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Abstract. Higher-order modulation schemes in optical communication systems that 

suffer from several impairments can use artificial intelligence (AI) algorithms, 

among other possible techniques, to mitigate these issues. In this paper, several 

techniques for optical communication systems have been proposed to enhance the 

performance of dual-polarization (DP) M-ary Quadrature Amplitude Modulation 

(M-QAM) as DP-16-QAM, DP-64-QAM, DP-128-QAM, and DP-256-QAM with 

240Gbps data rate. Artificial neural networks (ANNs) with seven different training 

algorithms have been applied to optimize the optical communication system. A high 

optimization of modulation format identification (MFI) with accuracy up to 100% 

was obtained at about 13 dB OSNR and at 22 dB OSNR for the DP-265-QAM 

format.  

Keywords: artificial neural network (ANN); back-propagation; optical system 

optimization; modulation format identification (MFI). 

1 Introduction 

Optical communications systems that use advanced modulation schemes such as 

M-ary Quadrature Amplitude Modulation (M-QAM) have increased in optical 

communication networks over nearly a decade [1]. For this reason, researchers 

have attempted to improve the performance of these systems by applying several 

different techniques to achieve a high quality of service [2,3].  

Recently, artificial intelligence (AI) techniques have been applied to optimize the 

performance of optical communication systems [4-6]. For example, artificial 

neural networks (ANNs) [7], convolutional neural networks (CNNs) [8], deep 

neural networks (DNNs), and principal component analysis (PCA) [9]. These 

neural network techniques have been proposed to enhance the optical 

performance monitoring (OPM), including optical signal to noise ratio (OSNR), 

chromatic dispersion (CD), and polarization mode dispersion (PMD) [10]; and 
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mitigation of nonlinear distortion [2,11]. Modulation formats (MFs) enhanced for 

a coherent detection receiver using a deep neural network (DNN) based on an 

asynchronous amplitude histogram was obtained after constant modulus 

algorithm (CMA) equalization to identify three modulation schemes with good 

accuracy in [9]. Also, a deep learning algorithm based on an intelligent eye-

diagram analyzer to implement modulation format identification (MFI) has been 

proposed in [12]. Furthermore, MFs were identified for different QAM 

modulation forms with indirect detection receiver using an artificial neural 

network (ANN) for elastic optical networks [13]. 

In this paper, seven different training algorithms for feed-forward artificial neural 

networks (ANNs) are proposed to optimize the performance of coherent optical 

communication systems with four modulation schemes at high data rates, including 

240Gbps dual-polarization (DP) 16-QAM, 240Gbps DP-64-QAM, 240Gbps DP-

128-QAM, and 240Gbps DP-256-QAM as signal codes. The proposed approach 

uses a multi-layered neural network with back-propagation (BP) as the training 

algorithm. 

2 Optimization Methods  

In a feed-forward ANN model, the network is constructed using layers as 

represented in Figure 1 [14]. The input vector passes through the network layer 

by layer until the output layer is reached. There is only one input node in the first 

layer. The second layer is a hidden layer takes place in the second layer, it 

contains nonlinear units that are connected directly to the input node. According 

to Eq. (1) there are 20 nodes in the hidden layer [15]:  

 𝑁ℎ ≥ (2𝑁𝑖 + 1)                                         (1) 

where 𝑁ℎ represents the number of nodes in the hidden layer and 𝑁𝑖 is the 

number of nodes in the input layer. The weights between the input layer and the 

hidden layer are 𝑤𝑖𝑗 (i = 1, 2, . . ., 𝑁ℎ); (j = 1, 2, . . ., 𝑁ℎ), and the thresholds are 

θ j. Similarly, the weights between the hidden layer and the output layer are 𝑤𝑗𝑘 

(k = 1, 2, . . ., no), and the thresholds are 𝜃𝑘. The outputs of each layer are given 

by [16]:  

   𝑥𝑗
′ = 𝑓1(∑ 𝑤𝑖𝑗𝑥𝑖 − 𝜃𝑗

𝑁𝑖
𝑖=1 )     (2)               

 𝑦𝑘 = 𝑓2(∑ 𝑤𝑗𝑘𝑥𝑗 − 𝜃𝑘
𝑁ℎ
𝑗=1 )                      (3) 

The activation function of the individual hidden units in the NN is hard-limit [17]:  

F1(z)= 1 if z ≥ 0,  

and the activation functions of the output layer is log-sigmoid [17]: 
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F2(z)= 1 / (1 + exp(-n)) 

The last layer is the output layer, which consists of one node. For updating the 

weights of the NN, several training methods were used, i.e.: 

1. OSS: One Step Secant [18] 

2. CGF: Conjugate Gradient with Fletcher-Powell Conjugate Gradient [19] 

3. BFG: BFGS (Broyden Fletcher Goldfarb Shanno) Quasi-Newton [20] 

4. RP: Resilient Backpropagation [21] 

5. LM: Levenberg-Marquardt [19] 

6. SCG: Scaled Conjugate Gradient [22] 

7. CGP: Conjugate Gradient Backpropagation with Polak-Ribiére [19]. 

 

 

Figure 1 The structure of an artificial neural network. 

3 Simulation Setup and Results   

The simulation setup used is shown in Figure 2. First, a huge bit sequence 

(240Gbps) is generated by PRBS (pseudo-random bit sequence), which then is 

converted from serial to parallel sequences to produce dual-polarization 

multilevel quadrature amplitude modulation electrical signals like DP-16-QAM, 

DP-64-QAM, DP-128-QAM, and DP-256-QAM. Second, an optical carrier is 

modulated with M-QAM signals at 1550 nm center frequency, and then the dual-

polarization optical signals are combined by using Polarization Combiner (PC). 
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Then, the amplified optical signal is transmitted over a recirculating loop fiber 

consisting of an 80-km span of standard single-mode fiber (SSMF) and an 

erbium-doped fiber amplifier (EDFA). After that, the optical signal output from 

the fiber loop is filtered by a (0.4 nm and 50 GHz) bandwidth optical bandpass 

filter (OBPF) to cancel redundant noise present in the signal. At the receiver side, 

the received optical signal is divided into two polarized signals by a polarization 

splitter, and then is detected coherently by a coherent optical receiver.  

The values of the simulation parameters used in the system are shown in Table 1. 

The detected signals were sampled to collect 4194304 samples for DP-16QAM, 

DP-64QAM, DP-128QAM, and 8388608 samples for DP-256QAM in one 

sequence and then processed offline by utilizing the seven different training 

algorithms for the feed-forward artificial neural networks (ANNs). The 

commercial software Optisystem was used to simulate this optical system, and 

MATLAB for offline processing. 

 

Figure 2 The simulation setup of an DP-M-QAM optical communication system. 

Table 1 Simulation system parameters values. 

Parameters Values Parameters Values 
Data rate 240 Gbps Fiber attenuation 0.2 dB/km 

Optical Power -5 ~ +5 dBm Dispersion coefficient 
16.75 

ps/nm.km 

Linewidth of optical 

carrier 
100 kHz 

Nonlinear index of             

refraction 

26e-021           

m2/W 

Linewidth of local          

oscillator 
100 kHz One span fiber length 80 km 

EDFA gain 20 dB EDFA noise figure 4 dB 
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The identification accuracy results of four modulation formats, DP-16QAM, DP-

64QAM, DP-128QAM, and DP-256QAM, are summarized in Table 2. 

According to Table 2, the obtained results showed identification by the four 

proposed modulation schemes at 100% accuracy when using the BFG and OSS 

neural network training algorithms. Figure 3 shows the accuracy of identification 

against OSNR. The OSNR alternates between 10 and 35 dB. High identification 

accuracy was observed for the DP-16QAM, DP-64QAM, and DP-128QAM at 13 

dB OSNR, while high identification accuracy for the DP-265QAM was observed 

at about 22 dB OSNR. 

Table 2 Identification accuracies of the four used modulation schemes using the 

proposed artificial neural network training algorithms. 

NN Training 

algorithms 

Accuracy of Identification 

16-QAM 

at 

OSNR=19dB 

64-QAM 

at 

OSNR=25dB 

128-QAM 

at 

OSNR=26dB 

256-QAM 

at 

OSNR=30dB 

BFG 100% 100% 100% 100% 

OSS 100% 100% 99.99% 100% 

LM 99.90% 97.10% 99.28% 96.80% 

SCG 88.90% 62.30% 65.90% 67.65% 

CGF 100% 100% 99.95% 99.80% 

CGP 100% 100% 99.99% 99.90% 

RP 77.50% 75.70% 75.40% 56.75% 

This section illustrates the performance of the seven training functions and the 

original signals of the four modulation schemes. The OSS algorithm achieved the 

best convergence of OSS algorithm. This NN algorithm had a noticeable 

advantage, because it requires very accurate training. The smallest lower mean 

square errors among the other algorithms tested could be obtained using the BFG 

training method. The LM algorithm had larger storage requirements than the 

other algorithms tested. The advantage of LM decreased when the number of 

weights in the network was increased.  

The performance of CGF was similar to the performance of BFG. It has an 

advantage over the LM method, because it does not require high storage. On the 

other hand, a drawback is that the computation required increases by a constant 

ratio with the size of the network, because the equivalent of an inverse matrix 

must be computed at each iteration. The CGP algorithm performance was faster 

than CGF and its accuracy was almost the same as that of the OSS algorithm. The 

performance of conjugate gradient algorithm SCG was good over a wide set of 

problems. By comparing the performance of SCG and LM, unlike LM, the 
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performance of SCG did not degrade quickly when the error was reduced. The 

conjugate gradient methods have comparatively moderate storage requirements. 

 

Figure 3 Identification accuracy for four modulation scheme curves versus 

OSNR using the BFG NN training algorithm. 

Compared with the other algorithms, they were usually the slowest. Meanwhile, 

the performance of the RP method degraded as the error target was reduced. For 

this method, the storage requirements are comparatively low compared with the 

other methods. The performance of the RP method was similar to that of the LM 

algorithm, with almost the same speed of convergence, and its accuracy was 

almost the same as that of the SCG algorithm. Table 3 contains the performance 

of the seven NN training methods. The results were taken for four types of 

modulation schemes, DP-16QAM, DP-64QAM, DP-128QAM, and DP-256QAM. 

The results show the values of mean square error (MSE) for each algorithm. The 

error is the difference between the calculated output and the goal. The 

convergence speeds of the BP training algorithms were between (3-180) epoch, 

i.e. the best convergence speed among the (CGF, BFG and OSS) methods. 

Table 3 MSE performance of the seven NN algorithms. 

NN Training  Algorithms 16-QAM 64-QAM 128-QAM 256-QAM 

BFG 10-30 10-23 10-14 10-12 

CGF 10-17 10-15 10-10 10-10 

CGP 10-23 10-13 10-12 10-12 

LM 10-10 10-7 10-9 10-9 

OSS 10-22 10-21 10-13 10-12 

RP 10-8 10-8 10-7 10-7 

SCG 10-7 10-8 10-7 10-8 
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4 Conclusions  

In this work, seven training algorithms for feed-forward artificial neural networks 

(ANNs) have been proposed to identify the performance of four modulation 

schemes, DP-16QAM, DP-64QAM, DP-128QAM, and DP-256QAM, in an 

optical system. The neural training algorithms (CGF, BFG, CGP, and OSS) gave 

better symmetry than the other neural training methods proposed in this work. 

The proposed approach is to take one node for samples serially rather than several 

nodes with one sample in parallel. The results from the first approach gave higher 

accuracy for symmetry. 
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