoding process;

Stage 2: DCT Blocks Rebuilding and Inverse 2D-DCT
 Rebuilt the (2K×2K) DCT blocks from the Reordered DCT image;
 Do the inverse 2D-DCT for the (2K×2K) DCT blocks;

Procedure𝑑𝑑𝑑𝑑𝑑𝑑2(𝑇(𝑖,𝑗),𝑛){

 if the received bit = 1 do: //T is SIG
• if (i, j) ∈ LIS2 then remove (i, j) from LIS2;
• ∀cxy ∈ T, x = i, i+1, y = j, j+1, do:

 if the received bit = 1 do: //cxy is SIG
 if the received bit = 0 then cxy = +½ 2n;
 else cxy = –½ 2n;
 add (x, y) to the end of LSP;

 else add (x, y) to LIP //cxy is ISIG
 else //T is ISIG

• if (i, j) ∉ LIS2 then add (i, j) to LIS2; }
Procedure𝑑𝑑𝑑𝑑𝑑𝑑4(𝑇(𝑖,𝑗)

𝑧 ,𝑛){
 if the received bit = 1 do: //T is SIG

• remove (i, j) from LIS4;
• if z > 4 do:
 z = z /2;
 Add each O(T) to LIS4;

• else if z = 4 do:
 z = z /2;

Ultrafast & Efficient Scalable Image Compression Algorithm 227

 ∀O(T) ∈ T do: 𝑑𝑑𝑑𝑑𝑑𝑑2(𝑂(𝑇), 𝑛); }

5 Experimental Results and Discussion
The proposed UFERS algorithm was evaluated and tested using the Borland
C++ programming language version 5.02 using a PC equipped with Intel Core
i3 and 1.8 GHz CPU and 2GB RAM. The test was performed using the popular
grayscale (512×512) pixels, 8 bits per pixel ‘Lena’, ‘Barbara’, ‘Goldhill’, and
‘Mandrill’ test images shown in Figure 4.

Figure 4 Grayscale (512×512) pixels test images.

(a) Lena

(b) Barbara

(c) Goldhill

(d) Mandrill

228 Ali Kadhim Jaber Al-Janabi

The algorithm’s rate distortion performance is represented by the peak signal to
noise ratio (PSNR) measured in decibel (dB) vs. the compression bit rate
defined as the average number of bits per pixel (bpp) of the compressed image.
For 8 bpp grayscale images where the maximum pixel value is 28 = 255, the
PSNR is given by:

 𝑃𝑃𝑃𝑃 = 10 𝑙𝑙𝑙10
255 2

𝑀𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑑𝑑) (2)

where MSE is mean-squared error between the original image Io and the
reconstructed image Ir, each with a size of M×N pixels, defined as:

 𝑀𝑀𝑀 = 1
𝑀×𝑁

∑ ∑ [𝐼𝑜(𝑖, 𝑗) − 𝐼𝑟(𝑖, 𝑗)]2𝑁
𝑗=1

𝑀
𝑖=1 (3)

Another commonly used metric is the compression ratio (CR), which is the ratio
of the size of the original image to the size of the compressed image, defined as
[1,2]:

 𝐶𝐶 = 𝑆𝑆𝑆𝑆 𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖 (𝐵𝐵𝐵𝐵𝐵)
𝑆𝑆𝑆𝑆 𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖 (𝐵𝐵𝐵𝐵𝐵)

 (4)

For instance, CR = 50 means that the memory size of the compressed image is
50 times smaller than its original size after compression. Obviously, for any bit
rate or CR, the highest PSNR is desired and for any PSNR, the lowest bit rate
and highest CR is desired.

5.1 UFERS vs. other DWT-based Algorithms
In order to compare the proposed MSPECK to the wavelet-based SPECK and
SPIHT algorithms, we used the DWT at the transformation stage and the
transformed image was coded by MSPECK. For this purpose, we employed the
bi-orthogonal 9/7 Daubechies 2D-DWT with 5 dyadic decomposition levels at
the transformation stage for all algorithms. The initial set size for MSPECK was
(128×128) pixels (Q = 8). Table 1 shows the PSNR versus bit rate and the
compression ratio (CR) of the algorithms. The results of SPIHT and SPECK
were taken from [14] because no arithmetic coding was used in the significance
test or any symbols produced by the SPIHT or SPECK algorithms for these
results, i.e. the output bits were written directly to the bitstream. In this way, the
comparison is fair and meaningful. Arithmetic coding using contexts and joint
encoding generally improves SPIHT and SPECK by about 0.5 dB but at the
same time increases their complexities [10]. The table depicts the following:

1. SPECK had better PSNR than SPIHT for all images and bit rates.
2. The proposed MSPECK had slightly better PSNR for the “Lena” image,

except at bit rate 2 bpp.

Ultrafast & Efficient Scalable Image Compression Algorithm 229

3. For the “Barbara” image, which has high-frequency content, the MSPECK
outperformed SPECK for all bit rates.

4. MSPECK and SPECK had very similar PSNR for the “Goldhill” image.

These results indicate that the MSPECK and the SPECK algorithms have very
similar PSNR. The advantage of MSPECK is the reduction of the memory
requirements of the algorithm and the simplification of its memory management
due to eliminating the array of the linked lists LISz that is used by SPECK.

Table 1 PSNR vs. Bit Rate and Compression Ratio (CR) for Gray-Scale
(512×512) Pixels Test Images for the DWT-based SPIHT, SPECK, and
MSPECK Algorithms.

5.2 UFERS vs. other DCT-based Algorithms
In this subsection, we will compare the proposed DCT-based UFERS to the
optimized JPEG [15], the DCT-based algorithm of Song, et al. [9] and the E-
CEB of Tu, et al. [12]. In addition, a DCT version of SPIHT is also given, in
order to depict the superiority of SPECK over SPIHT when used with DCT
images. SPIHT was implemented using the public license program presented by
Mustafa, et al. in [16]. For UFERS and DCT-SPIHT, the image was first DCT
transformed using a block size of (16×16) pixels. The DCT coefficients were
then rearranged into the dyadic wavelet structure before coding. Notice that a
block size of (16×16) produces 13 subbands arranged in 4 wavelet
decomposition levels. The initial set size for UFERS was (128×128) pixels (Q =
8). Table 2 shows the PSNR versus bit rate and the CR for the different DCT-
based algorithms.

Image

Bit Rate
(bpp) 0.0625 0.125 0.25 0.5 1 2

CR 128 64 32 16 8 4

Lena SPIHT - 30.25 33.46 36.68 39.88 44.15
SPECK - 30.36 33.56 36.79 39.98 44.37
MSPECK 27.72 30.65 33.67 36.80 39.98 44

Barbara SPIHT - 24.39 26.92 30.71 35.78 41.82
SPECK - 24.7 27.48 31.26 36.18 42.22
MSPECK 23.67 25.16 28.02 31.99 37.05 43.43

Goldhill SPIHT - 27.90 29.91 32.40 35.69 40.83
SPECK - 28 30.13 32.71 36.01 41.13
MSPECK 26.19 28.19 30.17 32.56 35.91 40.99

230 Ali Kadhim Jaber Al-Janabi

Table 2 PSNR vs. Bit Rate and Compression Ratio (CR) for Gray-Scale
(512×512) Pixels Test Images for DCT Algorithms.

The table depicts the following:

1. DCT-SPIHT had the lowest PSNR among all algorithms. This is expected
because as stated previously, SPIHT depends strongly on the self-similarity
between the wavelet coefficients, which is a special feature of the dyadic
2D-DWT.

2. The proposed UFERS algorithm outperformed the optimized JPEG for all
images and rates. As mentioned previously, the optimized JPEG uses
Huffman coding, which is 4 times slower than the set partitioning approach
that is adopted by UFERS. This means that UFERS is faster and more
efficient than the optimized JPEG. In contrast, the algorithm of Panggabean
from [13] was also faster than JPEG but it had lower efficiency.

3. The proposed UFERS algorithm is very competitive with DWT-MSPECK.
The superiority of UFERS over MSPECK is the reduced complexity
attained by using DCT instead of DWT.

Image
Bit Rate (bpp) 0.0625 0.125 0.25 0.5 1 2
CR 128 64 32 16 8 4

Lena

UFERS 26.76 29.62 32.92 36.37 39.69 44
Optimized JPEG - - 32.30 35.90 39.60 -
DCT-SPIHT 22.78 27.30 31.39 35.35 38.90 43.56
[9] 27.57 30.28 33.36 36.64 39.93 -
E-CEB 26.82 29.83 33.16 36.63 40.08 -
MSPECK 27.72 30.65 33.67 36.80 39.98 44

Barbara

UFERS 23.54 25.69 28.62 32.42 37.50 43.43
Optimized JPEG - - 26.70 30.60 35.90 -
DCT-SPIHT 21.01 23.63 26.93 30.87 36.30 42.4
[9] 24.06 26.43 29.27 32.82 37.52 -
E-CEB 22.73 24.99 27.83 31.91 36.98 -
MSPECK 23.67 25.16 28.02 31.99 37.05 43.43

Goldhill

UFERS 26.02 27.82 29.81 32.47 35.84 40.99
DCT-SPIHT 22.87 26.35 28.98 31.71 35.07 40.01
[9] 26.62 28.32 30.41 32.95 36.44 -
E-CEB 25.96 27.99 30.32 32.97 35.84
MSPECK 26.19 28.19 30.17 32.56 35.91 40.99

Mandrill

UFERS 20.35 21.41 22.82 25.13 28.61 34.14
DCT-SPIHT 19.13 20.52 22.23 24.46 27.97 33.53
[9] 20.59 21.66 23.11 25.56 28.97 -
MSPECK 20.58 21.44 22.87 25.08 28.63 34.11

Ultrafast & Efficient Scalable Image Compression Algorithm 231

4. The algorithm of Song [9] performed slightly better than UFERS.
Unfortunately, the cost paid for this enhancement is the highly increased
complexity since the complexity of the context-based arithmetic coder used
by [9] is about (6-8) times higher than that the set partitioning technique
used by UFERS or SPECK [10,15]. Consequently, this complexity
increment reduces the low-complexity benefits of using DCT instead of
DWT.

5. Compared to the E-CEB algorithm [12], which has about the same
complexity as [9] as it also uses a context-based arithmetic coder, the
UFERS had better PSNR for the Barbara and Goldhill images, which have
high-frequency contents. This means that UFERS has better performance
and has lower complexity than E-CEB.

It is worth noting that our UFERS algorithm is better than JPEG objectively (in
terms of PSNR) as well as subjectively, where the reconstructed images are
evaluated by viewers, due to the blocking artifacts of JPEG. This is depicted in
Figure 5, which shows the Lena image decoded using UFERS (left) and the
JPEG (right) at 0.25 bpp. As can clearly be seen, although both algorithms have
about the same PSNR (≈ 32 dB), the UFERS is subjectively better.

Figure 5 Lena image decoded at 0.25 bpp; (a) using UFERS; (b) using JPEG.

Finally, Table 3 shows the processing speed of the proposed MSPIHT and
UFERS algorithms. The processing speed is represented as the average
computer execution time for the four grayscale test images, measured in
milliseconds (msec), of the compression and decompression processes against
the compression bit rate. All algorithms were evaluated using C++ under a PC

(a) Decoded by UFERS (PSNR = 32.92)

(b) Decoded with JPEG (PSNR = 32.3)

232 Ali Kadhim Jaber Al-Janabi

with Core i3, 1.8 GHz CPU and 2GB RAM. The compression time as well as
the decompression time consists of a fixed time for the forward and reverse
transformation stages, and a variable time for the coding and decoding
processes that varies with the compression bit rate.

Table 3 Average Compression Time and Decompression Time vs. Bit Rate of
Proposed MSPECK and UFERS Algorithms.

Bit Rate (bpp)
Compression time (msec) Decompression time (msec)

MSPECK UFERS MSPECK UFERS
0.125 49 46 41 38

0.25 81 78 57 54
0.5 101 98 79 76

1 113 110 105 102
2 128 125 118 115

The following observations can be deduced from this table:

1. For all algorithms, the decompression time was shorter than the
compression time due to their asymmetric property, since the decoder
doesn’t need to scan the sets’ pixels at every bit-plane to see if the set
becomes SIG.

2. UFERS was slightly faster than MSPECK due to using 2D-DCT instead of
2D-DWT. In addition, the difference in time was fixed (3 msec) because the
transform time was fixed. It should be noted that the implemented DCT was
not fully optimized for speed. In other words, the speed of DCT can be
improved by using a fast DCT like the Fast Fourier Transform (FFT) [2].

The relation between the algorithm’s performance and complexity is usually
clarified by its performance to complexity ratio (PCXR), which is defined as the
ratio between the algorithm’s PSNR and the execution time that is needed to
obtain this PSNR measured in dB/sec [17]. Evidently, a high PCXR with good
PSNR is preferable. Table 4 depicts the average PCXR vs. the bit rate for the
MSPECK and the UFERS algorithms at the encoder and decoder sides. The
average PCXR represents the ratio of the average PSNR to the average
execution time for the four test images. As can be seen, in spite of its (slightly)
lower PSNR, the UFERS had a higher PCXR than MSPECK due to the speed
advantage of DCT over DWT. In addition, the PCXR at the decoder was higher
than that at the encoder for both algorithms due to their asymmetric property.

Ultrafast & Efficient Scalable Image Compression Algorithm 233

Table 4 Average Performance to Compression Ratio (PCXR) in dB/sec vs. Bit
Rate of Proposed MSPECK and UFERS Algorithms.

Bit Rate
(bpp)

Average PCXR at Encoder Average PCXR at Decoder
MSPECK UFERS MSPECK UFERS

0.125 538 568 643 688
0.25 354 366 503 529

0.5 312 323 400 416
1 313 322 337 347
2 317 325 344 353

In order to appreciate the superiority in processing speed of our algorithm over
the algorithm of Song, et al. [9], it is given in [9] that the average encoding time
of the algorithm is equal to 7.18 seconds evaluated using a Pentium 4 PC
equipped with 2.4 GHz CPU, and 1 GB RAM. Unfortunately, the bit rate at
which the encoding time was calculated and the employed programming
language were not specified. However, assume that the encoding time in [9] was
calculated at the worst case, where the bit rate was the highest possible rate and
the programming language was Matlab (the slowest language). For the purpose
of comparison, we have implemented our UFERS algorithm using Matlab too.
The average encoding time at full rate was about 1.25 seconds, which indicates
that the proposed UFERS is about 5 times faster than that of [9]. More
importantly, at full bit rate, the average PSNR of UFERS was 38.45 dB, so the
average PCXR was equal to 30.76 dB/sec. On the other hand, assuming that the
average PSNR of [9] at full bit rate is 40 dB (a reasonable assumption (see
Table 2), then the average PCXR is 5.57 dB/sec. This result is expected due the
highly complexity of the sorting mechanism and the context-based arithmetic
coding adopted by the algorithm of [9].

6 Conclusion
In this paper, we presented the UFERS algorithm. UFERS is a rate scalable
algorithm that has good rate distortion performance and low computational
complexity. The main contribution of the new algorithm is that it has the
highest performance to complexity ratio among all current rate scalable
algorithms. The speed advantage of the proposed algorithm makes it is very
suitable for color image compression and real-time applications such as video
transmission where compression speed is more important than efficiency.
Furthermore, a fast algorithm requires short processing time and consequently it
consumes less energy. This means that UFERS can be used with limited power
devices such as mobile phones, digital cameras, etc. to preserve the life of the
device’s battery. Another advantage of UFERS over the algorithms from
[9,12,13] is its asymmetric property as its decoding time is much faster than its
encoding time. This asymmetric property is very valuable with scalable image

234 Ali Kadhim Jaber Al-Janabi

compression since the image is compressed only once and may be
decompressed many times. Finally, the DC subband represents a thumbnail for
the entire image or video frame. Thumbnails are very useful for fast image and
video browsing, as only a rough approximation of the image or video is
sufficient for deciding whether the image needs to be decoded in full or not.
Thus, the proposed UFERS can be used with Web image and video browsers
for fast browsing.

References
[1] Yun, Q.S. & Huifang, S., Image and Video Compression for Multimedia

Engineering: Fundamentals, Algorithms, and standards, 2nd ed., CRC
Press, Massachusetts, USA, 2008.

[2] Salomon, D., Data Compression: the Complete Reference, 3rd ed.,
Springer, New York, USA, 2004.

[3] Feig, E., A Fast Scaled DCT Algorithm, in Proc. SPIE Image Processing
Algorithms and Techniques, Santa Clara, USA, 1244, pp. 2-13, Feb.
1990.

[4] Yen, W. & Chen, Y., DCT-Based Image Compression with Efficient
Enhancement Filter, 23rd Inter. Technical Conference on
Circuits/Systems, Computers and Communications, Shimonoseki City,
Japan, pp. 1225-1228, 2008.

[5] Rabbani, M. & Joshi, R., An Overview of the JPEG 2000 Still Image
Compression Standard, Signal Processing: Image Communication, 17(1),
pp. 3-48, 2002.

[6] Al-Janabi, A.K., Highly Scalable Single List Set Partitioning in
Hierarchical Trees Image Compression, IOSR Journal of Electronics and
Communication Engineering, 9(1), pp. 36-47, 2014. DOI: 10.9790/2834-
09133647.

[7] Said, A. & Pearlman, W.A., A New, Fast, and Efficient Image Codec
Based on Set Partitioning in Hierarchical Trees, IEEE Trans. on Circuits
& Systems for Video Technology, 6(3), pp. 243-250, 1996.

[8] Pearlman, W.A, Islam, A., Nagaraj, N. & Said, A., Efficient, Low
Complexity Image Coding with a Set-Partitioning Embedded Block
Coder, IEEE Trans. on Circuits &Systems for Video Technology, 14(11),
pp. 1219-1235, Nov. 2004.

[9] Song, H.S. & Cho, N.I., DCT-Based Embedded Image Compression with
a New Coefficient Sorting Method, IEEE Signal Processing Letters,
16(5), pp. 410-413, 2009.

[10] Pearlman, W.A., Trends of Tree-Based, Set-Partitioning Compression
Techniques in Still and Moving Image Systems, Proceedings Picture
Coding Symposium (PCS-2001), Seoul, Korea, 25-27, pp. 1-8, April,
2001.

Ultrafast & Efficient Scalable Image Compression Algorithm 235

[11] Berman, A.M., Data Structures via C++: Objects by Evolution, 1st
edition, Oxford University Press, New York, USA, 1997.

[12] Tu, C. & Tran, T.D., Context-Based Entropy Coding of Block Transform
Coefficients for Image Compression, IEEE Trans. Image Processing,
11(11), pp. 1271-1283, 2002.

[13] Panggabean, M., Maciej W., Harald, Ø. & Leif, A.R., Ultrafast Scalable
Embedded DCT Image Coding for Tele-immersive Delay-Sensitive
Collaboration, Inter. Journal of Advanced Computer Science and
Applications, 4(12), pp. 202-211, 2013.

[14] Wheeler, F.W. & Pearlman, W.A., Combined Spatial and Subband Block
Coding of Images, IEEE Int. Conf. on Image Processing (ICIP2001),
Vancouver, BC, Canada, Sept., 2000.

[15] Xiong, Z., Ramchandran, K., Orchard, M.T. & Zhang, Y.Q., A
Comparative Study of DCT and Wavelet-based Image Coding, IEEE
Trans. On Circuits & Systems for Video Technology, 9(5), pp. 692-695,
1999.

[16] http://www.cipr.rpi.edu/research/SPIHT (Visited at January 2015).
[17] Malvar, H., Progressive Wavelet Coding of Images, IEEE Data

Compression Conference, Salt Lake City, UT, pp. 336-343, March 1999.

http://www.cipr.rpi.edu/research/SPIHT

	1 Introduction
	2 Literature Survey
	3 The SPECK Algorithm
	4 The Proposed UFERS Algorithm
	4.1 Transformation and Hierarchical Subband Construction
	4.2 Coding
	4.3 Decoding

	5 Experimental Results and Discussion
	5.1 UFERS vs. other DWT-based Algorithms
	5.2 UFERS vs. other DCT-based Algorithms

	6 Conclusion

