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Abstract. This study proposes a new set of moment functions for describing 
gray-level and color images based on the associated Laguerre polynomials, 
which are orthogonal over the whole right-half plane. Moreover, the 
mathematical frameworks of radial associated Laguerre moments (RALMs) and 
associated rotation invariants are introduced. The proposed radial Laguerre 
invariants retain the basic form of disc-based moments, such as Zernike 
moments (ZMs), pseudo-Zernike moments (PZMs), Fourier-Mellin moments 
(OFMMs), and so on. Therefore, the rotation invariants of RALMs can be easily 
obtained. In addition, the study extends the proposed moments and invariants 
defined in a gray-level image to a color image using the algebra of quaternion to 
avoid losing some significant color information. Finally, the paper verifies the 
feature description capacities of the proposed moment function in terms of image 
reconstruction and invariant pattern recognition accuracy. Experimental results 
confirmed that the associated Laguerre moments (ALMs) perform better than 
orthogonal OFMMs in both noise-free and noisy conditions. 

Keywords: associated laguerre polynomials; orthogonal laguerre moments; 
quaternion; radial-polar; rotation invariants.  

1  0BIntroduction 
Orthogonal moment functions are one of the most important tools for the 
construction of shape descriptors for pattern recognition [1], object 
classification [2], template matching [3], image reconstruction [4], and data 
compression [5], etc. Among all kinds of moments, continuous ZMs, PZMs, 
OFMMs and Legendre moments were introduced by Teague and Teh, et al. in 
refs. [6]-[9] according to their corresponding polynomials as kernel functions. 
As is known to all, the computation of ZMs, PZMs and OFMMs requires the 
transformation from image coordinates to a region within the unit circle, and 
Legendre moments need to transform image coordinates into the interval [-1, 1]. 
In addition, discretization of the continuous integrals is necessary for the 



2 Bojun Pan, et al. 

computation of all continuous orthogonal moments. Discrete orthogonal 
moments provide a more accurate description for image features by evaluating 
moment components directly in the image coordinate space [10]-[13]. Hence, 
the discrete orthogonal moments eliminate the abovementioned problems 
associated with the continuous moments by using discrete orthogonal 
polynomials as kernel functions.  

Recently, the problem of invariant pattern recognition which undergoes 
geometric transforms, such as rotation, scaling and translation (RST), has 
received increased interest in the pattern recognition field. Invariance feature 
selection always plays an important role in this subject. In recent decades, a 
number of orthogonal moments-based methods have been reported to construct 
an invariance feature [14]-[15]. Owing to the polar coordinate representation of 
the kernel functions of disc-based orthogonal moments, these continuous 
orthogonal moments have better image feature representation capabilities. This 
is mainly due to the fact that their rotation invariants can be easily constructed. 
Hence, as far as pattern recognition tasks is concerned, the continuous 
orthogonal moments still outperform discrete moments. Borrowing the 
specificity of the radial polynomials of disc-based moments, Mukundan [16] 
recently introduced the framework of radial Tchebichef moments, which is 
based on the structure of disc-based moments and is particularly suitable for 
pattern recognition works requiring rotation invariants.  

In this paper, we propose another kind of discrete orthogonal moments, called 
associated Laguerre moments, which are also useful for image description. The 
proposed ALMs are defined in terms of the associated Laguerre polynomials 

[17], which are orthogonal over the whole right-half plane. The advantage of the 
proposed ALMs over disc-based continuous orthogonal moments lies in the fact 
that the computation of these continuous moments requires a coordinate 
transformation and suitable approximation of the integrals that are not existent 
in the proposed ALMs. Taking cues from Mukundan’s research works [16], this 
study combines the merit of computational advantages of discrete orthogonal 
moments with shape description capabilities of continuous orthogonal moments, 
and introduces RALMs in polar-coordinate form. Thus, the shape descriptors of 
rotation invariants, which retain the basic form of disc-based continuous 
moments, can be easily constructed in terms of the magnitude of the proposed 
RALMs. Since the scale and translation invariance of a pattern can be achieved 
by other methods, such as Fourier methods [18], Mellin methods [19], Radon 
transform methods [20] and normalized methods [21] etc., this paper omits their 
discussion due to limited space. Furthermore, the proposed method obtains Q-
ALMs and Q-RALMs by extending ALMs and RALMs to the quaternion field, 
and derives a set of rotation invariants based on them in order to deal with color 
images by using quaternion algebra. The advantage of this type of 
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representation is that a color image can be treated as a vector field. The 
accuracy of the proposed ALMs, RALMs, Q-ALMs, and Q-RALMs as global 
feature description capabilities is assessed by means of image reconstruction in 
noise-free and noisy cases and the results are compared with those of OFMMs. 
A classification experiment on gray-level and color images also illustrates the 
usefulness of the proposed feature descriptors.  

The remainder of this paper is organized as follows: Section 2 gives some 
mathematical background on the associated Laguerre polynomials and 
quaternion algebra theory. Section 3 presents a set of discrete ALMs and 
RALMs, and investigates the rotational invariance of RALMs. In Section 4 
presents the definition of Q-ALMs and Q-RALMs in a holistic manner. Section 
5 presents the experimental results and illustrates the performance of the 
proposed shape descriptors, and Section 6 summarizes the paper. 

2 Background 
This section reviews the associated Laguerre polynomials and quaternion 
algebra, and presents some properties that will be useful in the rest of the paper. 

2.1 Associated Laguerre Polynomials 

It is well known that the associated Laguerre polynomials { } 0n n
Lα

≥
, for α > -1, 

are orthogonal with respect to the weight function ( ) xw x x eα −= on the internal
0 x≤ < +∞ , that is,  
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where nmδ  is Kronecker’s symbol. The associated Laguerre polynomials are 
defined as 
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where the Pochhammer symbol (α)k is as follows 
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and ( )1 1 ; 1;F n xα− +  is a confluent hypergeometric function of the first kind 
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Together with Eqs. (4) and (2), the associated Laguerre polynomials can be 
rewritten as 

 
0

( )!( ) ( 1)
( )!( )! !

n
k k

n
k

nL x x
n k k k

α α
α=

+
= −

− +∑  (5) 

The associated Laguerre polynomials satisfy the following second-order 
recurrence relation: 

 ( ) ( ) ( ) ( ) ( )1
1n n nxL x n L x n x L xα α αα+
−= + − −   (6) 

2.2 Quaternion Algebra 
A quaternion has four components (one real part and three imaginary parts) and 
can be represented in a hyper-complex form as [22] 

 q a b i c j d k= + ⋅ + ⋅ + ⋅                               (7) 

where , , ,a b c d R∈ , and i, j, k obey the following multiplication rules: 

 

2 2 2 1, ,
,

i j k i j j i k
j k k j i k i i k j
= = = − × = − × =
× = − × = × = − × =

  (8) 

The modulus of a quaternion q follows the definition for complex numbers as 

 2 2 2 2q a b c d= + + +                               (9) 

It is often useful to consider a quaternion as the sum of a scalar part and a vector 
part, which is represented as 

 ( ) ( )q S q V q= +  (10) 

where S(q) = a and V(q) = b·i+c·j+d·k. If S(q) = 0, then q is reduced to a pure 
quaternion. 

2.3 Associated Laguerre Moments 
Without loss of generality, the ALMs of an image f(x, y) with order of m+n and 
size of N×N are defined by the normalized associated Laguerre orthogonal 
poynomials ( )nL xα



 as follows 

 

1 1

0 0
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N N

mn m n
x y

S L x L y f x yα α α
− −

= =

= ∑∑   , m,n = 0,1,…,N-1.  (11) 
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Considering the set of associate Laguerre polynomials, { }( )

0n n
Lα

≥
 is not suitable 

for defining moments because the range of values of the polynomials expands 
rapidly with the increase of order. To avoid numerical fluctuation in the 
moment computation, the current study applies normalized associated 
orthogonal Laguerre polynomials ( )nL xα



 to define the proposed ALMs. 

 
( ) ( ) ( )!

!

x

n n
x e nL x L x
n k

α
α α

−

=
+

   (12) 

The first few orders of the normalized associated Laguerre polynomials with the 
parameters α = 0, 1, 2 are shown in Figure 1. From Figure 1 one can observe 
clearly that the values of normalized associated polynomials ( )nL xα

  are 
bounded on a finite interval and have a notable difference from the associated 
polynomials ( )nL xα . 

  (a) 

              

Figure 1 Plot the ( )nL xα  and ( )nL xα
 , (a) α = 0; (b) α = 1; (c) α = 2. 
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                      (b)                       

                                            

                      (c) 

               

Figure 1 Continued. Plot the ( )nL xα  and ( )nL xα
 , (a) α = 0; (b) α = 1; (c) α = 2. 
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Comparing Eq. (1) and Eq. (12), one can obtain the orthogonality condition of 
normalized associated polynomials ( )nL xα



 as 

 ( ) ( )
0 nmn mL x L x dxα α δ
∞

=∫   , , 0n m ≥     (13) 

The performance of moment descriptor mnSα
  is well assessed by means of image 

reconstruction. Thanks to the orthogonality and completeness of { ( )nL xα
 }, which 

allow one to represent any square integrable image f(x, y) via a truncated series 
defined over whole right-half plane, to be written by 
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It should be expected that the representation in the above formula can converge 
to the true image by making orders N sufficiently large.  

2.4 Radial associated Laguerre Moments 
Rotational invariance is an inherent property of disc-based continuous 
orthogonal moments. However, as indicated in Eq. (11), the proposed ALMs are 
defined over the Cartesian coordinates, therefore, it is still not convenient 
enough to generate rotation invariants. Motivated and aided by the framework 
of Zernike radial polynomials, this study therefore tries to define the following 
RALMs of order p and repetition q as  
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(15) 

where the image has a size of N×N pixels and m denotes N/2. Since θ is a real 
quantity measured in radians, one can rewrite (15) as 

 
( )

1

0 0

11 ( , )
m n

jq
pq p

r

R L r e f r
n

α α θ

θ

θ
−−

−

= =

= ∑∑ 

 
(16) 

where n is at 360. When the image is sampled at one-degree intervals and the 
coordinates x, y are given by 

 

2 2cos , sin
2( 1) 2 2( 1) 2

rN N rN Nx y
m n m n

πθ πθ   = + = +   − −        (17) 

the structure of the RALMs is very similar to that of disc-based moments. It can 
also be easily found that the definition in Eq. (16) yields a set of moments that 
is orthogonal in the discrete polar coordinate space of the image. Moreover, the 
main purpose of this type of representation is that the rotation invariants can be 
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easily derived. Given an image f(r,θ), after rotation by an angle α, the image is 
f(r,θ+φ). One has  
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After applying normal operations, we have 
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 (19) 

Comparing Eq. (18) with Eq. (19), it is not difficult to see that  || ||pqRα
  is with 

rotational invariance. The corresponding inverse moments transform is given by 
the following equation: 

 ( ) ( )
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3 Quaternion associated Laguerre Moments 

Let  be an RGB 
image defined in polar coordinates. Therefore, the forward Q-ALMs can be 
defined as 
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( , ) ( , ) ( , ) ( , )R G B R G Bf r f i f j f k f r i f r j f r kθ θ θ θ≡ + + = + +
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where μ is a unit pure quaternion chosen as  in the current 
study. Thus, Eq. (21) can be rewritten as 

 

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As discussed in the above section, since the associated Laguerre polynomials 
are orthogonal, color images can be estimated from a finite number N of Q-
ALMs using the following inverse moment transform: 
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 (24)  

The right-side Q-RALMs of order p with repetition q are defined as follows 

( ) / 3i j kµ = + +
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
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(25) 

From such a representation, the rotation invariants are easily achieved by taking 
the modulus of Q-RALMs. Similar approaches can be used to obtain left-side 
Q-RALMs. Owing to limited space we will omit their discussion.  

4 Experimental Results 
Several experiments were carried out to evaluate the performance of the 
proposed ALMs and RALMs. The experiments used six selected test images 
(shown in Figure 2), including gray-level images and color images, with a 
resolution of 256×256 and 128×128, respectively.  

        
 (a)                                                                          (b) 

Figure 2 Original test images, (a) gray-level images (size: 256×256); (b) color 
images (size: 128×128). 

The mean square error (MSE) was used as the fidelity criteria measuring the 
resemblance between the reconstructed images and the original ones. It can be 
written as  
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2

2

, ,

,

f x y f x y

f x y
ε

−
=



   (26) 

where || · || is the standard Euclidean norm, f(x, y) and ˆ ( , )f x y  respectively 
represent the original test and the reconstructed image. 

4.1 Image Reconstruction  
The most effective method to test image description capability of moment 
functions is by image reconstruction. By virtue of orthogonal function theory 
shown in Eq. (13), both gray-level and color images can be estimated 
approximately by Eq. (14). Figure 3 shows the reconstruction result using 
ALMs and Q-ALMs for various values of the parameter α. The second 
experiment was carried out to illustrate the image discrimination power of the 
RALMs using a Chinese character with a size of 64×64 pixels, as listed in Table 
1. The reconstruction results were compared with those using orthogonal 
OFMMs. This analysis was repeated with a gray-level image with a size of 
128×128 pixels, as shown in Figure 4. From Table 1 and Figure 4 we can find 
that the reconstruction based on ALMs outperformed the other two types of 
orthogonal moments. It is observed that the reconstructed images using OFMMs 
exhibited a peculiar behavior in the vicinity of the image center. This 
phenomenon was more prominent for very high orders of moments.  

 
(a) 

 
(b) 

 
(c) 

Figure 3 Reconstructed images using ALMs and Q-ALMs for gray-level 
images and color images, respectively, (a) α = 0; (b) α = 1; (c) α = 2. 
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Figure 4 Reconstruction of gray-level image using ALMs (α = 2), RALMs (α = 
2) and OFMMs; (a) origin image; (b) ALMs; (c) RALMs; (d) OFMMs. 

Table 1 Reconstruction using RALMs with different m, n, P, Q. 

Image Reconstruction Parameter 

 
Original image with size N = 64  

 

RALMs methods (α = 2) 
m = 32, n =384, Pmax = 30, Qmax = 100, ε = 272 

  

 
RALMs methods (α = 2) 
m = 32, n =384, Pmax = 64, Qmax = 300, ε = 44 
 

 

ALMs methods (α = 2) 
Pmax = 64, ε = 32 

  

OFMMs methods 
Pmax = 64, ε = 39 

 

It is well known that noise may severely affect the quality of image 
reconstruction. To evaluate the robustness of moments with regards to different 
kinds of noises, we tested the noise robustness of different orthogonal moments. 
Pepper-and-salt noise at 5% was added to the original binary image ‘E’ (see 
Figure 5). Figure 6 shows the reconstruction results using different orthogonal 
moments, and the corresponding mean square error comparison is depicted in 
Figure 6(b). Figures 6(a) and (b) show that the reconstruction error of the 
English letter ‘E’ using RALMs was a little smaller than using other methods 
with the increase of order. 

  
(a)                (b)  

Figure 5 The English letter ‘E’, (a) letter ‘E’ without noise; (b) letter ‘E’ with 
5% salt-and-pepper noise. 
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(a) 

 
(b) 

Figure 6 Reconstruction error, (a) noise-free case; (b) salt-and-pepper noise 
case (5%). 

4.2 Rotation Invariant Recognition 
This subsection reports a detailed experimental study on the recognition 
accuracy of RALMs in both noise-free and noisy cases for binary images, gray-
level images, and color images, respectively. According to the definition of 
RALMs, we can easily know that the magnitude of RALMs remains invariant 
under image rotation. Thus, they are useful features for rotation-invariant 
pattern recognition. In the current recognition task, the following feature vectors 
of rotational invariance were chosen 

 21 32 33 41 42 43 44, , , ,|| || || || || || || || || || || || || ||, ,R R R RV R R Rα α α α α α α=   
         (27) 

The Euclidean distance was utilized as the classification measure 
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 (28) 

where Vs is the T-dimensional feature vector for the unknown sample and Vt
(k) is 

the training vector for class k. We defined the recognition accuracy η as 

        Number of correctly classified images 100%
The total number of image used in the test

η =           (29) 

The classification experiment was carried out to test the performance of RALM 
rotation moments invariants. A set of similar binary characters with sizes of 
64×64 pixels, shown in Figure 7, was used as the training set. The experiment 
was done for such a character set since elements in this set can be easily 
misclassified owing to their similarity. Each testing set consisted of 720 images, 
which were generated by rotating the training images to every 5 degrees in the 
range of [0, 360). Then, each image in the training set was degraded by 5% 
pepper-and-salt noise. Figure 8 shows part of these testing images. The 
experiments were repeated for each parameter α. Table 2 shows the 
classification results using different moment invariants. As can be observed 
from this table, RALMs achieved higher recognition rates.  

 

 
Figure 7 Part of binary characters training set.  

 

 

 

 

 
Figure 8 Part of binary characters testing set with 5% pepper-and-salt noise. 
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Table 2 Classification results comparison with different salt-and-pepper noises. 

Method Parameter a Noise-free 5% 8% 10% 15% 20% 

RALMs 

0 80% 72% 74% 64% 52% 56% 
2 100% 100% 94% 92% 76% 66% 

4 100% 92% 78% 74% 66% 60% 
6 100% 84% 70% 68% 52% 48% 
8 100% 84% 66% 66% 54% 46% 

10 100% 66% 56% 52% 48% 42% 
15 100% 98% 92% 84% 76% 54% 
20 100% 86% 66% 50% 40% 26% 

OFMMs  100% 86% 78% 72% 60% 62% 

 
Figure 9 Part of gray-level objects training set. 

 

 

 

 

 

 
Figure 10 Part of gray-level objects testing set with 10% pepper-and-salt noise. 
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To illustrate the discrimination power of RALMs for noisy gray-level images 
several gray-level training images with a size of 128×128 pixels from the 
Columbia object image database [23] were chosen (shown in Figure 9). A new 
set of 720 images was generated as the testing set by rotating the training 
images from 0° to 360° with an interval of 5°. This was followed by adding salt-
and-pepper noise with different noise densities, as shown in Figure 10. In the 
classification work, seven invariants of RALMs and OFMMs were calculated 
and the Euclidean distance was used here as the classification measure. The 
results of the classification are depicted in Table 3 and one can observe from 
this table that RALMs achieved higher recognition rates in the noise case. 

Table 3 Classification results comparison with different salt-and-pepper noises. 

Method Parameter a Noise-free 5% 8% 10% 15% 20% 

RALMs 

0 96% 88% 66% 62% 62% 44% 
2 100% 96% 92% 88% 74% 66% 

4 100% 98% 92% 94% 78% 76% 
6 100% 98% 96% 98% 86% 80% 
8 100% 100% 96% 98% 80% 84% 

10 100% 100% 100% 100% 80% 72% 
15 100% 80% 80% 78% 78% 72% 
20 100% 100% 94% 86% 60% 50% 

OFMMs  100% 100% 100% 88% 84% 74% 

The final experiment was aimed at finding out how well the proposed invariants 
perform for color image recognition. Color images were generated from the 
same image dataset as the training set [23]. They were cropped and rotated to a 
standard size of 128×128 pixels. Some samples of these training images are 
given in Figure 11.The testing images were generated from the training images 
by rotating them with rotation angle θ = 5, 10, 15, …, 360° and then 
contaminating them with pepper-and-salt noise with a density of 20% (see 
Figure 12). In order to investigate the role of the parameter α in the recognition 
performance, the experiments were repeated for each parameter α. The 
classification rates for the OFMMs-based method and Q-RALMs method are 
given in Table 4. It was clearly found that the Q-RALMs had a better 
classification performance at parameter α = 6, 8, 10. 

 

 
Figure 11 Part of color images training set. 
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Figure 12 Part of color images testing set with 20% pepper-and-salt noise. 

Table 4 Classification results comparison with different salt-and-pepper noises. 

Method Parameter a Noise-free 5% 8% 10% 15% 20% 

RALMs 

0 80% 66% 68% 56% 48% 40% 
2 100% 94% 82% 74% 74% 62% 
4 100% 88% 88% 80% 78% 66% 

6 100% 94% 94% 84% 66% 68% 
8 100% 100% 100% 98% 90% 80% 
10 100% 100% 100% 98% 90% 78% 

15 100% 84% 78% 76% 68% 62% 
20 100% 98% 94% 88% 76% 62% 

OFMMs  100% 100% 96% 94% 84% 64% 

All above the experiments indicated that the parameter α plays an important role 
in the pattern recognition task when using the invariants of the RALMs-based 
method, as it controls the shifting to the image region of interest. The choice of 
the parameter α corresponding to the case where the emphasis of the moments is 
at the center of the image gave the best reconstruction result. The classification 

mailto:82@
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experiment demonstrated that the best recognition accuracy was achieved for α 
from 6 to 10 under both noise-free and noisy conditions.  

5 Conclusions 
This paper introduced a new type of orthogonal moments based on the 
associated Laguerre polynomials for image description, and constructed 
RALMs using methods that are similar to those of disc-based moments. This 
form makes them particularly suitable for pattern recognition tasks requiring 
rotation invariants. In addition, the study extended the proposed moments and 
rotation invariants defined for gray-level images to color images using the 
theory of quaternion algebra. The numerical experiment results obtained from 
both gray-level images and color images demonstrate that the effectiveness of 
the proposed ALMs and RALMs could be better according to description 
performance and invariant pattern recognition capabilities in noise-free and 
noisy cases. 
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